
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VISUALIZING THOUGHT: CONCEPTUAL DIAGRAMS
ENABLE ROBUST PLANNING IN LMMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Human reasoning relies on constructing and manipulating mental mod-
els—simplified internal representations of situations used to understand and solve
problems. Conceptual diagrams (e.g., a sketch drawn to aid reasoning) externalize
these mental models, abstracting irrelevant visual details to efficiently capture
how entities interact. In contrast, Large Language Models (LLMs) and Large
MultiModal Models (LMMs) predominantly reason through text, limiting their
effectiveness on complex multi-step tasks. In this paper, we propose Visual Thinking,
a generalizable framework that enables LMMs to reason through multiple chains
of self-generated conceptual diagrams, significantly enhancing their combinatorial
planning capabilities. Our approach requires no human input beyond the natural
language description of the task. It integrates textual and diagrammatic reasoning
within an optimized Graph-of-Thought inference framework, enhanced by beam
search and depth-wise backtracking. Evaluated on multiple challenging PDDL
planning domains, our method substantially improves LMM performance (e.g.,
GPT-4o: 35.5%→90.2% in Blocksworld) and consistently outperforms text-only
search-based inference methods. Additionally, on more difficult planning domains
with solution depths up to 40, our approach outperforms the o1-preview reasoning
model (e.g., 16 percentage points improvement in Floor Tiles). These results
highlight the value of conceptual diagrams as a reasoning medium in LMMs.

1 INTRODUCTION

Natural language is a powerful medium for communication, enabling humans to effectively share
knowledge and ideas [46, 11, 51]. However, language alone is not an optimal medium for reasoning,
as it is inherently linear, sequential, and verbose, making it inefficient for representing complex
logical and relational structures [33, 25, 52]. Prior evidence ‘human thought’ is inherently not verbal,
sequential, or linear; rather, it is spatial, parallel, and image-like [52]. Humans construct and utilize
internal mental models—simplified analogues of real or hypothetical situations [31, 20, 25, 6], and
dynamically manipulate them to represent and predict interactions between objects and solve problems.
Crucially, mental models are multimodal, integrating both visual and verbal representations to facilitate
learning and robust reasoning [38]. Finally, visual representations have always played a central role in
human reasoning and communication, from prehistoric cave art, which predates written language [12],
to modern textbook diagrams, scientific figures, and blackboard sketches.

Conceptual diagrams are simplified visual representations that use basic shapes (e.g., circles, squares,
lines) to capture how entities interact while abstracting away irrelevant details [52, 33]. They externalize
internal mental models, reducing cognitive load and enabling rapid perceptual inference and clearer rea-
soning [25, 20]. Unlike photorealistic images, which capture fine-grained details of how objects appear,
conceptual diagrams encode the structural and relational information essential for reasoning, using
colors, relative positions and sizes, and annotations [52, 33]. For example, a square in a diagram might
represent a complex object such as a car, with its color, relative size, and position visually encoding
relationships to other entities while omitting irrelevant appearance details. Thus, conceptual diagrams
are an effective reasoning medium complementary to language, overcoming language’s limitations in
representing relational structure and aligning closely with humans’ multimodal reasoning [52, 25, 19].

Modern large language models (LLMs) and large multimodal models (LMMs) [41, 42, 4] have
achieved remarkable success on mathematical and scientific benchmarks, including GSM8K [13],
MATH [27], and GPQA [65]. Despite these advances, their reasoning remains inconsistent, particularly
on multi-step compositional reasoning, long-horizon planning, and tasks requiring backtracking or
error correction [19, 55, 15, 9]. These limitations stem partly from LLMs’ reliance on language, which
is inherently linear and inefficient for representing complex relational structures [19, 55, 8]. Moreover,
the autoregressive architecture of current models enforces sequential next-token prediction, making
backtracking challenging [19]. Thus, enabling LMMs to reason with conceptual diagrams and backtrack
within a graph-based inference framework offers a promising approach to overcome these bottlenecks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Initial State Move rightl0 down Move straight1 down Move straight0 down

 Beam Search4

 Output: (Correct plan)7

Move rightl0 down Move straight1 down

Move straight1 down Rotate straight1 clockwise Move straight1 down

Move straight1 down Rotate straight1 counter-​clockwise

3

 Search Termination6

Initial conceptual diagram
of the domain

 1

Rotate straight1clockwise Move straight1down

Initial State
Goal State: Clear the top
two rows of the grid.

Natural language problem
description

 2 2

Rotate straight0 clockwise

 Backtracking5

Figure 1: Our proposed approach. Example diagrams are from the Tetris domain, where tiles are moved on
a grid to reach a goal state. (1) The model generates multiple diagram schemas and codes for a random instance;
their rendered diagrams are ranked, and the code of the top choice is cached (Fig. 2). (2) Conditioned on this
code, diagrams for the initial and goal states are generated (Fig. 3). (4) Beam search ranks all candidates at a
depth by proximity to the goal, expanding the top k=4 (Sec. 3). (5) Depth-wise backtracking is applied when
all candidate states at a depth fail validation, returning to the deepest available ancestor. (6) The process stops
when the goal is reached or a maximum number of steps is visited. (7) The output is the action sequence (plan)
plus textual and diagrammatic representations of intermediate states.1

In this work, we propose Visualizing Thought, a framework that enables LMMs to solve
combinatorial problems through multiple multimodal chains of self-generated conceptual diagrams
and textual reasoning. Our approach requires no domain-specific modifications or manual engineering
to solve any combinatorial problem expressible in the Planning Domain Definition Language
(PDDL) [39], given only a natural language specification of the initial state, goal state, and possible
actions. Importantly, our method does not rely on predefined visual templates or geometric priors;
instead, it generates conceptual diagrams directly from the textual problem description.

Visualizing Thought decomposes inference into a graph of intermediate reasoning steps, where at
each node the model selects the next best state. Each node is multimodal, containing both a textual de-
scription of the state and a corresponding conceptual diagram (see Fig. 1). At each step, the LMM (i) gen-
erates the next state conditioned on the textual and diagrammatic representations of the states in the ac-
tion path; (ii) produces a diagram schema—a structured set of statements specifying each object’s shape,
relative size and location, and status; and (iii) generates Matplotlib code from the schema that renders
the state diagram. To ensure inference quality, we incorporate guardrails such as diagram-schema self-
reflection checks and local (parent–child) and global (entire path from the initial state) validity checks.
To manage the exponential growth of the combinatorial search space [7, 64], we integrate beam search
to rank validated candidate states at each inference depth and expand only the top k. We also incorporate
depth-wise backtracking, which allows the model to revisit earlier validated nodes if all current candi-
dates fail verification. Together, these components enable more efficient exploration of the search space.

Unlike prior approaches that augment language models with visual representations for compositional
reasoning [62, 29]—which typically provide an initial visual template for the model to iteratively
update—Visualizing Thought relies solely on textual descriptions. The model autonomously generates
conceptual diagrams from scratch for every state, without any human-provided visual examples or cues,
mirroring how humans use imagination to construct mental models from language. Moreover, instead
of producing a single static visualization [29, 58], our method generates evolving sequences of interme-
diate diagrams that illustrate how the LMM’s ‘model’ of the problem evolves with each reasoning step.

1 For Figs. 1 and 4, we adjusted the diagram codes only to increase font sizes for better readability. Figs. 2-3 are
unmodified generations. Fig. 1 actions are simplified; full action strings include previous/current cells occupied.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Single inference Search-based inference (base LLM = GPT-4o)

Domain GPT-4o o1-
mini

o1-
preview GoT Optimized

GoT RAP(20) Visual Thinking

Blocksworld (simple) 35.5%∗ 56.6% ∗ 97.8%∗ 50% 58% 58% 90.2%
Blocksworld (hard) 0% 0.9% ∗ 23.65%∗ 8% 48% 4% 78%
Floor Tiles 0% 6% 20% 0% 4% – 36%
Parking 2% 8% 40% 14% 28% – 52%
Tetris 0% 2% 26% 0% 12% – 38%
Elevator 0% 2% 36% 2% 10% – 48%
Barman 0% 0% 10% 0% 4% – 30%

Table 1: Accuracy results across all evaluated domains. Each baseline was evaluated on 50 problem instances
per domain, except for GPT-4o + Visual Thinking on Blocksworld (simple), where we evaluated 500 instances
(the full PlanBench [54]) and achieved 90.2% (451/500). Baseline results marked with ∗ are taken from [56].
RAP reported 51% accuracy on Blocksworld (simple) using Llama 2 [24].

Evaluations across multiple challenging PDDL planning domains demonstrate that our method
substantially enhances LLMs’ combinatorial reasoning capabilities (Tab. 1). On the widely studied
Blocksworld domain, from PlanBench [54], our approach delivers performance gains of 43, 64, and
55 percentage points using Claude 3.5 Sonnet [5], Llama 4 Maverick [40], and GPT-4o, respectively
(e.g., GPT-4o’s accuracy rises from 35.5% to 90.2%). Importantly, we contribute a new, more difficult
planning benchmark with five additional planning domains—Floor Tiles, Parking, Tetris, Elevator,
and Barman—with solution depths designed up to 40. On this benchmark, our method succeeds
where base models consistently fail (e.g., 36% vs. 0% in Floor Tiles). Furthermore, Visual Thinking
(using GPT-4o) outperforms the reasoning model, o1-preview [44], across all new domains (e.g.,
10% vs. 30% in Barman). Finally, compared to strong search-based inference methods such as
Graph-of-Thought [7] and RAP [24] (a Monte Carlo Tree Search framework that uses an LLM to build
world models and generate plans), our method improves accuracy by at least 22 percentage points
while also reducing inference cost by over 30% and latency by more than 25%.

Crucially, our ablation study on the Blocksworld (simple) domain shows that it is the representation
of relational information in conceptual diagrams, not merely the encoded content, that drives these gains.
Replacing rendered diagrams with their underlying Matplotlib code, which contains the same spatial
and relational data, caused accuracy to collapse from 90.2% to 24%, below the GPT-4o single-inference
baseline (35.5%) (Table 3). This sharp decline shows that the compact, parallel, multi-dimensional (2D,
color-encoded) representation of object interdependencies in diagrams, rather than their sequential form
in text or their syntactically cluttered code representation, is what enables more effective reasoning.

To summarize, our contributions include: 1) a cognitively inspired reasoning framework, Visualizing
Thought, that enables LMMs to reason with conceptual diagrams autonomously generated from textual
descriptions, with no manual engineering or visual templates required for new domains, within a struc-
tured graph-based inference process; 2) empirical evidence that representation of information, not just
the content, is critical for reasoning, as replacing rendered diagrams with their code containing the same
data causes performance to collapse; and 3) extensive evaluations on PlanBench and a new benchmark
of five long-horizon planning domains, where our method consistently outperforms strong search-based
baselines and reasoning models (on new domains), demonstrating that conceptual diagrams enable
solving problems beyond the reach of purely textual (single-inference or search-based) approaches.

2 RELATED WORK

Multimodal Chain-of-Thought for Reasoning. Several recent works have explored integrating visual
representations into the reasoning processes of LLMs and LMMs. Hu et al. [29] equips LMMs with
drawing tools to graph equations or mark photorealistic images, but primarily focuses on single-step
or shallow problems. Similarly, Wang et al. [58] generates visual aids for spatial reasoning, providing
a single refined visualization per problem. In both works, the generated visualizations are typically
an approximate or augmentation of high-fidelity illustrations rather than conceptual diagrams drawn
using a model-defined mapping of complex entities to simple shapes and colors. Concurrent work, Wu
et al. [62], also generates visual and textual intermediate states but requires conditioning the model on
a human-provided initial visual representation that supplements the textual description of the problem.
This reliance on externally supplied initial visualizations could limit the method’s generality and
applicability to unseen domains where no such visual initialization exists.

Our approach differs in several key aspects. First, our method autonomously generates conceptual
diagrams directly from textual descriptions, without relying on external visual demonstrations or cues,
mirroring human ability to construct mental models from language. Second, rather than producing
a single visualization, our approach creates multiple chains of intermediate visual states, enabling

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Problem
description

+
Initial best
diagram
schema

 Diagram
Code

Ranked best
conceptual

diagram
LMM

ranking

. . .
Figure 2: We generate an initial conceptual diagram for each domain by sampling multiple diagram codes. An
LMM ranks diagrams based on intuitive and accurate visualization of relational information. The top-ranked
diagram’s code serves as reference for generating initial and goal state diagrams for all instances. Example shown
is the parking domain, where curbs hold up to two cars, and cars can be movable or blocked (double-parked).

parallel multi-hypothesis compositional reasoning through evolving diagrams. Third, our diagrams are
conceptual, representing relationships and interactions between entities that are visualized with simple
shapes rather than realistic depictions. Finally, our method is applicable to any problem expressible in
PDDL format (a general language for planning problems) without domain-specific engineering, given
only the textual description of the problem. These distinctions collectively enable a more generalizable
and flexible form of diagrammatic reasoning, leading to significant performance gains.
Search and Verification Inference Strategies. Recent methods improve reasoning in LLMs by
structuring inference into explicit intermediate steps [60, 32] and employing search-based strategies
over multiple reasoning paths [59, 64, 24, 16, 7]. For instance, Yao et al. [64] propose Tree-of-Thought
(ToT), which extends CoT to explore a tree of reasoning paths, and Besta et al. [7] introduce
Graph-of-Thought (GoT), which structures the reasoning process as a graph, enabling backtracking and
aggregation of intermediate reasoning steps. Other works utilize verification and refinement techniques,
such as iterative self-reflection and feedback, to enhance reasoning accuracy [37, 45, 50]. Our approach
builds upon these methods by integrating a conceptual diagram into each intermediate reasoning step’s
representation. Moreover, as detailed in Section 3, we extend graph-based inference with beam search,
significantly reducing the search space and improving performance on long-horizon planning tasks.
World Modeling with LLMs. Recent research explores planning and reasoning using LLMs by im-
plicitly or explicitly constructing world models from textual descriptions [30, 63, 3, 17, 18, 34, 57]. For
instance, Huang et al. [30] show that LLMs implicitly form textual world models for simple planning
tasks, while other works explicitly represent states and transitions for structured reasoning [63, 17, 34].
For instance, RAP [24], which we use as a search-based baseline in our evaluation, uses an LLM as
both a planning agent and a world modeler, using Monte Carlo Tree Search to simulate future states
and rewards that guide its planning. Our work extends these text-based approaches by enabling LMMs
to autonomously construct and reason with diagrammatic world models. By defining a visual schema
of objects and their statuses using shapes, colors, and spatial arrangements, our method generates
diagrams that visually simulate action sequences and state evolutions. This approach provides a more
compact representation of relational information, significantly improving performance on complex,
multi-step planning tasks, as demonstrated by the substantial accuracy boost on the Blocksworld (hard)
domain compared to RAP (78% vs. 4%).

3 METHOD

We propose Visual Thinking, a training-free and model-agnostic framework that integrates textual
reasoning with model-generated intermediate conceptual diagrams to enable Large MultiModal Models
(LMMs) to solve combinatorial problems, given text-only problem specifications (initial state, goal,
admissible actions). Combinatorial problems [61] involve finding a valid sequence of actions from
an initial state s0 to a goal state sg , given a finite set of possible actions. Our framework, built upon the
Graph-of-Thought (GoT) approach [7], decomposes reasoning into discrete nodes in a structured infer-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Generate next action and textual
description of child state

The hand is holding block 'a'. Block 'a' is no longer on the table and not clear.
Blocks b, c, and d remain on the table and clear.

Generate diagram schema and
verify it (self- reflection)

- (name: block_a, shape: rectangle, size: medium, position: held by hand, status: not clear)
...
- (name: block_d, shape: rectangle, size: medium, position: on table, status: clear)
- (name: table, shape: large rectangle, size:
covers all blocks, position: bottom- most, status: supports blocks b, c, d)

 Generate diagram code

 Child state diagram

Action
verification

Code didn't run

Verification failed

Action path
verification

Diagram:Parent State

Textual Description:
There are four blocks: a, b, c, and d. The hand is empty.
Block a is on the table and clear. Block b is on the table and clear.
Block c is on the table and clear. Block d is on the table and clear.

Example verified generations for child state

Verification failed

Figure 3: Child state generation pipeline: the LMM selects an action from the parent node, generates a diagram
schema and then an executable diagram code, performs self-reflection and verifies that action chosen does not
violate any constraints and action path is feasible (example generations are from Blocksworld domain).

ence graph. Through this graph, multiple chains of multimodal states are simultaneously explored to-
ward the goal state. Below, we detail our method following the stages illustrated in Fig. 1. The full imple-
mentation, with full prompts and outputs, is available in the supplementary material. An analysis of the
prompts and an overview of the code structure are provided in Appendix Sec. B and Sec. C, respectively.
1. Generating Initial Conceptual Diagram for Domain. Step 1 in Fig. 1. For each new planning
domain, the LMM generates a reference conceptual diagram from a random domain instance. This
is done entirely in a zero-shot manner, without manual engineering or external visual cues, conditioned
only on the problem’s textual description. The process begins with the LMM proposing multiple candi-
date diagram schemas, which it then verifies by iterating through the objects to confirm the accuracy of
their shape, color, status, and relative size and position. The LMM ranks these verified schemas on how
clearly they represent object relationships, selecting the top one. Using this schema, the model generates
several executable Matplotlib diagram codes. Each rendered diagram is then verified to ensure objects
are represented accurately and do not overlap. Finally, the LMM ranks these diagrams based on how
effectively they visualize the structure and relationships between objects, and the code for the highest-
ranked diagram is cached as a reference for generating the diagram code of the initial and goal states of
all instances in the domain. See Fig. 2 for example reference diagrams generated for Parking domain.
2. Initial and Goal State Diagram Generation. Step 2 in Fig. 1. We begin the inference process
of each instance by generating diagrams for the initial state s0 and the goal state sg, conditioned on
the domain conceptual diagram code obtained in step 1. When generating the diagram code, the LMM
is instructed to adhere to how objects and their statuses are visualized in the reference diagram, while
accurately initializing the objects according to the specific instance.
3. Intermediate Child State Generation Pipeline. Step 3 in Fig. 1. We denote by sd an intermediate
state at depth d of the graph, represented by a combination of: (i) textual description T (sd); (ii)
a diagram D(sd); and (iii) the action path A0:d from the initial state s0. We iteratively expand the
inference graph depth-by-depth in a breadth-first search (BFS) [14] manner, and apply beam search
at each depth to select the top-k candidates for further expansion.

From each parent state sd, we sample n=4 child states. W.l.o.g., next we describe the generation
of a single such child state sd+1 (Fig. 3). At each node, the LMM first selects the next candidate action
ad+1, conditioned on the parent state sd (which is represented by its diagram, textual description,
and action path from initial state). We then generate the textual description T (sd+1) of the resulting
child state. The candidate action-state pair (ad+1,T (sd+1)) is compared to previously generated
child states to verify uniqueness. If different, the LMM generates a diagram encoding for sd+1,
denoted as E(sd+1), which is a structured set of textual statements specifying shapes, sizes, positions,
statuses (e.g., colors), and textual identifiers for each object in the state (see Fig. 3 for an example).
The E(sd+1) undergoes a self-reflection verification to ensure consistency with T (sd+1) and the
action taken, ad+1, if failed we regenerate it. Subsequently, Matplotlib code C(sd+1) is generated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Floor Tiles domain, solution depth 21

Elevator domain, solution depth 19

. . .

. . .

. . .

. . .

Blocksworld domain, solution depth 10

Parking domain, solution depth 9

Figure 4: Sequence of intermediate state diagrams in the correct chain, from the initial to the goal state, for one
instance across four evaluated domains: Blocksworld, Elevator, Parking, and Floor Tiles (shown top to bottom).

conditioned on E(sd+1), T (sd+1), and two example diagram codes: the initial state diagram code
C(s0) and the parent state diagram code C(sd). Code is regenerated if it fails to run.

After generating the child state diagram, we perform two action verifications: (1) a local check that,
given the diagram and description of the parent and child state, confirms if the action ad+1 complies
with domain constraints; and (2) a global check verifying if the entire action path A0:d+1 is feasible and
efficient for reaching the goal state sg . If either of these checks fails, the child state is marked as invalid.
4. Beam Search. Step 4 in Fig. 1. Applying GoT [7] to combinatorial problems by naively expanding
all nodes (e.g., BFS) results in exponential growth of the search tree [48]. To mitigate this, we use
a method inspired by beam search [36], where first all states at each depth d are expanded, generating
up to N child states each. The LMM then ranks all candidate child states at depth d+1 based on their
proximity to the goal sg, selecting only the top k=4 states for further expansion. This depth-wise
pruning mitigates the exponential growth problem. Moreover, this ranking system resembles human
problem-solving strategies, where shallow state-specific heuristics are employed to estimate how close
intermediate states are to the goal [22, 10, 47].
5. Depth-wise Backtracking. Step 5 in Fig. 1. Additionally, we implement a depth-wise backtracking
mechanism. If all candidate child states at a given depth fail verification, we backtrack to the deepest
available ancestor nodes at depth dmax and attempt new expansions. We allow up to B=2 backtracking
attempts to any given depth. If all B attempts at depth dmax fail, we mark nodes at that depth as invalid
and backtrack further to the next deepest available nodes at depth dmax2, where dmax2<dmax.
6. Search Termination. Step 6 in Fig. 1. The inference process continues iteratively, expanding
nodes depth-by-depth, until either the goal state sg is reached or a predefined computational budget is
exhausted. We set two types of computational limits: (1) a maximum number of generated states (120
states for simpler Blocksworld instances, 450 states for more complex domains), and (2) a maximum
depth (28 for simpler Blocksworld instances, 100 for other domains). These limits ensure computational
efficiency in terms of inference time and API usage costs. If the goal state is not found within these
constraints, the search is marked as incomplete. Goal verification occurs at every state expansion, where
the LMM compares the diagram and textual description of the current state against those of the goal state.

In summary, our method leverages structured visual reasoning, self-generated conceptual diagrams,
and optimized graph-based inference strategies to efficiently solve combinatorial planning problems
with an LMM. Each step of our pipeline is visually illustrated in Figures 1, 2, and 3.

4 EVALUATION

To evaluate the proposed approach, we conducted experiments on seven different planning domains,
including the popular Blocksworld (simple) [23, 54] and Blocksworld (hard) [56], as well as 5 new do-
mains contributed in this work, prepared using a standard repository of PDDL problem instance genera-
tors [1]. Plan correctness was determined with VAL [28]. Experiments were run on a machine with dual-
socket Intel Xeon Gold 5220R processors at 2.2 GHz, 35.75 MB L3, 48 cores per node, 8 nodes total.
Baselines. We compare our approach against both single-inference and search-based methods. For
single-inference baselines, we evaluated GPT-4o, o1-preview [44], and o1-mini [43], each prompted
with PDDL instances using templates adapted from [54]. For search-based methods, we evaluate (i)
a baseline variant of Graph-of-Thought (GoT), which performs text-only breadth-first search over
LLM-generated states; (ii) Optimized GoT, which adds beam search (k=4) to GoT to enable exploring

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Analysis Corrects
(Accuracy) Incorrects Incompletes Avg

Depth
Max

Depth
Min

Depth
Avg Num

States

Blocksworld (hard) 78% 10% 12% 20.15 36 18 177.7
Floor Tiles 36% 24% 40% 15.88 25 10 244
Parking 52% 40% 8% 9.6 29 2 149.1
Tetris 38% 60% 2% 6.45 11 4 46.24
Elevator 48% 42% 10% 20.89 26 16 160.30
Barman 30% 40% 30% 24.0 27 22 210.54

Table 2: Analysis of domains. ‘Corrects’: % instances with correct plans; ‘Incorrects’: % with incorrect plans;
‘Incompletes’: % terminated due to state budget; ‘Avg/Max/Min Depth’: avg/max/min number of actions in
correct solutions; ‘Avg Num States’: average number of states generated across all instances of the domain.

deeper solutions within the compute budget; and (iii) RAP [24], which uses Monte Carlo Tree Search
with the LLM generating both the world model and the plan. RAP’s compute budget is specified by
iteration count; we adopted RAP(20), the highest budget reported by the authors in their experiments.
RAP was originally evaluated with Llama models; we extended it to GPT-4o for direct comparison.
However, RAP’s implementation relies on hard-coded prompts and domain-specific parsers available
only for Blocksworld, limiting applicability to other domains. Together, these baselines test the limits
of purely text-based search and single inference and provide strong points of comparison for our
diagram-based framework.
Evaluated Domains. We evaluated our method on combinatorial planning problems [21] from
the International Planning Competition (IPC) [2], expressed in PDDL format [39]. These domains
include Blocksworld (simple) and Blocksworld (hard) [23, 56], and five additional IPC domains: Floor
Tiles [26], Parking, Tetris [53], Elevator, and Barman. Instances for new domains were generated
using standard publicly available IPC generators [1]. For Blocksworld (which involves stacking and
unstacking blocks), we used 500 simple instances from PlanBench [54] (3–5 blocks) and 50 harder
instances (10–20 blocks, following [56]). Floor Tiles features robots painting tiles on a grid; we
generated 50 instances with 2–3 rows, 3–5 columns, and 1–2 robots. The Parking domain involves
rearranging cars in curbs, with 50 instances using 4-5 curbs and 4-6 cars. The Tetris domain requires
rearranging Tetris tiles on a grid, with 50 instances using (4×4) or (6×6) grids. Lastly, the Elevator
domain simulates passenger transport in buildings, with 50 instances using 4-5 floors and 10-12
passengers. Figure 4 shows an example sequence of intermediate state diagrams in the correct plan
for a subset of domains. Detailed definitions of each domain are provided in Appendix Sec. A.
Translating PDDL to Natural Language and Back. Our method, Visualizing Thought, operates
on the natural language description of combinatorial problems. To enable this, we first translate each
PDDL domain—the rules and allowed actions—into natural language using a manually engineered
five-shot prompt covering five different domains. Each instance, which specifies the initial and goal
states, is translated with a one-shot prompt. Our proposed approach then runs entirely on this text
representation. After solving the problem, the model’s natural language action sequence is translated
back into PDDL using a one-shot prompt containing a random (incorrect) plan with correct PDDL
syntax. The resulting PDDL plan is then evaluated for correctness using VAL.

4.1 RESULTS AND ANALYSIS

Our main results are presented in Table 1, comparing Visual Thinking (with GPT-4o) against leading
reasoning models (o1-preview, o1-mini) and strong search-based methods (GoT, Optimized GoT, RAP).
Visual Thinking substantially improves over base GPT-4o and consistently outperforms all search-based
approaches across domains. On Blocksworld (simple), our method achieves 90.2% accuracy, surpassing
GoT, Optimized GoT, and RAP, though slightly trailing o1-preview (97.8%). We conjecture this gap
is due to the smaller number of entities, which make the world state easier to track and update in text,
and the shallow solution depths, which make these instances easier to solve in a single pass. In contrast,
on harder domains, including Blocksworld (hard) and the five new domains, our approach shows
considerable, generalizable gains. For example, on Blocksworld (hard) we achieve 78%, compared
to 23.65% for o1-preview and 4% for RAP. This trend holds across other domains. Standard GoT
often fails completely (e.g., 0% on Floor Tiles and Tetris) due to combinatorial explosion exhausting
the budget, and while Optimized GoT mitigates this with beam search, its performance still lags well
behind our visual approach. These findings highlight how diagram-based reasoning enables models
to capture and analyze complex relational structures more efficiently than purely textual inference.

Table 2 provides further insight into our method’s performance on the more challenging domains.
Despite significantly deeper solution paths (instances were designed with solution paths of up to 40),
our method successfully generates correct plans with as many as 36 sequential actions (Blocksworld
(hard)). The primary limitation of our method observed in these experiments is the number of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ablation Corrects
(Accuracy) Incorrects Incompletes Avg

Depth
Max

Depth
Avg Num

States

GPT-4o + Visual Thinking 90.2% 6.4% 3.4% 10.07 28 38.89
No Diagram (Optimized GoT) 58% 36% 6% 8.28 18 25.86
No Diagram Schema 72% 20% 8% 7.41 18 46.2
No Code Execution 24% 66% 10% 7.82 22 32.7
1-Branching Factor 52% 4% 44% 6.38 16 23.9
2-Branching Factor 70% 6% 24% 8.29 24 26.27
No Backtracking 62% 4% 34% 6.06 14 22.12
No Beam Search 72% 4% 24% 6.61 12 58.31

Table 3: Ablation Study Results. ‘Corrects’ is our main accuracy metric. See Tab. 2 for columns notation.
incomplete searches (e.g., 40% incomplete in Floor Tiles, 30% in Barman), which arise either when
invalid actions are later rejected by local verification using state diagrams, or when inefficient actions
that fail to advance toward the goal are pruned by the global check, both leading to exhaustion of the
computational budget. We also observe the highest incorrect rate (60%) on the Tetris domain, primarily
due to inherently high branching factor in this domain (up to 24 possible actions per state) and complex
action parameterization—each action can require up to 7 parameters detailing positions of all sub-tiles,
compared to simpler domains like Blocksworld, where actions typically require only 1-2 parameters.
Conversely, our largest margin over o1-preview occurs in the Barman domain (30% vs. 10%), likely
because diagrammatic representations capture the high number of object statuses and interactions
per state in this domain more effectively than text alone.
Model Generalization. To assess the generalizability of our framework, we evaluated it on other
state-of-the-art LMMs using 50 instances from the Blocksworld (simple) domain. With Llama 4, our
method increased accuracy from a baseline of 10% (single inference) to 74%, an over 7x improvement
in accuracy. The improvement was also observed using Claude 3.5 Sonnet, where accuracy increased
from 54.8% (using zero shot single inference as reported in [56]) to 98%, achieving state-of-the-art
performance on this benchmark. These substantial gains demonstrate that the benefits of our approach
are not tied to a specific model architecture but stem from the fundamental advantage of using
model-generated conceptual diagrams as a reasoning medium.
Runtime and Cost Analysis. We analyzed the runtime and API costs of our method and all other
search-based baselines on 20 instances per domain. On the Blocksworld (simple) domain, our method
had a median runtime of 381 (∼6 minutes) seconds and a median cost of $1.04 per instance. For
more complex domains, the median runtime was 1038 seconds (∼17 minutes) with median cost of
$2.98 per instance. Our approach is significantly more efficient than other search-based methods. On
average, it was 31% faster and 36% cheaper than the GoT baseline, and 46% faster and 52% cheaper
than RAP20+GPT-4o across all domains, while achieving substantially higher accuracy. Compared
to the text-only Optimized GoT, incorporating diagrams added 213 seconds in latency and $0.71 on
average, measured across all domains, but this overhead yielded a 30 percentage point accuracy gain.

4.2 ABLATION STUDIES

To systematically evaluate the contributions of different components of our framework, we conducted
ablation studies on 50 instances from the Blocksworld (simple) domain. We examined the impact
of state diagrams, diagram schema, diagram code execution, different branching factors, and inference
optimizations (beam search and backtracking). Table 3 summarizes the results of these experiments.
Impact of Various Components of State Diagram Generation. We first evaluated the role of state
diagrams by removing them entirely from the inference pipeline (“No Diagram”), yielding a text-only
optimized Graph-of-Thought approach. This caused accuracy to drop from 90.2% to 58%, underscoring
the critical role diagrams play in succinctly representing relational information. Moreover, the average
solution depth of correctly solved instances decreased from 10.07 to 8.28, indicating that without
diagrams, the model struggled on more complex problems requiring deeper reasoning. In a second
experiment, we removed the diagram schema (“No Diagram Schema”) from the child-state generation
pipeline, instead inferring diagram code directly from textual descriptions of states. Accuracy dropped
from 90.2% to 72%, a smaller decline than removing diagrams entirely—showing that diagram schemas
further help extract relational information from text, enabling more accurate diagram generation.

Finally, we tested removing the rendered diagrams, providing only the Matplotlib code ("No Code
Execution") when generating the next action. This resulted in the most significant performance drop
(90.2% to 24%), even below the GPT-4o baseline (35.5%), clearly demonstrating that even though the
code encodes the same spatial and relational information as the diagram, the way this information and the
interdependencies between objects are represented is crucial for model performance. Using the diagram
code directly distracts the model and impairs reasoning, aligning with prior findings that extraneous

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

details negatively impact model performance [49, 35]. These results reinforce the importance of dia-
grams as compact, intuitive representations that facilitate rapid perceptual inference and clear relational
reasoning [33, 52, 25], and that it is the representation of information in a multi-dimensional (2D, color-
encoded) format that significantly aids understanding the interdependencies and reasoning in models.
Impact of Branching Factor. We next investigated the effect of branching factor of the inference graph
(the number of candidate child states generated per state) on performance. Reducing the branching factor
from 4 (our default) to 2 ("2-Branching Factor") decreased performance from 90.2% to 70%, primarily
due to a sharp increase in incomplete searches (24% vs. 3.4%). This suggests that exploring the third or
fourth candidate child states, generated at higher temperatures, is frequently necessary to find the correct
solution path. Thus, reducing branching factor limits diversity in candidate state generations, leading
to more incomplete searches. Additionally, the average depth of correctly solved instances decreased
from 10.07 to 8.29, indicating difficulty solving problems with deeper solution depths. Further reducing
the branching factor to 1 ("1-Branching Factor"), effectively converting our graph-based inference
into a multimodal Chain-of-Thought approach (with diagrams), caused performance to drop even
further to 52%. Despite this decline, performance remained well above the GPT-4 baseline (35.5%),
underscoring the value of diagrams in improving LMM reasoning even without extensive search.
Impact of Inference Optimizations. Finally, we evaluated the importance of our inference
optimizations (backtracking and beam search) on top of the multimodal inference graph. Removing
backtracking (“No Backtracking”)—yielding a tree-of-thought method with beam search—reduced
accuracy from 90.2% to 62%, primarily due to a sharp rise in incomplete searches (34% vs. 3.4%). This
occurs because LMM verification steps occasionally produce false negatives, incorrectly invalidating
correct states. Without backtracking, the model cannot recover from these errors, leading to incomplete
searches as no validated nodes remain at the frontier of the search graph for further expansion.

Similarly, removing beam search (“No Beam Search”) lowered accuracy to 72%, with the
incomplete search rate increasing to 24%. In this case, incompletes stem from exponential growth
in the search space, causing the model to exhaust its computational budget (i.e., the maximum number
of states generated) before reaching the goal. Indeed, the average number of generated states increased
significantly (58.31 vs. 38.89), underscoring the critical role of beam search in managing combinatorial
explosion. Both optimizations are essential for solving deeper combinatorial problems, as shown by
the reduced average correct solution depth without them (6.61 without beam search, 6.06 without
backtracking, vs. 10.07 with both). These results demonstrate that backtracking and beam search
are complementary and crucial for efficient graph-based combinatorial planning.

5 CONCLUSION

Contributions. In this paper, we introduced Visual Thinking, a framework that enables LMMs to solve
combinatorial problems by reasoning with conceptual diagrams alongside text. Our contributions are:
(i) a cognitively inspired method that autonomously generates conceptual diagrams directly from natural
language problem descriptions, requiring no human input for new domains; (ii) a multimodal Graph-
of-Thought framework that structures reasoning as sequences of intermediate textual and visual states,
integrating beam search and backtracking for efficient long-horizon search; (iii) extensive empirical
evidence showing substantial performance gains over single-inference LMMs, specialized reasoning
models, and strong search-based baselines across various planning benchmarks; and (iv) ablation
results demonstrating that representation of information is critical—reasoning improves when relational
information and interdependencies are encoded in diagrams, not merely present in text or code format.
Limitations. As with any search-based inference method, our framework incurs additional computa-
tional cost and inference time to explore multiple reasoning trajectories and also to generate visual rep-
resentations. However, these overheads are manageable in practice; importantly, our approach remains
more efficient than prior text-only search methods such as Graph-of-Thought and RAP. Another limita-
tion concerns scope: Visual Thinking was applied to combinatorial planning problems—a core area of
computer science with significant real-world applications, such as warehouse optimization, logistics,
and scheduling—chosen because their state-based structure makes diagram progression more straight-
forward. Future work involves extending conceptual diagram generation to more open-ended problems.
Future Work. This work demonstrates a path for LMMs to move beyond purely textual reasoning
toward a more powerful, human-like process that integrates visual abstractions. Future work can extend
this framework beyond combinatorial planning to more abstract domains, enabling LMMs to produce
multimodal outputs such as software architecture diagrams, figures visualizing scientific hypotheses
and causal dependencies, or tailored visual aids for educational contexts. Such conceptual diagrams can
enhance both model performance and human–AI interaction (e.g., easier verification of code behavior
through generated architecture diagrams). This ability to reason and communicate about complex struc-
tures multimodally is essential for building AI capable of tackling scientific, creative, and planning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

An anonymous supplementary repository includes the full inference code, prompt templates, and
scripts used in our experiments, along with the PDDL instances of the new planning benchmark created
for the five new domains and sample run results. The end-to-end pipeline is specified in Section 3
and summarized in Figure 1. Dataset sources and instance-generation parameters are detailed in
Section 4; formal task and action definitions required to regenerate the PDDL domains are provided in
Appendix A; and prompt templates are listed in Appendix B. Experimental setup, baselines, and eval-
uation protocols are described in Sections 4 and 4.1, with ablations in Section 4.2 and comprehensive
results in Tables 1 and 3. Code organization and configuration files are documented in Appendix C.

REFERENCES

[1] Pddl instance generators. URL http://ipc.icaps-conference.org/domains/.

[2] Proceedings of the International Planning Competition, 1998–Present. URL
http://ipc.icaps-conference.org/. This citation refers to the proceedings
and general information about the International Planning Competition (IPC).

[3] Michael Ahn, Noah Brohan, Noah Brown, Yevgenii Chebotar, Omar Cortes, Byron David,
Chelsea Du, Keerthana Duong, Sergey Edunov, Aáron Gomez, et al. Can language models learn
from explanations in context? arXiv preprint arXiv:2204.02329, 2022.

[4] Anthropic. Introducing the next generation of claude, 2024. URL https:
//www.anthropic.com/news/claude-3-family.

[5] Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

[6] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine
of physical scene understanding. Proceedings of the national academy of sciences, 110(45):
18327–18332, 2013.

[7] Maciej Besta, Nils Gerstenberger, Robert Rausch, Tim Fischer, Maximilian Lehmann, Kamil
Podstawski, Christoph Huschenbett, Andreas Böttger, and Kristian Kersting. Graph of thoughts:
Solving elaborate problems with large language models. 2023.

[8] Nasim Borazjanizadeh and Steven T Piantadosi. Reliable reasoning beyond natural language.
arXiv preprint arXiv:2407.11373, 2024.

[9] Nasim Borazjanizadeh, Roei Herzig, Trevor Darrell, Rogerio Feris, and Leonid Karlinsky.
Navigating the labyrinth: Evaluating and enhancing llms’ ability to reason about search problems.
arXiv preprint arXiv:2406.12172, 2024.

[10] Edward P Chronicle, James N MacGregor, Thomas C Ormerod, and Alistair H Burr. It looks
easy! heuristics for combinatorial optimization problems. The Quarterly Journal of Experimental
Psychology, 59(4):783–800, 2006.

[11] Herbert H Clark. Using language. Cambridge university press, 1996.

[12] Jean Clottes. Cave art. Phaidon Press, 2008.

[13] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[14] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to al-
gorithms. MIT press, 3rd edition, 2009. Breadth-first search algorithm described in Chapter 22.2.

[15] Antoni Creswell, Lisa Weber, Yogesh Upadhyay, Nicholas Lampson, Jonathan Uesato, Pushmeet
Kohli, and Rishabh Das. Selection-inference: Exploiting large language models for interpretable
logical reasoning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[16] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

10

http://ipc.icaps-conference.org/domains/
http://ipc.icaps-conference.org/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[17] Ishita Dasgupta, Karmanya Murugesan, Orion Jiang, Karthik Murthi, Michael Zhu, Cunjun Yang,
Derek Wong, Sriram Banerjee, Antonin Raffin, Andy Zeng, et al. Collaborating with language
models for embodied reasoning. arXiv preprint arXiv:2207.05608, 2022.

[18] Danny Driess, Aakanksha Chowdhery, Josef Schrittwieser, Ferenc Laskin, Michael and, Ayzaan
Shah, Carolina Castro, Nadine Clark, Omar Cortés, Fergal Aherne, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[19] Nouha Dziri, Siddhartha Chaudhuri, Christopher D Manning, Percy Liang, and Tatsunori
Hashimoto. Faith and fate: Limits of transformers on compositionality. In International
Conference on Machine Learning, pp. 10454–10481. PMLR, 2023.

[20] Dedre Gentner and Albert L Stevens. Mental models, psychology of. International encyclopedia
of the social & behavioral sciences, pp. 9609–9613, 2001.

[21] Malik Ghallab, Maria Fox, Derek Long, David Smith, Anthony Cremers, and Jörg Hoffmann.
PDDL2. 2-the language for describing planners. Yale University Department of Computer
Science New Haven, CT, USA, 2004.

[22] Gerd Gigerenzer and Daniel G Goldstein. Reasoning the fast and frugal way: Models of bounded
rationality. Psychological review, 103(4):650, 1996.

[23] Neelima Gupta and Dana S Nau. The complexity of blocks-world planning. AAAI, pp. 640–646,
1991. Relevant sentence: "The complexity of blocks-world planning is examined in detail.".

[24] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

[25] Mary Hegarty. Mechanical reasoning by mental simulation. Trends in cognitive sciences, 8(6):
280–285, 2004.

[26] Malte Helmert. Landmarks in planning. In Principles of knowledge representation and reasoning,
pp. 97–106, 2000. Relevant sentence: "Landmarks are propositions that must be true in every
plan that solves a given planning problem.".

[27] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[28] Richard Howey, Derek Long, and Maria Fox. Val: automatic plan validation, continuous effects
and mixed initiative planning using pddl. In Proceedings 16th IEEE International Conference
on Tools with Artificial Intelligence, pp. 294–301. IEEE, 2004.

[29] Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith,
and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal
language models. arXiv preprint arXiv:2406.09403, 2024.

[30] Wenlong Huang, Fei Xia, Ayzaan Shah, Andy Zeng, Michael Janner, Sergey Levine, Chelsea
Finn, Animesh Garg, Anca D Dragan, and Liwei Song. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, pp. 8844–8867. PMLR, 2022.

[31] Philip Nicholas Johnson-Laird. Mental models. Harvard University Press, 1983.

[32] Takeshi Kojima, Shixiang Sano, Hideaki Yan, Keizo Furukawa, Jun Sadaie, and Kunihiko Yanai.
Large language models are zero-shot reasoners. In Advances in neural information processing
systems, 2022.

[33] Jill H Larkin and Herbert A Simon. Why a diagram is (sometimes) worth ten thousand words.
Cognitive science, 11(1):65–99, 1987.

[34] Keming Liu, Tianhua Zhang, Yujie Chen, Jia Gao, Wei Zhang, Xiang Zhou, Tao Jiang,
Junsheng Wang, and Tie-Yan Chen. LLM+: Augmenting language models with explicit state
representations. arXiv preprint arXiv:2305.06975, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[35] Nelson F Liu, Kevin Shen, Keyulu Zhang, and Jian Tang. Lost in the middle: How language
models use long contexts. arXiv preprint arXiv:2307.03172, 2023.

[36] Bruce T Lowerre. The harpy speech recognition system. Ph.D. Dissertation, Carnegie Mellon
University, 1976. Often cited as the origin of Beam Search, though the term "beam search"
wasn’t explicitly used in this dissertation. Lowerre describes a similar approach for reducing
search space in speech recognition.

[37] Aman Madaan, Prateek Khapra, Yulia Tsvetkov, and Ruslan Salakhutdinov. Self-refine: Iterative
refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[38] Richard E Mayer. Multimedia learning. Cambridge university press, 2002.

[39] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. Pddl–the planning domain definition language. Technical
Report TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[40] Meta. Llama 4, 2025. URL https://ai.meta.com/blog/
llama-4-multimodal-intelligence/.

[41] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[42] OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

[43] OpenAI. Openai o1-mini, 2024. URL https://openai.com/index/
openai-o1-mini-advancing-cost-efficient-reasoning/.

[44] OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

[45] Sreejan Kumar Paul, Michael Laskin, Kevin Chiang, Yi Jiang, Nan Du, Sergey Levine, Roger
Grosse, Yuan Yao, et al. Refiner: Reasoning feedback on intermediate representations. arXiv
preprint arXiv:2304.01904, 2023.

[46] Steven Pinker and Paul Bloom. Natural language and natural selection. Behavioral and Brain
Sciences, 13(4):707–727, 1990.

[47] Zygmunt Pizlo and Zheng Li. Solving 756 combinatorial problems: The 15-puzzle. Memory
& cognition, 33(6):1069–1084, 2005.

[48] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson Education,
3rd edition, 2010. Section 10.1.1: Complexity of Classical Planning.

[49] Zheng Shi, Yujie Lu, and Albert G Schwing. Large language models can be easily distracted
by irrelevant context. arXiv preprint arXiv:2302.00093, 2023.

[50] Noah Shinn, Beck Labash, Ashwin Gopinath, Rohan Lee, Maarten Park, Eran Davidson, Denny
Zhou, Quoc V Le Liang, and Ed Chi. Reflexion: Language agents with verbal reinforcement
learning. arXiv preprint arXiv:2303.11366, 2023.

[51] Michael Tomasello. Origins of human communication. MIT press, 2010.

[52] Barbara Tversky. Visualizing thought. Topics in cognitive science, 3(1):159–185, 2011.

[53] Mauro Vallati. Automated synthesis of tetris domains. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015. Relevant sentence: "This paper presents an automated approach
to synthesizing planning domain models for Tetris puzzles.".

[54] Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
Kambhampati. Planbench: An extensible benchmark for evaluating large language models on
planning and reasoning about change. Advances in Neural Information Processing Systems,
36:38975–38987, 2023.

[55] Karthik Valmeekam, Raymond Nguyen, Quoc V Le, Lin Li, Nate Kushman, and Oleksandr Polo-
zov. Planning with large language models for code generation. arXiv preprint arXiv:2302.04761,
2023.

12

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[56] Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, and Subbarao Kambhampati. Planning
in strawberry fields: Evaluating and improving the planning and scheduling capabilities of lrm
o1. arXiv preprint arXiv:2410.02162, 2024.

[57] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[58] Pan Wang, Yuchen Li, Jiaqi Liu, Xiaojun Wang, and William Yang Wang. Whiteboard of thought:
A framework for llms to plan and reason with visual reminders. arXiv preprint arXiv:2405.19448,
2024.

[59] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed Chi, Denny Zhou, et al.
Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[60] Jason Wei, Denny Zhou, Quoc V Le, and Qu Zhou. Chain-of-thought prompting elicits reasoning
in large language models. In Advances in Neural Information Processing Systems, volume 35,
pp. 24824–24840, 2022.

[61] Wikipedia. Combinatorial optimization, 2025. URL https://en.wikipedia.org/
wiki/Combinatorial_optimization.

[62] Junyi Wu, Yunfan Jiang, Guanzhi Wang, Yuheng Zhao, Ajay Mandlekar, Anima Anandkumar,
Linxi Fan, and Yuke Zhu. Imagine while reasoning in space: Multimodal visualization-of-thought.
2024. URL https://arxiv.org/abs/2501.07542.

[63] Shunyu Yao, Yuhao Zhao, Yi Geng, Angeliki Lazaridou, Karthik Grosse, Yuan Cao, John
Langford, Denny Zhou, Hal Daume III, et al. React: Synergizing reasoning and acting in
language models. In Advances in Neural Information Processing Systems, 2022.

[64] Shunyu Yao, Dian Yu, Jeffrey Zhao, et al. Tree of thought: Deliberate problem solving with
large language models. In Advances in Neural Information Processing Systems, volume 36, pp.
478–494, 2023.

[65] Yuning Zhong, Ruixiang Ding, Omid Gheini, Predrag Bosnic, David Dohan, Nadav Sag, Ben
Zhang, Lin Wang, Yizhong Yilmaz, et al. Gpqa: A benchmark for evaluating general-purpose ques-
tion answering capabilities of large language models. arXiv preprint arXiv:2305.12479, 2023.

APPENDIX

A DOMAIN DEFINITIONS

This section provides formal definitions for the five planning domains introduced in our benchmark.
For each domain, we describe the main objective and provide a detailed specification of the available
actions, including their purpose, preconditions, and effects.

A.1 BARMAN DOMAIN

The Barman domain models the task of a bartender preparing cocktails. The agent must use two hands
to manipulate containers (shots, shakers), ingredients from dispensers, and mix them to create specific
cocktails. The state of each object includes its location (on table or held), contents, cleanliness, and
for shakers, fill level and whether it has been shaken.

ACTIONS

1. grasp(hand, container): An empty hand picks up a container from the table.
• Preconditions: The container is on the table; the hand is empty.
• Effects: The container is no longer on the table; the hand now holds the container and is no longer

empty.
2. leave(hand, container): A hand places a held container onto the table.

• Preconditions: The hand is holding the container.

13

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://arxiv.org/abs/2501.07542

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Effects: The container is now on the table; the hand becomes empty.
3. fill-shot(shot, ingredient, hand1, hand2, dispenser): Fills a clean,

empty shot with an ingredient.
• Preconditions: hand1 holds the shot; hand2 is empty; the dispenser provides the
ingredient; the shot is empty and clean.

• Effects: The shot now contains the ingredient and is no longer empty or clean (it becomes
used).

4. refill-shot(shot, ingredient, hand1, hand2, dispenser): Refills a used
shot with the same ingredient it previously held.
• Preconditions: hand1 holds the shot; hand2 is empty; the dispenser provides the
ingredient; the shot is empty and was previously used with this ingredient.

• Effects: The shot now contains the ingredient and is no longer empty.
5. empty-shot(hand, shot, beverage): Empties the contents of a shot.

• Preconditions: The hand is holding the shot; the shot contains the beverage.
• Effects: The shot becomes empty.

6. clean-shot(shot, beverage, hand1, hand2): Cleans a used, empty shot.
• Preconditions: hand1 holds theshot; hand2 is empty; theshot is empty and was previously

used with the beverage.
• Effects: The shot becomes clean and is no longer considered used.

7. pour-shot-to-clean-shaker(shot, ingredient, shaker, hand,
level-prev, level-next): Pours an ingredient from a shot into a clean, empty
shaker.
• Preconditions: The hand holds the shot containing the ingredient; the shaker is empty

and clean; the shaker is at level-prev.
• Effects: The shot becomes empty; the shaker now contains the ingredient, is no longer

empty or clean, becomes unshaken, and its fill level increases to level-next.
8. pour-shot-to-used-shaker(shot, ingredient, shaker, hand,

level-prev, level-next): Adds a second ingredient to an unshaken shaker.
• Preconditions: The hand holds the shot containing the ingredient; the shaker is

unshaken and contains one ingredient; the shaker is at level-prev.
• Effects: The shot becomes empty; the shaker now contains the additional ingredient; the

shaker’s fill level increases to level-next.
9. empty-shaker(hand, shaker, cocktail, level-prev, level-next): Emp-

ties a shaken cocktail from the shaker.
• Preconditions: The hand holds the shaker; the shaker contains a shaken cocktail; the

shaker is at level-prev.
• Effects: The shaker becomes empty and unshaken; its fill level resets to level-next

(empty).
10. clean-shaker(hand1, hand2, shaker): Cleans an empty shaker.

• Preconditions: hand1 holds the shaker; hand2 is empty; the shaker is empty.
• Effects: The shaker becomes clean.

11. shake(cocktail, ing1, ing2, shaker, hand1, hand2): Mixes two ingredients
in a shaker to create a cocktail.
• Preconditions: hand1 holds the shaker; hand2 is empty; the shaker contains exactly
ing1 and ing2; the shaker is unshaken.

• Effects: The shaker becomes shaken; it now contains the resulting cocktail instead of the
separate ingredients.

12. pour-shaker-to-shot(cocktail, shot, hand, shaker, level-prev,
level-next): Serves a shaken cocktail from a shaker into a shot.
• Preconditions: The hand holds the shaker containing the shaken cocktail; the shot is

empty and clean; the shaker is at level-prev.
• Effects: The shot now contains the cocktail and is no longer empty or clean; the shaker’s

fill level decreases to level-next.

A.2 ELEVATOR DOMAIN

The Elevator domain involves operating a set of elevators (fast and slow) to transport passengers
between floors in a building. Each elevator has a specific capacity and can only access a defined set
of floors. The goal is to move all passengers from their origin floors to their destination floors.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ACTIONS

1. move-up-slow(elevator, floor-from, floor-to): Moves a slow elevator up.
• Preconditions: The elevator is at floor-from; floor-to is above floor-from; the
elevator can reach floor-to.

• Effects: The elevator is now at floor-to.
2. move-down-slow(elevator, floor-from, floor-to): Moves a slow elevator

down.
• Preconditions: The elevator is at floor-from; floor-to is below floor-from; the
elevator can reach floor-to.

• Effects: The elevator is now at floor-to.
3. move-up-fast(elevator, floor-from, floor-to): Moves a fast elevator up.

• Preconditions: The elevator is at floor-from; floor-to is above floor-from; the
elevator can reach floor-to.

• Effects: The elevator is now at floor-to.
4. move-down-fast(elevator, floor-from, floor-to): Moves a fast elevator down.

• Preconditions: The elevator is at floor-from; floor-to is below floor-from; the
elevator can reach floor-to.

• Effects: The elevator is now at floor-to.
5. board(passenger, elevator, floor, count-prev, count-next): A passen-

ger boards an elevator.
• Preconditions: The passenger and elevator are at the same floor; the elevator’s

passenger count is count-prev; the elevator has capacity for another passenger.
• Effects: The passenger is now on board the elevator; the elevator’s passenger count

becomes count-next.
6. leave(passenger, elevator, floor, count-prev, count-next): A passen-

ger leaves an elevator.
• Preconditions: The passenger is on board the elevator; the elevator is at the specified
floor; the elevator’s passenger count is count-prev.

• Effects: The passenger is now at the floor; the elevator’s passenger count becomes
count-next.

A.3 PARKING DOMAIN

The Parking domain involves rearranging cars parked at curbs. Each curb can hold at most two cars: one
parked at the curb and one double-parked behind it. A car cannot move if another car is parked behind it.

KEY PREDICATES

• clear(car): True if no car is double-parked behind this car.
• clear(curb): True if the curb is empty.

ACTIONS

1. move-curb-to-curb(car, curb-from, curb-to): A single-parked car moves to an
empty curb.
• Preconditions: car is at curb-from; car is clear; curb-to is clear.
• Effects: curb-from becomes clear; car is now at curb-to, which is no longer clear.

2. move-curb-to-car(car-move, curb-from, car-ahead): A single-parked car
double-parks behind another car.
• Preconditions: car-move is at curb-from; car-move is clear; car-ahead is clear.
• Effects: curb-from becomes clear; car-move is now behind car-ahead; car-ahead

is no longer clear.
3. move-car-to-curb(car-move, car-ahead, curb-to): A double-parked car moves

to an empty curb.
• Preconditions: car-move is behind car-ahead; car-move is clear; curb-to is clear.
• Effects: car-ahead becomes clear; car-move is now at curb-to, which is no longer clear.

4. move-car-to-car(car-move, car-from, car-to): A double-parked car moves to
double-park behind a different car.
• Preconditions: car-move is behind car-from; car-move is clear; car-to is clear.
• Effects: car-from becomes clear; car-move is now behind car-to; car-to is no longer

clear.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 TETRIS DOMAIN

The Tetris domain involves moving and rotating Tetris pieces on a grid. Pieces can be one-square,
two-square straight, or three-square L-shaped. A piece can only move or rotate into adjacent positions
that are clear (empty).

ACTIONS

1. move_square(pos-from, pos-to, piece): Moves a one-square piece.
• Preconditions: piece occupies pos-from; pos-to is clear; pos-from and pos-to are

adjacent.
• Effects: pos-from becomes clear; pos-to is now occupied by piece.

2. move_two(pos-old, pos-pivot, pos-new, piece): Moves or rotates a two-square
piece.
• Preconditions: piece occupiespos-old andpos-pivot;pos-new is clear;pos-pivot

and pos-new are adjacent.
• Effects: pos-old becomes clear; pos-new is now occupied by piece.

3. move_l_right(pA, pB, pC, pD, pE, pMid, piece): Moves or rotates an L-piece
right.
• Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly

adjacent for a rightward move.
• Effects: pA, pB become clear; pD, pE are now occupied by piece.

4. move_l_left(pA, pB, pC, pD, pE, piece): Moves or rotates an L-piece left.
• Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly

adjacent for a leftward move.
• Effects: pA, pC become clear; pD, pE are now occupied by piece.

5. move_l_up(pA, pB, pC, pD, pE, pMid, piece): Moves or rotates an L-piece up.
• Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly

adjacent for an upward move.
• Effects: pB, pC become clear; pD, pE are now occupied by piece.

6. move_l_down(pA, pB, pC, pD, pE, piece): Moves or rotates an L-piece down.
• Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly

adjacent for a downward move.
• Effects: pA, pC become clear; pD, pE are now occupied by piece.

A.5 FLOOR TILES DOMAIN

The Floor Tiles domain involves robots painting a grid of tiles. Each robot can hold one color at a
time and moves between adjacent tiles. A robot can paint an adjacent tile (above or below) with its
current color, provided the tile is clear. Once a tile is painted, it cannot be occupied.

ACTIONS

1. change-color(robot, color-from, color-to): A robot changes its held paint color.
• Preconditions: The robot is holding color-from; color-to is an available color.
• Effects: The robot is now holding color-to.

2. paint-up(robot, tile-paint, tile-robot, color): A robot paints the tile above
its current position.
• Preconditions: robot is at tile-robot; tile-paint is directly above tile-robot;
tile-paint is clear; robot is holding color.

• Effects: tile-paint is now painted with color and is no longer clear.
3. paint-down(robot, tile-paint, tile-robot, color): A robot paints the tile

below its current position.
• Preconditions: robot is at tile-robot; tile-paint is directly below tile-robot;
tile-paint is clear; robot is holding color.

• Effects: tile-paint is now painted with color and is no longer clear.
4. up(robot, tile-from, tile-to): A robot moves one tile up.

• Preconditions: robot is at tile-from; tile-to is directly above tile-from;
tile-to is clear.

• Effects: robot is now at tile-to; tile-from becomes clear; tile-to is no longer clear.
5. down(robot, tile-from, tile-to): A robot moves one tile down.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Preconditions: robot is at tile-from; tile-to is directly below tile-from;
tile-to is clear.

• Effects: robot is now at tile-to; tile-from becomes clear; tile-to is no longer clear.
6. right(robot, tile-from, tile-to): A robot moves one tile right.

• Preconditions: robot is at tile-from; tile-to is directly to the right of tile-from;
tile-to is clear.

• Effects: robot is now at tile-to; tile-from becomes clear; tile-to is no longer clear.
7. left(robot, tile-from, tile-to): A robot moves one tile left.

• Preconditions: robot is at tile-from; tile-to is directly to the left of tile-from;
tile-to is clear.

• Effects: robot is now at tile-to; tile-from becomes clear; tile-to is no longer clear.

B OVERVIEW OF PROMPTS

In this section, we provide a mapping between the main inference functions and their associated
prompts, clarifying how the model is prompted at each stage of the search and diagrammatic reasoning
pipeline. For each function, we specify: (1) the function name, (2) its core functionality, (3) where it is
called in the search process, (4) the key points of its prompt, and (5) its input parameters. This overview
enables readers to understand how the model is guided through each step of multimodal reasoning.

Function
Name

Functionality Where Called Key Prompt Points Input Parameters
(Description)

next
_action

Selects next
best action,
generates rea-
soning, action,
and new state
description.

During child state
generation (gener-
ate_child_states).

- Presents
problem, initial,
current, and goal state
(text and images)
- Lists possible actions
- Requests reasoning,
action, and new
state in code blocks
- Handles uniqueness
and previous
errors if present

- Problem
description (text)
- Possible actions (list)
- Initial, current, goal
state objects (text,
diagrams, schemas)
- Model
name, temperature
- Chosen actions
- Previous
attempt/error
(optional)

generate
_diagram
_schema

Generates
diagram
schema for
a child state
after an action.

During child
state diagram
generation (gen-
erate_diagrams).

- Presents problem,
initial, current,
and new state (text,
diagrams, schemas)
- Requests
one statement
per object (position,
size, status, identifier)
- Enforces object
count consistency
- Handles previous at-
tempt/error if present

- Problem
description (text)
- Initial state
object (with schema)
- Child state object
(with action, parent,
state description)
- Model
name, temperature
- Previous at-
tempt/error (optional)

test
_diagram
_schema

Verifies
correctness
of a generated
diagram
schema for
a child state.

After schema
generation,
before code
generation (gen-
erate_diagrams).

- Presents problem,
initial, current,
and child state (text,
diagrams, schemas)
- Validates
object count,
affected object status,
and consistency
- Requires
yes/no answer
and error summary

- Problem
description (text)
- Initial state
object (with schema)
- Child state
object (with schema,
action, parent)
- Model name

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Function
Name

Functionality Where Called Key Prompt Points Input Parameters
(Description)

generate
_diagram
_code

Generates
Matplotlib
code to vi-
sualize a child
state based
on its schema.

After schema
validation (gen-
erate_diagrams).

- Presents problem,
initial/current/child
state (text,
diagrams, schemas)
- Provides
example code and
reasoning if available
- Requests code to
visualize all objects as
described in schema
- Enforces clarity,
no overlaps, correct
labeling, plausibility
- Handles previous
attempt/error
if present

- Domain name
- Problem
description (text)
- Child state
object (with schema,
action, parent)
- Initial state object
(with code, diagram)
- Model
name, temperature
- Save path for image
- Previous at-
tempt/error (optional)

test
_diagram

Verifies
correctness
and clarity
of a generated
diagram
image for
a child state.

After
code execution,
before accepting
diagram (gen-
erate_diagrams).

- Presents problem,
current/child
state (text,
diagrams, schemas)
- Validates object
presence, status,
labeling, readability,
plausibility
- Requires
yes/no answer
and error summary

- Problem
description (text)
- Child state
object (with schema,
diagram, parent)
- Domain name
- Model name

check
_action
_validity

Checks
if a proposed
action and
resulting state
are valid (local
verification).

After diagram
generation, before
path/global ver-
ification (gener-
ate_child_states).

- Presents problem,
initial/current/goal
state (text,
diagrams, schemas)
- Lists action
path, action taken,
new state description,
and diagram
- Checks precondi-
tions, effects, diagram
accuracy, reasoning
- Requires
yes/no answer
and error summary

- Problem
description (text)
- Current
state object (with
schema, diagram)
- Action taken (string)
- New state
description (text)
- New
state object (with
schema, diagram)
- Goal state object
- Possible actions (list)
- Initial state object
- Model name

check
_action
_path

Checks
if the entire
action path
from initial to
current state is
valid (global
verification).

After
local verification,
before accepting
child state (gener-
ate_child_states).

- Presents problem,
initial/current/goal
state (text,
diagrams, schemas)
- Lists full action
path and parent state
- Checks
preconditions, effects,
diagram accuracy
for the whole path
- Requires yes/no
answer and reasoning

- Problem
description (text)
- Initial
state object (with
schema, diagram)
- Current state
object (with schema,
diagram, parent)
- Goal state object
- Actions (list)
- Possible actions (list)
- Model name

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Function
Name

Functionality Where Called Key Prompt Points Input Parameters
(Description)

rank
_states

Ranks can-
didate states at
a given depth
by proximity
to the
goal state (for
beam search).

After child
state generation,
before pruning
(beam_search).

- Presents problem,
goal state, and all can-
didate states (text, di-
agrams, action paths)
- Requests
ranking based
on number of goal
constraints satisfied
- Requires
ranking code
block and reasoning

- List of state objects
(with id, description,
diagram, action path)
- Problem
description (text)
- Goal state object
- Model name

ini_g
_diagrams

Generates
and verifies
diagrams
for initial and
goal states.

At
the start of search,
during problem
setup (setup).

- Presents problem,
initial/goal state (text)
- Requests diagram
schema and code
for initial/goal state
- Enforces object
coverage, status, and
visual consistency
- Verifies schema and
diagram correctness
- Handles retries
and error feedback

- Problem
name, domain name
- Problem
description (text)
- Initial state
object (with text)
- Goal state
object (with text)
- Model
name, temperature
- Parameters
(e.g., max attempts)
- Error message, previ-
ous attempt (optional)

generate
_diagram
_schema
_ini_g

Generates di-
agram schema
for initial
or goal state.

Within
ini_g_diagrams
(problem setup).

- Presents problem,
initial and goal
state descriptions
- Requests
one statement
per object (position,
size, status, identifier)
- Handles previous at-
tempt/error if present

- Problem
description (text)
- Initial state
object (with text)
- Goal state
object (with text)
- Model
name, temperature
- Domain name
- Goal flag (bool)
- Previous at-
tempt/error (optional)

test
_diagram
_schema
_ini_g

Verifies
correctness
of initial/goal
state diagram
schema.

Within
ini_g_diagrams
(after schema
generation).

- Presents problem,
state description,
and schema
- Validates object
coverage and status
- Requires
yes/no answer
and error summary

- Problem
description (text)
- Initial state
object (with schema)
- Goal state
object (with schema)
- Model name
- Goal flag (bool)

generate
_diagram
_code
_ini_g

Generates
Matplotlib
code for initial
or goal state
visualization.

Within
ini_g_diagrams
(after schema
validation).

- Presents problem,
state description,
and schema
- Provides
code and reasoning
- Requests code to
visualize all objects as
described in schema
- Enforces clarity,
labeling, plausibility
- Handles previous
attempt/error
if present

- Domain name
- Problem
description (text)
- Initial state
object (with schema)
- Goal state
object (with schema)
- Model
name, temperature
- Save path for image
- Goal flag (bool)
- Previous at-
tempt/error (optional)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Function
Name

Functionality Where Called Key Prompt Points Input Parameters
(Description)

test
_diagram
_ini_g

Verifies
correctness
and clarity
of initial/goal
state diagram
image.

Within
ini_g_diagrams
(after
code execution).

- Presents problem,
state description,
and diagram image
- Validates object
presence, status,
labeling, consistency,
plausibility
- Requires
yes/no answer
and error summary

- Problem
description (text)
- Initial
state object (with
schema, diagram)
- Goal
state object (with
schema, diagram)
- Domain name
- Model name
- Goal flag (bool)

is_unique
_action

Checks
if a proposed
action leads to
a unique child
state from the
current state.

During child
state generation
in gener-
ate_child_states.

- Presents problem,
current state,
action taken, and
new state description
- Lists previously
explored actions
and resulting states
- Asks if the new
action/state is unique
- Requires yes/no an-
swer and explanation

- Problem
description (text)
- Current state object
(with child states)
- Action taken (string)
- New state
description (text)
- Model name

check
_goal
_state

Checks
if the current
state satisfies
all goal state
constraints.

At each
node expansion
in beam_search.

- Presents
problem, initial,
current, and goal
state (text, diagrams)
- Lists action path
- Asks if
current state matches
all goal constraints
- Requires yes/no
answer and step-
by-step reasoning

- Problem
description (text)
- Current state
object (with diagram)
- Goal state
object (with diagram)
- Initial state
object (with diagram)
- Model name

This mapping clarifies the modular structure of the inference pipeline and the precise role of each
prompt in guiding the model’s multimodal reasoning. Each function is responsible for a distinct aspect of
the search or verification process, and the prompts are carefully designed to enforce correctness, clarity,
and consistency at every stage. The table above can be used as a reference for understanding or extending
the codebase, as well as for reproducing or adapting the prompting strategy to new domains or tasks.

C CODE STRUCTURE AND ORGANIZATION

The codebase is organized to support multimodal planning and diagrammatic reasoning across multiple
domains. Each domain (e.g., blocksworld, barman, elevator, parking, tetris, tiles)
is self-contained, with a consistent folder structure and supporting scripts. Below, we describe the
main components and their roles.

C.1 TOP-LEVEL STRUCTURE

• Domain Folders: Each domain (e.g., blocksworld, barman, etc.) is a top-level folder
containing all files and subfolders needed to run our method on the instances of that domain.

• Shared Scripts: At the root, scripts such as search.py, inference.py, and diagram
generation scripts are provided for general use across domains.

• Utilities: Files like requirements.txt and Readme.md provide environment setup and
documentation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 KEY SCRIPTS AND THEIR ROLES

• search.py: The main search and script. Implements the graph of thought algorithm with beam
search and backtracking, manages state expansion, diagram generation, and verification. For each
problem instance, it creates a subfolder (e.g., blocksworld_instance_1/) and stores all
intermediate and final results, including state diagrams, code, and logs.

• inference.py: Contains all functionalities facilitated by LMMs and prompting logic, including
functions for generating and verifying actions, diagram schemas, code, and state rankings. This
script is the interface between the search process and the language model.

• visual_thinking.py: Main pipeline script. Orchestrates the batch processing of multiple
problem instances for a given domain. For each instance, it sets up the directory structure, runs our
diagrammatic search, and validates the resulting plan using VAL. It also manages the output and
validation logs.

• initial_diagram_schema.py, initial_diagram_code.py,
initial_goal_diagram_code.py: Scripts for generating and storing the first initial
and goal conceptual diagrams for the domain and their schemas. Outputs are stored in the
initial_conceptual_diagram/ folder.

• PDDL_tranlation.py (per domain): Handles translation between natural language and PDDL
for that domain, including prompt templates and in context examples.

C.3 INSTANCE AND STATE FOLDER STRUCTURE

For each problem instance (e.g., blocksworld_instance_1/), the following structure is created
during search:

• state_X/: For each explored state, a folder is created containing:
– diagram.png: The generated diagram for the state.
– diagram_code.py: The code used to generate the diagram.
– diagram_schema.txt: The schema describing the diagram.
– info.txt: Metadata about the state, including parent, action taken, and reasoning.
– attempts/: Subfolders for storing all attempts at generating child states and diagrams,

including error logs.
• goal_state/: If a goal is found, this folder contains the final state information and a copy of

all diagrams along the solution path.
• ranking/: Stores state ranking information at each search depth.
• output.txt, plan.pddl, val_output.txt: Output logs, the generated plan, and

validation results.

C.4 DOMAIN EXAMPLES

The repository attached in the supplementary material includes several PDDL domains
(blocksworld, barman, elevator, parking, tetris, tiles), each with a com-
plete set of PDDL files, instance generators, randomly generated instances, and translations of
the domain and a random state and initial conceptual diagrams generated using pipeline. For
blocksworld, we also provide full examples of solved problems, including all intermediate
diagrams and logs, to facilitate reproducibility and intuitive understanding of the pipeline. To view the
sequence of diagrams produced for a successfully solved instance, refer to the goal_state folder
within each instance’s directory. This folder contains the chain of diagrams generated by the pipeline
from the initial state to the goal state for that instance.

This modular structure allows for easy extension to new domains and facilitates reproducibility,
inspection, and further research.

21

	Introduction
	Related Work
	Method
	Evaluation
	Results and Analysis
	Ablation Studies

	Conclusion
	Reproducibility Statement
	Domain Definitions
	Barman Domain
	Elevator Domain
	Parking Domain
	Tetris Domain
	Floor Tiles Domain

	Overview of Prompts
	Code Structure and Organization
	Top-Level Structure
	Key Scripts and Their Roles
	Instance and State Folder Structure
	Domain Examples

