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ABSTRACT

Human reasoning relies on constructing and manipulating mental mod-
els—simplified internal representations of situations used to understand and solve
problems. Conceptual diagrams (e.g., a sketch drawn to aid reasoning) externalize
these mental models, abstracting irrelevant visual details to efficiently capture
how entities interact. In contrast, Large Language Models (LLMs) and Large
MultiModal Models (LMMs) predominantly reason through text, limiting their
effectiveness on complex multi-step tasks. In this paper, we propose Visual Thinking,
a generalizable framework that enables LMMs to reason through multiple chains
of self-generated conceptual diagrams, significantly enhancing their combinatorial
planning capabilities. Our approach requires no human input beyond the natural
language description of the task. It integrates textual and diagrammatic reasoning
within an optimized Graph-of-Thought inference framework, enhanced by beam
search and depth-wise backtracking. Evaluated on multiple challenging PDDL
planning domains, our method substantially improves LMM performance (e.g.,
GPT-40: 35.5% — 90.2% in Blocksworld) and consistently outperforms text-only
search-based inference methods. Additionally, on more difficult planning domains
with solution depths up to 40, our approach outperforms the ol-preview reasoning
model (e.g., 16 percentage points improvement in Floor Tiles). These results
highlight the value of conceptual diagrams as a reasoning medium in LMMs.

1 INTRODUCTION

Natural language is a powerful medium for communication, enabling humans to effectively share
knowledge and ideas [46, 11, 51]. However, language alone is not an optimal medium for reasoning,
as it is inherently linear, sequential, and verbose, making it inefficient for representing complex
logical and relational structures [33, 25, 52]. Prior evidence ‘human thought’ is inherently not verbal,
sequential, or linear; rather, it is spatial, parallel, and image-like [52]. Humans construct and utilize
internal mental models—simplified analogues of real or hypothetical situations [31, 20, 25, 6], and
dynamically manipulate them to represent and predict interactions between objects and solve problems.
Crucially, mental models are multimodal, integrating both visual and verbal representations to facilitate
learning and robust reasoning [38]. Finally, visual representations have always played a central role in
human reasoning and communication, from prehistoric cave art, which predates written language [12],
to modern textbook diagrams, scientific figures, and blackboard sketches.

Conceptual diagrams are simplified visual representations that use basic shapes (e.g., circles, squares,
lines) to capture how entities interact while abstracting away irrelevant details [52, 33]. They externalize
internal mental models, reducing cognitive load and enabling rapid perceptual inference and clearer rea-
soning [25, 20]. Unlike photorealistic images, which capture fine-grained details of how objects appear,
conceptual diagrams encode the structural and relational information essential for reasoning, using
colors, relative positions and sizes, and annotations [52, 33]. For example, a square in a diagram might
represent a complex object such as a car, with its color, relative size, and position visually encoding
relationships to other entities while omitting irrelevant appearance details. Thus, conceptual diagrams
are an effective reasoning medium complementary to language, overcoming language’s limitations in
representing relational structure and aligning closely with humans’ multimodal reasoning [52, 25, 19].

Modern large language models (LLMs) and large multimodal models (LMMs) [41, 42, 4] have
achieved remarkable success on mathematical and scientific benchmarks, including GSM8K [13],
MATH [27], and GPQA [65]. Despite these advances, their reasoning remains inconsistent, particularly
on multi-step compositional reasoning, long-horizon planning, and tasks requiring backtracking or
error correction [19, 55, 15, 9]. These limitations stem partly from LLMs’ reliance on language, which
is inherently linear and inefficient for representing complex relational structures [19, 55, 8]. Moreover,
the autoregressive architecture of current models enforces sequential next-token prediction, making
backtracking challenging [19]. Thus, enabling LMMs to reason with conceptual diagrams and backtrack
within a graph-based inference framework offers a promising approach to overcome these bottlenecks.
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Figure 1: Our proposed approach. Example diagrams are from the Tetris domain, where tiles are moved on
a grid to reach a goal state. (1) The model generates multiple diagram schemas and codes for a random instance;
their rendered diagrams are ranked, and the code of the top choice is cached (Fig. 2). (2) Conditioned on this
code, diagrams for the initial and goal states are generated (Fig. 3). (4) Beam search ranks all candidates at a
depth by proximity to the goal, expanding the top k=4 (Sec. 3). (5) Depth-wise backtracking is applied when
all candidate states at a depth fail validation, returning to the deepest available ancestor. (6) The process stops
when the goal is reached or a maximum number of steps is visited. (7) The output is the action sequence (plan)

plus textual and diagrammatic representations of intermediate states."

In this work, we propose Visualizing Thought, a framework that enables LMMs to solve
combinatorial problems through multiple multimodal chains of self-generated conceptual diagrams
and textual reasoning. Our approach requires no domain-specific modifications or manual engineering
to solve any combinatorial problem expressible in the Planning Domain Definition Language
(PDDL) [39], given only a natural language specification of the initial state, goal state, and possible
actions. Importantly, our method does not rely on predefined visual templates or geometric priors;
instead, it generates conceptual diagrams directly from the textual problem description.

Visualizing Thought decomposes inference into a graph of intermediate reasoning steps, where at
each node the model selects the next best state. Each node is multimodal, containing both a textual de-
scription of the state and a corresponding conceptual diagram (see Fig. 1). Ateach step, the LMM (i) gen-
erates the next state conditioned on the textual and diagrammatic representations of the states in the ac-
tion path; (ii) produces a diagram schema—a structured set of statements specifying each object’s shape,
relative size and location, and status; and (iii) generates Matplotlib code from the schema that renders
the state diagram. To ensure inference quality, we incorporate guardrails such as diagram-schema self-
reflection checks and local (parent—child) and global (entire path from the initial state) validity checks.
To manage the exponential growth of the combinatorial search space [7, 64], we integrate beam search
to rank validated candidate states at each inference depth and expand only the top k. We also incorporate
depth-wise backtracking, which allows the model to revisit earlier validated nodes if all current candi-
dates fail verification. Together, these components enable more efficient exploration of the search space.

Unlike prior approaches that augment language models with visual representations for compositional
reasoning [62, 29]—which typically provide an initial visual template for the model to iteratively
update—Visualizing Thought relies solely on textual descriptions. The model autonomously generates
conceptual diagrams from scratch for every state, without any human-provided visual examples or cues,
mirroring how humans use imagination to construct mental models from language. Moreover, instead
of producing a single static visualization [29, 58], our method generates evolving sequences of interme-
diate diagrams that illustrate how the LMM’s ‘model’ of the problem evolves with each reasoning step.

! For Figs. 1 and 4, we adjusted the diagram codes only to increase font sizes for better readability. Figs. 2-3 are
unmodified generations. Fig. 1 actions are simplified; full action strings include previous/current cells occupied.



Under review as a conference paper at ICLR 2026

Single inference Search-based inference (base LLM = GPT-40)
Domain GPT4o 1 ol-  gor Optimized o\ peO  Vigual Thinking
mini preview GoT

Blocksworld (simple)  35.5%* 56.6%* 97.8%* 50% 58% 58% 90.2%
Blocksworld (hard) 0% 09%*  23.65%" 8% 48% 4% 78 %
Floor Tiles 0% 6% 20% 0% 4% - 36%
Parking 2% 8% 40% 14% 28% - 52%
Tetris 0% 2% 26% 0% 12% - 38%
Elevator 0% 2% 36% 2% 10% - 48 %
Barman 0% 0% 10% 0% 4% - 30%

Table 1: Accuracy results across all evaluated domains. Each baseline was evaluated on 50 problem instances
per domain, except for GPT-40 + Visual Thinking on Blocksworld (simple), where we evaluated 500 instances
(the full PlanBench [54]) and achieved 90.2% (451/500). Baseline results marked with * are taken from [56].
RAP reported 51% accuracy on Blocksworld (simple) using Llama 2 [24].

Evaluations across multiple challenging PDDL planning domains demonstrate that our method
substantially enhances LLLMs’ combinatorial reasoning capabilities (Tab. 1). On the widely studied
Blocksworld domain, from PlanBench [54], our approach delivers performance gains of 43, 64, and
55 percentage points using Claude 3.5 Sonnet [5], Llama 4 Maverick [40], and GPT-4o, respectively
(e.g., GPT-40’s accuracy rises from 35.5% to 90.2%). Importantly, we contribute a new, more difficult
planning benchmark with five additional planning domains—Floor Tiles, Parking, Tetris, Elevator,
and Barman—with solution depths designed up to 40. On this benchmark, our method succeeds
where base models consistently fail (e.g., 36% vs. 0% in Floor Tiles). Furthermore, Visual Thinking
(using GPT-40) outperforms the reasoning model, ol-preview [44], across all new domains (e.g.,
10% vs. 30% in Barman). Finally, compared to strong search-based inference methods such as
Graph-of-Thought [7] and RAP [24] (a Monte Carlo Tree Search framework that uses an LLM to build
world models and generate plans), our method improves accuracy by at least 22 percentage points
while also reducing inference cost by over 30% and latency by more than 25%.

Crucially, our ablation study on the Blocksworld (simple) domain shows that it is the representation
of relational information in conceptual diagrams, not merely the encoded content, that drives these gains.
Replacing rendered diagrams with their underlying Matplotlib code, which contains the same spatial
and relational data, caused accuracy to collapse from 90.2% to 24%, below the GPT-4o single-inference
baseline (35.5%) (Table 3). This sharp decline shows that the compact, parallel, multi-dimensional (2D,
color-encoded) representation of object interdependencies in diagrams, rather than their sequential form
in text or their syntactically cluttered code representation, is what enables more effective reasoning.

To summarize, our contributions include: 1) a cognitively inspired reasoning framework, Visualizing
Thought, that enables LMMs to reason with conceptual diagrams autonomously generated from textual
descriptions, with no manual engineering or visual templates required for new domains, within a struc-
tured graph-based inference process; 2) empirical evidence that representation of information, not just
the content, is critical for reasoning, as replacing rendered diagrams with their code containing the same
data causes performance to collapse; and 3) extensive evaluations on PlanBench and a new benchmark
of five long-horizon planning domains, where our method consistently outperforms strong search-based
baselines and reasoning models (on new domains), demonstrating that conceptual diagrams enable
solving problems beyond the reach of purely textual (single-inference or search-based) approaches.

2 RELATED WORK

Multimodal Chain-of-Thought for Reasoning. Several recent works have explored integrating visual
representations into the reasoning processes of LLMs and LMMs. Hu et al. [29] equips LMMs with
drawing tools to graph equations or mark photorealistic images, but primarily focuses on single-step
or shallow problems. Similarly, Wang et al. [58] generates visual aids for spatial reasoning, providing
a single refined visualization per problem. In both works, the generated visualizations are typically
an approximate or augmentation of high-fidelity illustrations rather than conceptual diagrams drawn
using a model-defined mapping of complex entities to simple shapes and colors. Concurrent work, Wu
et al. [62], also generates visual and textual intermediate states but requires conditioning the model on
a human-provided initial visual representation that supplements the textual description of the problem.
This reliance on externally supplied initial visualizations could limit the method’s generality and
applicability to unseen domains where no such visual initialization exists.

Our approach differs in several key aspects. First, our method autonomously generates conceptual
diagrams directly from textual descriptions, without relying on external visual demonstrations or cues,
mirroring human ability to construct mental models from language. Second, rather than producing
a single visualization, our approach creates multiple chains of intermediate visual states, enabling
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Figure 2: We generate an initial conceptual diagram for each domain by sampling multiple diagram codes. An
LMM ranks diagrams based on intuitive and accurate visualization of relational information. The top-ranked
diagram’s code serves as reference for generating initial and goal state diagrams for all instances. Example shown
is the parking domain, where curbs hold up to two cars, and cars can be movable or blocked (double-parked).

parallel multi-hypothesis compositional reasoning through evolving diagrams. Third, our diagrams are
conceptual, representing relationships and interactions between entities that are visualized with simple
shapes rather than realistic depictions. Finally, our method is applicable to any problem expressible in
PDDL format (a general language for planning problems) without domain-specific engineering, given
only the textual description of the problem. These distinctions collectively enable a more generalizable
and flexible form of diagrammatic reasoning, leading to significant performance gains.

Search and Verification Inference Strategies. Recent methods improve reasoning in LLMs by
structuring inference into explicit intermediate steps [60, 32] and employing search-based strategies
over multiple reasoning paths [59, 64, 24, 16, 7]. For instance, Yao et al. [64] propose Tree-of-Thought
(ToT), which extends CoT to explore a tree of reasoning paths, and Besta et al. [7] introduce
Graph-of-Thought (GoT), which structures the reasoning process as a graph, enabling backtracking and
aggregation of intermediate reasoning steps. Other works utilize verification and refinement techniques,
such as iterative self-reflection and feedback, to enhance reasoning accuracy [37, 45, 50]. Our approach
builds upon these methods by integrating a conceptual diagram into each intermediate reasoning step’s
representation. Moreover, as detailed in Section 3, we extend graph-based inference with beam search,
significantly reducing the search space and improving performance on long-horizon planning tasks.

World Modeling with LLMs. Recent research explores planning and reasoning using LLMs by im-
plicitly or explicitly constructing world models from textual descriptions [30, 63, 3, 17, 18, 34, 57]. For
instance, Huang et al. [30] show that LLMs implicitly form textual world models for simple planning
tasks, while other works explicitly represent states and transitions for structured reasoning [63, 17, 34].
For instance, RAP [24], which we use as a search-based baseline in our evaluation, uses an LLM as
both a planning agent and a world modeler, using Monte Carlo Tree Search to simulate future states
and rewards that guide its planning. Our work extends these text-based approaches by enabling LMMs
to autonomously construct and reason with diagrammatic world models. By defining a visual schema
of objects and their statuses using shapes, colors, and spatial arrangements, our method generates
diagrams that visually simulate action sequences and state evolutions. This approach provides a more
compact representation of relational information, significantly improving performance on complex,
multi-step planning tasks, as demonstrated by the substantial accuracy boost on the Blocksworld (hard)
domain compared to RAP (78% vs. 4%).

3 METHOD

We propose Visual Thinking, a training-free and model-agnostic framework that integrates textual
reasoning with model-generated intermediate conceptual diagrams to enable Large MultiModal Models
(LMMs) to solve combinatorial problems, given text-only problem specifications (initial state, goal,
admissible actions). Combinatorial problems [61] involve finding a valid sequence of actions from
an initial state s to a goal state s, given a finite set of possible actions. Our framework, built upon the
Graph-of-Thought (GoT) approach [7], decomposes reasoning into discrete nodes in a structured infer-
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Figure 3: Child state generation pipeline: the LMM selects an action from the parent node, generates a diagram
schema and then an executable diagram code, performs self-reflection and verifies that action chosen does not
violate any constraints and action path is feasible (example generations are from Blocksworld domain).

ence graph. Through this graph, multiple chains of multimodal states are simultaneously explored to-
ward the goal state. Below, we detail our method following the stages illustrated in Fig. 1. The full imple-
mentation, with full prompts and outputs, is available in the supplementary material. An analysis of the
prompts and an overview of the code structure are provided in Appendix Sec. B and Sec. C, respectively.

1. Generating Initial Conceptual Diagram for Domain. Step 1 in Fig. 1. For each new planning
domain, the LMM generates a reference conceptual diagram from a random domain instance. This
is done entirely in a zero-shot manner, without manual engineering or external visual cues, conditioned
only on the problem’s textual description. The process begins with the LMM proposing multiple candi-
date diagram schemas, which it then verifies by iterating through the objects to confirm the accuracy of
their shape, color, status, and relative size and position. The LMM ranks these verified schemas on how
clearly they represent object relationships, selecting the top one. Using this schema, the model generates
several executable Matplotlib diagram codes. Each rendered diagram is then verified to ensure objects
are represented accurately and do not overlap. Finally, the LMM ranks these diagrams based on how
effectively they visualize the structure and relationships between objects, and the code for the highest-
ranked diagram is cached as a reference for generating the diagram code of the initial and goal states of
all instances in the domain. See Fig. 2 for example reference diagrams generated for Parking domain.

2. Initial and Goal State Diagram Generation. Step 2 in Fig. 1. We begin the inference process
of each instance by generating diagrams for the initial state sy and the goal state s,, conditioned on
the domain conceptual diagram code obtained in step 1. When generating the diagram code, the LMM
is instructed to adhere to how objects and their statuses are visualized in the reference diagram, while
accurately initializing the objects according to the specific instance.

3. Intermediate Child State Generation Pipeline. Step 3 in Fig. 1. We denote by s4 an intermediate
state at depth d of the graph, represented by a combination of: (i) textual description T'(s4); (ii)
a diagram D(sg4); and (iii) the action path Ag.4 from the initial state so. We iteratively expand the
inference graph depth-by-depth in a breadth-first search (BFS) [14] manner, and apply beam search
at each depth to select the top-k candidates for further expansion.

From each parent state s4, we sample n =4 child states. W.1.0.g., next we describe the generation
of a single such child state 5,4 (Fig. 3). At each node, the LMM first selects the next candidate action
aq+1, conditioned on the parent state s4 (which is represented by its diagram, textual description,
and action path from initial state). We then generate the textual description 7'(s4+1) of the resulting
child state. The candidate action-state pair (ag+1,7(sq+1)) is compared to previously generated
child states to verify uniqueness. If different, the LMM generates a diagram encoding for sq1,
denoted as F(s441), which is a structured set of textual statements specifying shapes, sizes, positions,
statuses (e.g., colors), and textual identifiers for each object in the state (see Fig. 3 for an example).
The E(sq+1) undergoes a self-reflection verification to ensure consistency with T'(s441) and the
action taken, a4 1, if failed we regenerate it. Subsequently, Matplotlib code C(s441) is generated
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Figure 4: Sequence of intermediate state diagrams in the correct chain, from the initial to the goal state, for one
instance across four evaluated domains: Blocksworld, Elevator, Parking, and Floor Tiles (shown top to bottom).

conditioned on E(s4+1), T(84+1), and two example diagram codes: the initial state diagram code
C'(sp) and the parent state diagram code C(s4). Code is regenerated if it fails to run.

After generating the child state diagram, we perform two action verifications: (1) a local check that,
given the diagram and description of the parent and child state, confirms if the action a4, complies
with domain constraints; and (2) a global check verifying if the entire action path Ag.41 is feasible and
efficient for reaching the goal state s,. If either of these checks fails, the child state is marked as invalid.

4. Beam Search. Step 4 in Fig. 1. Applying GoT [7] to combinatorial problems by naively expanding
all nodes (e.g., BFS) results in exponential growth of the search tree [48]. To mitigate this, we use
amethod inspired by beam search [36], where first all states at each depth d are expanded, generating
up to IV child states each. The LMM then ranks all candidate child states at depth d+-1 based on their
proximity to the goal s4, selecting only the top k = 4 states for further expansion. This depth-wise
pruning mitigates the exponential growth problem. Moreover, this ranking system resembles human
problem-solving strategies, where shallow state-specific heuristics are employed to estimate how close
intermediate states are to the goal [22, 10, 47].

5. Depth-wise Backtracking. Step 5 in Fig. 1. Additionally, we implement a depth-wise backtracking
mechanism. If all candidate child states at a given depth fail verification, we backtrack to the deepest
available ancestor nodes at depth d,,x and attempt new expansions. We allow up to B =2 backtracking
attempts to any given depth. If all B attempts at depth d .« fail, we mark nodes at that depth as invalid
and backtrack further to the next deepest available nodes at depth dp.x2, Where diaxo < diax -

6. Search Termination. Step 6 in Fig. 1. The inference process continues iteratively, expanding
nodes depth-by-depth, until either the goal state s, is reached or a predefined computational budget is
exhausted. We set two types of computational limits: (1) a maximum number of generated states (120
states for simpler Blocksworld instances, 450 states for more complex domains), and (2) a maximum
depth (28 for simpler Blocksworld instances, 100 for other domains). These limits ensure computational
efficiency in terms of inference time and API usage costs. If the goal state is not found within these
constraints, the search is marked as incomplete. Goal verification occurs at every state expansion, where
the LMM compares the diagram and textual description of the current state against those of the goal state.

In summary, our method leverages structured visual reasoning, self-generated conceptual diagrams,
and optimized graph-based inference strategies to efficiently solve combinatorial planning problems
with an LMM. Each step of our pipeline is visually illustrated in Figures 1, 2, and 3.

4 EVALUATION

To evaluate the proposed approach, we conducted experiments on seven different planning domains,
including the popular Blocksworld (simple) [23, 54] and Blocksworld (hard) [56], as well as 5 new do-
mains contributed in this work, prepared using a standard repository of PDDL problem instance genera-
tors [1]. Plan correctness was determined with VAL [28]. Experiments were run on a machine with dual-
socket Intel Xeon Gold 5220R processors at 2.2 GHz, 35.75 MB L3, 48 cores per node, 8 nodes total.

Baselines. We compare our approach against both single-inference and search-based methods. For
single-inference baselines, we evaluated GPT-40, ol-preview [44], and o1-mini [43], each prompted
with PDDL instances using templates adapted from [54]. For search-based methods, we evaluate (i)
a baseline variant of Graph-of-Thought (GoT), which performs text-only breadth-first search over
LLM-generated states; (ii) Optimized GoT, which adds beam search (k =4) to GoT to enable exploring




Under review as a conference paper at ICLR 2026

Analysis Corrects Incorrects  Incompletes Avg Max Min — Avg Num
(Accuracy) Depth  Depth  Depth States
Blocksworld (hard) 78% 10% 12% 20.15 36 18 177.7
Floor Tiles 36% 24% 40% 15.88 25 10 244
Parking 52% 40% 8% 9.6 29 2 149.1
Tetris 38% 60% 2% 6.45 11 4 46.24
Elevator 48% 42% 10% 20.89 26 16 160.30
Barman 30% 40% 30% 24.0 27 22 210.54

Table 2: Analysis of domains. ‘Corrects’: % instances with correct plans; ‘Incorrects’: % with incorrect plans;
‘Incompletes’: % terminated due to state budget; ‘Avg/Max/Min Depth’: avg/max/min number of actions in
correct solutions; ‘Avg Num States’: average number of states generated across all instances of the domain.

deeper solutions within the compute budget; and (iii) RAP [24], which uses Monte Carlo Tree Search
with the LLM generating both the world model and the plan. RAP’s compute budget is specified by
iteration count; we adopted RAP®?, the highest budget reported by the authors in their experiments.
RAP was originally evaluated with Llama models; we extended it to GPT-40 for direct comparison.
However, RAP’s implementation relies on hard-coded prompts and domain-specific parsers available
only for Blocksworld, limiting applicability to other domains. Together, these baselines test the limits
of purely text-based search and single inference and provide strong points of comparison for our
diagram-based framework.

Evaluated Domains. We evaluated our method on combinatorial planning problems [21] from
the International Planning Competition (IPC) [2], expressed in PDDL format [39]. These domains
include Blocksworld (simple) and Blocksworld (hard) [23, 56], and five additional IPC domains: Floor
Tiles [26], Parking, Tetris [53], Elevator, and Barman. Instances for new domains were generated
using standard publicly available IPC generators [1]. For Blocksworld (which involves stacking and
unstacking blocks), we used 500 simple instances from PlanBench [54] (3—5 blocks) and 50 harder
instances (10-20 blocks, following [56]). Floor Tiles features robots painting tiles on a grid; we
generated 50 instances with 2-3 rows, 3-5 columns, and 1-2 robots. The Parking domain involves
rearranging cars in curbs, with 50 instances using 4-5 curbs and 4-6 cars. The Tetris domain requires
rearranging Tetris tiles on a grid, with 50 instances using (4 x 4) or (6 x 6) grids. Lastly, the Elevator
domain simulates passenger transport in buildings, with 50 instances using 4-5 floors and 10-12
passengers. Figure 4 shows an example sequence of intermediate state diagrams in the correct plan
for a subset of domains. Detailed definitions of each domain are provided in Appendix Sec. A.

Translating PDDL to Natural Language and Back. Our method, Visualizing Thought, operates
on the natural language description of combinatorial problems. To enable this, we first translate each
PDDL domain—the rules and allowed actions—into natural language using a manually engineered
five-shot prompt covering five different domains. Each instance, which specifies the initial and goal
states, is translated with a one-shot prompt. Our proposed approach then runs entirely on this text
representation. After solving the problem, the model’s natural language action sequence is translated
back into PDDL using a one-shot prompt containing a random (incorrect) plan with correct PDDL
syntax. The resulting PDDL plan is then evaluated for correctness using VAL.

4.1 RESULTS AND ANALYSIS

Our main results are presented in Table 1, comparing Visual Thinking (with GPT-40) against leading
reasoning models (o1-preview, o1-mini) and strong search-based methods (GoT, Optimized GoT, RAP).
Visual Thinking substantially improves over base GPT-40 and consistently outperforms all search-based
approaches across domains. On Blocksworld (simple), our method achieves 90.2% accuracy, surpassing
GoT, Optimized GoT, and RAP, though slightly trailing o1-preview (97.8%). We conjecture this gap
is due to the smaller number of entities, which make the world state easier to track and update in text,
and the shallow solution depths, which make these instances easier to solve in a single pass. In contrast,
on harder domains, including Blocksworld (hard) and the five new domains, our approach shows
considerable, generalizable gains. For example, on Blocksworld (hard) we achieve 78%, compared
to 23.65% for ol-preview and 4% for RAP. This trend holds across other domains. Standard GoT
often fails completely (e.g., 0% on Floor Tiles and Tetris) due to combinatorial explosion exhausting
the budget, and while Optimized GoT mitigates this with beam search, its performance still lags well
behind our visual approach. These findings highlight how diagram-based reasoning enables models
to capture and analyze complex relational structures more efficiently than purely textual inference.

Table 2 provides further insight into our method’s performance on the more challenging domains.
Despite significantly deeper solution paths (instances were designed with solution paths of up to 40),
our method successfully generates correct plans with as many as 36 sequential actions (Blocksworld
(hard)). The primary limitation of our method observed in these experiments is the number of
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Ablation (ESES:;:;) Incorrects  Incompletes D/z\[])%h 1;\:3[ ;i(h A\é%alt\lel;m
GPT-40 + Visual Thinking 90.2% 6.4% 3.4% 10.07 28 38.89
No Diagram (Optimized GoT) 58% 36% 6% 8.28 18 25.86
No Diagram Schema 72% 20% 8% 7.41 18 46.2
No Code Execution 24% 66% 10% 7.82 22 32.7
1-Branching Factor 52% 4% 44% 6.38 16 23.9
2-Branching Factor 70% 6% 24% 8.29 24 26.27
No Backtracking 62% 4% 34% 6.06 14 22.12
No Beam Search 72% 4% 24% 6.61 12 58.31

Table 3: Ablation Study Results. ‘Corrects’ is our main accuracy metric. See Tab. 2 for columns notation.

incomplete searches (e.g., 40% incomplete in Floor Tiles, 30% in Barman), which arise either when
invalid actions are later rejected by local verification using state diagrams, or when inefficient actions
that fail to advance toward the goal are pruned by the global check, both leading to exhaustion of the
computational budget. We also observe the highest incorrect rate (60%) on the Tetris domain, primarily
due to inherently high branching factor in this domain (up to 24 possible actions per state) and complex
action parameterization—each action can require up to 7 parameters detailing positions of all sub-tiles,
compared to simpler domains like Blocksworld, where actions typically require only 1-2 parameters.
Conversely, our largest margin over ol-preview occurs in the Barman domain (30% vs. 10%), likely
because diagrammatic representations capture the high number of object statuses and interactions
per state in this domain more effectively than text alone.

Model Generalization. To assess the generalizability of our framework, we evaluated it on other
state-of-the-art LMMs using 50 instances from the Blocksworld (simple) domain. With Llama 4, our
method increased accuracy from a baseline of 10% (single inference) to 74%, an over 7x improvement
in accuracy. The improvement was also observed using Claude 3.5 Sonnet, where accuracy increased
from 54.8% (using zero shot single inference as reported in [56]) to 98%, achieving state-of-the-art
performance on this benchmark. These substantial gains demonstrate that the benefits of our approach
are not tied to a specific model architecture but stem from the fundamental advantage of using
model-generated conceptual diagrams as a reasoning medium.

Runtime and Cost Analysis. We analyzed the runtime and API costs of our method and all other
search-based baselines on 20 instances per domain. On the Blocksworld (simple) domain, our method
had a median runtime of 381 (~6 minutes) seconds and a median cost of $1.04 per instance. For
more complex domains, the median runtime was 1038 seconds (~17 minutes) with median cost of
$2.98 per instance. Our approach is significantly more efficient than other search-based methods. On
average, it was 31% faster and 36% cheaper than the GoT baseline, and 46% faster and 52% cheaper
than RAP?°+GPT-40 across all domains, while achieving substantially higher accuracy. Compared
to the text-only Optimized GoT, incorporating diagrams added 213 seconds in latency and $0.71 on
average, measured across all domains, but this overhead yielded a 30 percentage point accuracy gain.

4.2 ABLATION STUDIES

To systematically evaluate the contributions of different components of our framework, we conducted
ablation studies on 50 instances from the Blocksworld (simple) domain. We examined the impact
of state diagrams, diagram schema, diagram code execution, different branching factors, and inference
optimizations (beam search and backtracking). Table 3 summarizes the results of these experiments.

Impact of Various Components of State Diagram Generation. We first evaluated the role of state
diagrams by removing them entirely from the inference pipeline (“No Diagram”), yielding a text-only
optimized Graph-of-Thought approach. This caused accuracy to drop from 90.2% to 58%, underscoring
the critical role diagrams play in succinctly representing relational information. Moreover, the average
solution depth of correctly solved instances decreased from 10.07 to 8.28, indicating that without
diagrams, the model struggled on more complex problems requiring deeper reasoning. In a second
experiment, we removed the diagram schema (“No Diagram Schema”) from the child-state generation
pipeline, instead inferring diagram code directly from textual descriptions of states. Accuracy dropped
from 90.2% to 72%, a smaller decline than removing diagrams entirely—showing that diagram schemas
further help extract relational information from text, enabling more accurate diagram generation.
Finally, we tested removing the rendered diagrams, providing only the Matplotlib code ("No Code
Execution") when generating the next action. This resulted in the most significant performance drop
(90.2% to 24%), even below the GPT-40 baseline (35.5%), clearly demonstrating that even though the
code encodes the same spatial and relational information as the diagram, the way this information and the
interdependencies between objects are represented is crucial for model performance. Using the diagram
code directly distracts the model and impairs reasoning, aligning with prior findings that extraneous
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details negatively impact model performance [49, 35]. These results reinforce the importance of dia-
grams as compact, intuitive representations that facilitate rapid perceptual inference and clear relational
reasoning [33, 52, 25], and that it is the representation of information in a multi-dimensional (2D, color-
encoded) format that significantly aids understanding the interdependencies and reasoning in models.

Impact of Branching Factor. We next investigated the effect of branching factor of the inference graph
(the number of candidate child states generated per state) on performance. Reducing the branching factor
from 4 (our default) to 2 ("2-Branching Factor") decreased performance from 90.2% to 70%, primarily
due to a sharp increase in incomplete searches (24% vs. 3.4%). This suggests that exploring the third or
fourth candidate child states, generated at higher temperatures, is frequently necessary to find the correct
solution path. Thus, reducing branching factor limits diversity in candidate state generations, leading
to more incomplete searches. Additionally, the average depth of correctly solved instances decreased
from 10.07 to 8.29, indicating difficulty solving problems with deeper solution depths. Further reducing
the branching factor to 1 ("1-Branching Factor"), effectively converting our graph-based inference
into a multimodal Chain-of-Thought approach (with diagrams), caused performance to drop even
further to 52%. Despite this decline, performance remained well above the GPT-4 baseline (35.5%),
underscoring the value of diagrams in improving LMM reasoning even without extensive search.

Impact of Inference Optimizations. Finally, we evaluated the importance of our inference
optimizations (backtracking and beam search) on top of the multimodal inference graph. Removing
backtracking (“No Backtracking’)—yielding a tree-of-thought method with beam search—reduced
accuracy from 90.2% to 62%, primarily due to a sharp rise in incomplete searches (34% vs. 3.4%). This
occurs because LMM verification steps occasionally produce false negatives, incorrectly invalidating
correct states. Without backtracking, the model cannot recover from these errors, leading to incomplete
searches as no validated nodes remain at the frontier of the search graph for further expansion.

Similarly, removing beam search (“No Beam Search”) lowered accuracy to 72%, with the
incomplete search rate increasing to 24%. In this case, incompletes stem from exponential growth
in the search space, causing the model to exhaust its computational budget (i.e., the maximum number
of states generated) before reaching the goal. Indeed, the average number of generated states increased
significantly (58.31 vs. 38.89), underscoring the critical role of beam search in managing combinatorial
explosion. Both optimizations are essential for solving deeper combinatorial problems, as shown by
the reduced average correct solution depth without them (6.61 without beam search, 6.06 without
backtracking, vs. 10.07 with both). These results demonstrate that backtracking and beam search
are complementary and crucial for efficient graph-based combinatorial planning.

5 CONCLUSION

Contributions. In this paper, we introduced Visual Thinking, a framework that enables LMMs to solve
combinatorial problems by reasoning with conceptual diagrams alongside text. Our contributions are:
(i) a cognitively inspired method that autonomously generates conceptual diagrams directly from natural
language problem descriptions, requiring no human input for new domains; (ii) a multimodal Graph-
of-Thought framework that structures reasoning as sequences of intermediate textual and visual states,
integrating beam search and backtracking for efficient long-horizon search; (iii) extensive empirical
evidence showing substantial performance gains over single-inference LMMs, specialized reasoning
models, and strong search-based baselines across various planning benchmarks; and (iv) ablation
results demonstrating that representation of information is critical—reasoning improves when relational
information and interdependencies are encoded in diagrams, not merely present in text or code format.

Limitations. As with any search-based inference method, our framework incurs additional computa-
tional cost and inference time to explore multiple reasoning trajectories and also to generate visual rep-
resentations. However, these overheads are manageable in practice; importantly, our approach remains
more efficient than prior text-only search methods such as Graph-of-Thought and RAP. Another limita-
tion concerns scope: Visual Thinking was applied to combinatorial planning problems—a core area of
computer science with significant real-world applications, such as warehouse optimization, logistics,
and scheduling—chosen because their state-based structure makes diagram progression more straight-
forward. Future work involves extending conceptual diagram generation to more open-ended problems.

Future Work. This work demonstrates a path for LMMs to move beyond purely textual reasoning
toward a more powerful, human-like process that integrates visual abstractions. Future work can extend
this framework beyond combinatorial planning to more abstract domains, enabling LMMs to produce
multimodal outputs such as software architecture diagrams, figures visualizing scientific hypotheses
and causal dependencies, or tailored visual aids for educational contexts. Such conceptual diagrams can
enhance both model performance and human—Al interaction (e.g., easier verification of code behavior
through generated architecture diagrams). This ability to reason and communicate about complex struc-
tures multimodally is essential for building Al capable of tackling scientific, creative, and planning tasks.
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6 REPRODUCIBILITY STATEMENT

An anonymous supplementary repository includes the full inference code, prompt templates, and
scripts used in our experiments, along with the PDDL instances of the new planning benchmark created
for the five new domains and sample run results. The end-to-end pipeline is specified in Section 3
and summarized in Figure 1. Dataset sources and instance-generation parameters are detailed in
Section 4; formal task and action definitions required to regenerate the PDDL domains are provided in
Appendix A; and prompt templates are listed in Appendix B. Experimental setup, baselines, and eval-
uation protocols are described in Sections 4 and 4.1, with ablations in Section 4.2 and comprehensive
results in Tables 1 and 3. Code organization and configuration files are documented in Appendix C.
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APPENDIX

A DOMAIN DEFINITIONS

This section provides formal definitions for the five planning domains introduced in our benchmark.
For each domain, we describe the main objective and provide a detailed specification of the available
actions, including their purpose, preconditions, and effects.

A.1 BARMAN DOMAIN

The Barman domain models the task of a bartender preparing cocktails. The agent must use two hands
to manipulate containers (shots, shakers), ingredients from dispensers, and mix them to create specific
cocktails. The state of each object includes its location (on table or held), contents, cleanliness, and
for shakers, fill level and whether it has been shaken.

ACTIONS

1. grasp (hand, container): Anempty hand picks up a container from the table.
* Preconditions: The container is on the table; the hand is empty.
* Effects: The container is no longer on the table; the hand now holds the container and is no longer
empty.
2. leave (hand, container): A hand places a held container onto the table.
* Preconditions: The hand is holding the container.
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10.

11.

12.

* Effects: The container is now on the table; the hand becomes empty.

fill-shot (shot, ingredient, handl, hand2, dispenser): Fills a clean,

empty shot with an ingredient.

* Preconditions: handl holds the shot; hand?2 is empty; the dispenser provides the
ingredient;the shot is empty and clean.

 Effects: The shot now contains the ingredient and is no longer empty or clean (it becomes
used).

refill-shot (shot, ingredient, handl, hand2, dispenser): Refills a used

shot with the same ingredient it previously held.

* Preconditions: handl holds the shot; hand?2 is empty; the dispenser provides the
ingredient;the shot is empty and was previously used with this ingredient.

* Effects: The shot now contains the ingredient and is no longer empty.

empty-shot (hand, shot, beverage): Empties the contents of a shot.

* Preconditions: The hand is holding the shot; the shot contains the beverage.

* Effects: The shot becomes empty.

clean-shot (shot, beverage, handl, hand2): Cleans a used, empty shot.

* Preconditions: hand1 holds the shot; hand?2 is empty; the shot is empty and was previously
used with the beverage.

* Effects: The shot becomes clean and is no longer considered used.

pour—-shot-to-clean-shaker (shot, ingredient, shaker, hand,

level-prev, level-next): Pours an ingredient from a shot into a clean, empty

shaker.

* Preconditions: The hand holds the shot containing the ingredient;the shaker is empty
and clean; the shakeris at level-prev.

* Effects: The shot becomes empty; the shaker now contains the ingredient, is no longer
empty or clean, becomes unshaken, and its fill level increases to level-next.

pour-shot-to-used-shaker (shot, ingredient, shaker, hand,

level-prev, level-next): Adds a second ingredient to an unshaken shaker.

* Preconditions: The hand holds the shot containing the ingredient; the shaker is
unshaken and contains one ingredient; the shaker is at level-prev.

 Effects: The shot becomes empty; the shaker now contains the additional ingredient; the
shaker’s fill level increases to level-next.

empty-shaker (hand, shaker, cocktail, level-prev, level-next): Emp-

ties a shaken cocktail from the shaker.

¢ Preconditions: The hand holds the shaker; the shaker contains a shaken cocktail;the
shakerisat level-prev.

» Effects: The shaker becomes empty and unshaken; its fill level resets to level-next
(empty).

clean-shaker (handl, hand2, shaker): Cleans an empty shaker.

* Preconditions: hand1 holds the shaker; hand2 is empty; the shaker is empty.

 Effects: The shaker becomes clean.

shake (cocktail, ingl, ing2, shaker, handl, hand2): Mixes two ingredients

in a shaker to create a cocktail.

* Preconditions: hand1l holds the shaker; hand2 is empty; the shaker contains exactly
ingl and ing2;the shaker is unshaken.

* Effects: The shaker becomes shaken; it now contains the resulting cocktail instead of the
separate ingredients.

pour-shaker-to-shot (cocktail, shot, hand, shaker, level-prev,

level-next): Serves a shaken cocktail from a shaker into a shot.

* Preconditions: The hand holds the shaker containing the shaken cocktail;the shot is
empty and clean; the shakeris at lLevel-prev.

» Effects: The shot now contains the cocktail and is no longer empty or clean; the shaker’s
fill level decreases to level-next.

A.2 ELEVATOR DOMAIN

The Elevator domain involves operating a set of elevators (fast and slow) to transport passengers
between floors in a building. Each elevator has a specific capacity and can only access a defined set
of floors. The goal is to move all passengers from their origin floors to their destination floors.
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ACTIONS

1. move—up-slow (elevator, floor-from, floor-to): Moves aslow elevator up.
¢ Preconditions: The elevatorisat floor—from; floor—-toisabove floor—-from;the
elevatorcanreach floor-to.
» Effects: The elevatorisnowat floor—-to.
2. move-down-slow (elevator, floor-from, floor-to): Moves a slow elevator
down.
* Preconditions: The elevatorisat floor—from; floor—toisbelow floor-from;the
elevatorcanreach floor—to.
e Effects: The elevatorisnowat floor—to.
3. move—up—-fast (elevator, floor-from, floor-to): Moves a fastelevator up.
¢ Preconditions: The elevatorisat floor—from; floor—-toisabove floor—-from;the
elevatorcanreach floor-to.
e Effects: The elevatorisnowat floor—to.
4. move—down—-fast (elevator, floor-from, f£loor-to): Moves a fast elevator down.
¢ Preconditions: The elevatorisat floor—-from; floor—-toisbelow floor-from;the
elevatorcanreach floor-to.
» Effects: Theelevatorisnowat floor-to.
5. board (passenger, elevator, floor, count-prev, count-next): A passen-
ger boards an elevator.
* Preconditions: The passenger and elevator are at the same floor; the elevator’s
passenger count is count —prewv; the elevator has capacity for another passenger.
* Effects: The passenger is now on board the elevator; the elevator’s passenger count
becomes count —next.
6. leave (passenger, elevator, floor, count-prev, count—-next): A passen-
ger leaves an elevator.
* Preconditions: The passengerisonboardthe elevator;the elevator is at the specified
floor;the elevator’s passenger count is count-prev.
» Effects: The passenger is now at the f1loor; the elevator’s passenger count becomes
count—next.

A.3 PARKING DOMAIN

The Parking domain involves rearranging cars parked at curbs. Each curb can hold at most two cars: one
parked at the curb and one double-parked behind it. A car cannot move if another car is parked behind it.

KEY PREDICATES

* clear (car): Trueif no car is double-parked behind this car.
* clear (curb): True if the curb is empty.

ACTIONS

1. move—curb-to-curb (car, curb-from, curb-to): A single-parked car moves to an
empty curb.
e Preconditions: car is at curb—from; car is clear; curb—to is clear.
* Effects: curb-frombecomes clear; car is now at curb—t o, which is no longer clear.
2. move—-curb-to-car (car-move, curb-from, car—ahead): A single-parked car
double-parks behind another car.
¢ Preconditions: car-moveisat curb—from; car—-move isclear; car—ahead is clear.
e Effects: curb—frombecomes clear; car—-move is now behind car—-ahead; car—-ahead
is no longer clear.
3. move—car—-to—-curb (car-move, car—ahead, curb-to): A double-parked car moves
to an empty curb.
* Preconditions: car—-move is behind car—-ahead; car—-move is clear; curb-to is clear.
* Effects: car—ahead becomes clear; car—-move is now at curb—t o, which is no longer clear.
4. move-car—-to—car (car-move, car—-from, car-to): A double-parked car moves to
double-park behind a different car.
e Preconditions: car—-move is behind car—from; car—-move is clear; car—tois clear.
» Effects: car—frombecomes clear; car—-move is now behind car—to; car—to is no longer
clear.
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A.4 TETRIS DOMAIN

The Tetris domain involves moving and rotating Tetris pieces on a grid. Pieces can be one-square,
two-square straight, or three-square L-shaped. A piece can only move or rotate into adjacent positions
that are clear (empty).

ACTIONS

1. move_square (pos—from, pos—to, piece): Moves a one-square piece.
* Preconditions: piece occupies pos—from; pos—toisclear; pos—fromand pos—to are
adjacent.
* Effects: pos—frombecomes clear; pos—to is now occupied by piece.
2. move_two (pos—-old, pos-pivot, pos—new, piece): Moves or rotates a two-square
piece.
* Preconditions: piece occupiespos—oldandpos—-pivot;pos—-newisclear;pos-pivot
and pos—new are adjacent.
* Effects: pos—old becomes clear; pos—new is now occupied by piece.
3. move_1_right (pA, pB, pC, pD, pE, pMid, piece): Moves or rotates an L-piece
right.
* Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly
adjacent for a rightward move.
» Effects: pA, pB become clear; pD, pE are now occupied by piece.
4. move_1_left (pA, pB, pC, pD, pPE, piece): Moves or rotates an L-piece left.
* Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly
adjacent for a leftward move.
» Effects: pA, pC become clear; pD, pE are now occupied by piece.
5. move_1_up(pA, pB, pC, pD, pE, pMid, piece): Moves or rotates an L-piece up.
* Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly
adjacent for an upward move.
» Effects: pB, pC become clear; pD, pE are now occupied by piece.
6. move_1_down (pA, pB, pC, pD, pE, piece): Moves or rotates an L-piece down.
* Preconditions: piece occupies pA, pB, pC; pD, pE are clear; positions are correctly
adjacent for a downward move.
* Effects: pA, pC become clear; pD, pE are now occupied by piece.

A.5 FLOOR TILES DOMAIN

The Floor Tiles domain involves robots painting a grid of tiles. Each robot can hold one color at a
time and moves between adjacent tiles. A robot can paint an adjacent tile (above or below) with its
current color, provided the tile is clear. Once a tile is painted, it cannot be occupied.

ACTIONS

1. change-color (robot, color-from, color-to): Arobotchanges its held paint color.
* Preconditions: The robot is holding color-from; color-to is an available color.
 Effects: The robot is now holding color-to.

2. paint-up (robot, tile-paint, tile-robot, color): Arobot paints the tile above
its current position.

* Preconditions: robot isattile-robot; tile-paint is directly above tile-robot;
tile-paintisclear; robot is holding color.
* Effects: tile-paint is now painted with color and is no longer clear.

3. paint—-down (robot, tile-paint, tile-robot, color): A robot paints the tile
below its current position.

* Preconditions: robot isattile-robot; tile-paint is directly below tile-robot;
tile-paint isclear; robot isholding color.
» Effects: tile-paint is now painted with color andis no longer clear.
4. up (robot, tile-from, tile-to): A robot moves one tile up.
* Preconditions: robot is at tile-from; tile-to is directly above tile-from;
tile—-toisclear.
 Effects: robot isnowattile—to;tile-frombecomes clear; t ile—to isno longer clear.
5. down (robot, tile-from, tile-to): A robot moves one tile down.
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* Preconditions: robot is at tile-from; tile-to is directly below tile-from;
tile—-toisclear.
» Effects: robot isnowattile-to;tile—frombecomesclear; tile—to isno longer clear.
6. right (robot, tile—from, tile-to): A robot moves one tile right.
* Preconditions: robot isattile-from; tile-to is directly to the right of tile—from;
tile—-toisclear.
» Effects: robot isnowattile—to;tile-frombecomes clear; t ile-to isno longer clear.
7. left (robot, tile—-from, tile-to): A robot moves one tile left.
* Preconditions: robot isattile—from; tile-to is directly to the left of tile—from;
tile—-toisclear.
» Effects: robot isnowattile-to;tile—frombecomesclear; tile—to isno longer clear.

B OVERVIEW OF PROMPTS

In this section, we provide a mapping between the main inference functions and their associated
prompts, clarifying how the model is prompted at each stage of the search and diagrammatic reasoning
pipeline. For each function, we specify: (1) the function name, (2) its core functionality, (3) where it is
called in the search process, (4) the key points of its prompt, and (5) its input parameters. This overview

enables readers to understand how the model is guided through each step of multimodal reasoning.

Function | Functionality | Where Called Key Prompt Points Input Parameters
Name (Description)
next Selects next During child state | - Presents - Problem
_action best action, generation (gener- | problem, initial, description (text)
generates rea- | ate_child_states). | current, and goal state | - Possible actions (list)
soning, action, (text and images) - Initial, current, goal
and new state - Lists possible actions | state objects (text,
description. - Requests reasoning, | diagrams, schemas)
action, and new - Model
state in code blocks name, temperature
- Handles uniqueness | - Chosen actions
and previous - Previous
errors if present attempt/error
(optional)
generate | Generates During child - Presents problem, - Problem
_diagram | diagram state diagram initial, current, description (text)
_schema schema for generation (gen- and new state (text, - Initial state
a child state erate_diagrams). diagrams, schemas) object (with schema)
after an action. - Requests - Child state object
one statement (with action, parent,
per object (position, state description)
size, status, identifier) | - Model
- Enforces object name, temperature
count consistency - Previous at-
- Handles previous at- | tempt/error (optional)
tempt/error if present
test Verifies After schema - Presents problem, - Problem
_diagram | correctness generation, initial, current, description (text)
_schema of a generated | before code and child state (text, - Initial state
diagram generation (gen- diagrams, schemas) object (with schema)
schema for erate_diagrams). | - Validates - Child state
a child state. object count, object (with schema,
affected object status, | action, parent)
and consistency - Model name
- Requires
yes/no answer
and error summary
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Function | Functionality | Where Called Key Prompt Points | Input Parameters
Name (Description)
generate | Generates After schema - Presents problem, - Domain name
_diagram | Matplotlib validation (gen- initial/current/child - Problem
_code code to vi- erate_diagrams). state (text, description (text)
sualize a child diagrams, schemas) - Child state
state based - Provides object (with schema,
on its schema. example code and action, parent)
reasoning if available | - Initial state object
- Requests code to (with code, diagram)
visualize all objects as | - Model
described in schema name, temperature
- Enforces clarity, - Save path for image
no overlaps, correct - Previous at-
labeling, plausibility | tempt/error (optional)
- Handles previous
attempt/error
if present
test Verifies After - Presents problem, - Problem
_diagram | correctness code execution, current/child description (text)
and clarity before accepting state (text, - Child state
of a generated | diagram (gen- diagrams, schemas) object (with schema,
diagram erate_diagrams). | - Validates object diagram, parent)
image for presence, status, - Domain name
a child state. labeling, readability, | - Model name
plausibility
- Requires
yes/no answer
and error summary
check Checks After diagram - Presents problem, - Problem
_action if a proposed generation, before | initial/current/goal description (text)
—validity| actionand path/global ver- state (text, - Current
resulting state | ification (gener- diagrams, schemas) state object (with
are valid (local | ate_child_states). | - Lists action schema, diagram)
verification). path, action taken, - Action taken (string)
new state description, | - New state
and diagram description (text)
- Checks precondi- - New
tions, effects, diagram | state object (with
accuracy, reasoning schema, diagram)
- Requires - Goal state object
yes/no answer - Possible actions (list)
and error summary - Initial state object
- Model name
check Checks After - Presents problem, - Problem
_action if the entire local verification, | initial/current/goal description (text)
_path action path before accepting state (text, - Initial
frominitial to | child state (gener- | diagrams, schemas) state object (with
current state is | ate_child_states). | - Lists full action schema, diagram)
valid (global path and parent state | - Current state
verification). - Checks object (with schema,
preconditions, effects, | diagram, parent)
diagram accuracy - Goal state object
for the whole path - Actions (list)
- Requires yes/no - Possible actions (list)
answer and reasoning | - Model name
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Function | Functionality | Where Called Key Prompt Points | Input Parameters
Name (Description)
rank Ranks can- After child - Presents problem, - List of state objects
_states didate states at | state generation, goal state, and all can- | (with id, description,
agivendepth | before pruning didate states (text, di- | diagram, action path)
by proximity (beam_search). agrams, action paths) | - Problem
to the - Requests description (text)
goal state (for ranking based - Goal state object
beam search). on number of goal - Model name
constraints satisfied
- Requires
ranking code
block and reasoning
ini_g Generates At - Presents problem, - Problem
_diagrams| and verifies the start of search, | initial/goal state (text) | name, domain name
diagrams during problem - Requests diagram - Problem
forinitial and | setup (setup). schema and code description (text)
goal states. for initial/goal state - Initial state
- Enforces object object (with text)
coverage, status, and | - Goal state
visual consistency object (with text)
- Verifies schemaand | - Model
diagram correctness name, temperature
- Handles retries - Parameters
and error feedback (e.g., max attempts)
- Error message, previ-
ous attempt (optional)
generate | Generates di- Within - Presents problem, - Problem
_diagram | agramschema | ini_g diagrams initial and goal description (text)
—schema for initial (problem setup). state descriptions - Initial state
—ini g or goal state. - Requests object (with text)
one statement - Goal state
per object (position, object (with text)
size, status, identifier) | - Model
- Handles previous at- | name, temperature
tempt/error if present | - Domain name
- Goal flag (bool)
- Previous at-
tempt/error (optional)
test Verifies Within - Presents problem, - Problem
_diagram | correctness ini_g_diagrams state description, description (text)
—schema of initial/goal | (after schema and schema - Initial state
—ini g state diagram | generation). - Validates object object (with schema)
schema. coverage and status - Goal state
- Requires object (with schema)
yes/no answer - Model name
and error summary - Goal flag (bool)
generate | Generates Within - Presents problem, - Domain name
_diagram | Matplotlib ini_g_diagrams state description, - Problem
—code code for initial | (after schema and schema description (text)
—ini g or goal state validation). - Provides - Initial state
visualization. code and reasoning object (with schema)
- Requests code to - Goal state
visualize all objects as | object (with schema)
described in schema | - Model
- Enforces clarity, name, temperature
labeling, plausibility | - Save path for image
- Handles previous - Goal flag (bool)
attempt/error - Previous at-
if present tempt/error (optional)
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state diagram
image.

presence, status,
labeling, consistency,
plausibility

- Requires

yes/no answer

and error summary

Function | Functionality | Where Called Key Prompt Points Input Parameters
Name (Description)
test Verifies Within - Presents problem, - Problem
_diagram | correctness ini_g_diagrams state description, description (text)
_ini_ g and clarity (after and diagram image - Initial

of initial/goal | code execution). | - Validates object state object (with

schema, diagram)
- Goal

state object (with
schema, diagram)
- Domain name

- Model name

all goal state
constraints.

state (text, diagrams)
- Lists action path

- Asksif

current state matches
all goal constraints

- Requires yes/no
answer and step-
by-step reasoning

- Goal flag (bool)
is_unique| Checks During child - Presents problem, - Problem
_action if a proposed state generation current state, description (text)
action leads to | in gener- action taken, and - Current state object
aunique child | ate_child_states. new state description | (with child states)
state from the - Lists previously - Action taken (string)
current state. explored actions - New state
and resulting states description (text)
- Asks if the new - Model name
action/state is unique
- Requires yes/no an-
swer and explanation
check Checks Ateach - Presents - Problem
—goal if the current node expansion problem, initial, description (text)
_state state satisfies in beam_search. current, and goal - Current state

object (with diagram)
- Goal state

object (with diagram)
- Initial state

object (with diagram)
- Model name

This mapping clarifies the modular structure of the inference pipeline and the precise role of each
promptin guiding the model’s multimodal reasoning. Each function is responsible for a distinct aspect of
the search or verification process, and the prompts are carefully designed to enforce correctness, clarity,
and consistency at every stage. The table above can be used as a reference for understanding or extending
the codebase, as well as for reproducing or adapting the prompting strategy to new domains or tasks.

C CODE STRUCTURE AND ORGANIZATION

The codebase is organized to support multimodal planning and diagrammatic reasoning across multiple
domains. Each domain (e.g., blocksworld, barman,elevator,parking,tetris,tiles)
is self-contained, with a consistent folder structure and supporting scripts. Below, we describe the
main components and their roles.

C.1

ToP-LEVEL STRUCTURE

* Domain Folders: Each domain (e.g., blocksworld, barman, etc.) is a top-level folder
containing all files and subfolders needed to run our method on the instances of that domain.

» Shared Scripts: At the root, scripts such as search.py, inference.py, and diagram
generation scripts are provided for general use across domains.

» Utilities: Files like requirements.txt and Readme.md provide environment setup and
documentation.
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C.2 KEY SCRIPTS AND THEIR ROLES

* search.py: The main search and script. Implements the graph of thought algorithm with beam
search and backtracking, manages state expansion, diagram generation, and verification. For each
problem instance, it creates a subfolder (e.g., blocksworld_instance_1/) and stores all
intermediate and final results, including state diagrams, code, and logs.

* inference.py: Contains all functionalities facilitated by LMMs and prompting logic, including
functions for generating and verifying actions, diagram schemas, code, and state rankings. This
script is the interface between the search process and the language model.

* visual_thinking.py: Main pipeline script. Orchestrates the batch processing of multiple
problem instances for a given domain. For each instance, it sets up the directory structure, runs our
diagrammatic search, and validates the resulting plan using VAL. It also manages the output and
validation logs.

* initial diagram_schema.py, initial_diagram_code.py,
initial_goal_diagram_code.py: Scripts for generating and storing the first initial
and goal conceptual diagrams for the domain and their schemas. Outputs are stored in the
initial_conceptual_diagram/ folder.

* PDDL_tranlation.py (per domain): Handles translation between natural language and PDDL
for that domain, including prompt templates and in context examples.

C.3 INSTANCE AND STATE FOLDER STRUCTURE

For each problem instance (e.g., blocksworld_instance_1/), the following structure is created
during search:

* state_X/: Foreach explored state, a folder is created containing:

— diagram.png: The generated diagram for the state.

— diagram_code.py: The code used to generate the diagram.

— diagram_schema.txt: The schema describing the diagram.

— info.txt: Metadata about the state, including parent, action taken, and reasoning.
attempts/: Subfolders for storing all attempts at generating child states and diagrams,
including error logs.

* goal_state/: If a goal is found, this folder contains the final state information and a copy of
all diagrams along the solution path.

* ranking/: Stores state ranking information at each search depth.

* output.txt, plan.pddl, val_output.txt: Output logs, the generated plan, and
validation results.

C.4 DOMAIN EXAMPLES

The repository attached in the supplementary material includes several PDDL domains
(blocksworld, barman, elevator, parking, tetris, tiles), each with a com-
plete set of PDDL files, instance generators, randomly generated instances, and translations of
the domain and a random state and initial conceptual diagrams generated using pipeline. For
blocksworld, we also provide full examples of solved problems, including all intermediate
diagrams and logs, to facilitate reproducibility and intuitive understanding of the pipeline. To view the
sequence of diagrams produced for a successfully solved instance, refer to the goal_state folder
within each instance’s directory. This folder contains the chain of diagrams generated by the pipeline
from the initial state to the goal state for that instance.

This modular structure allows for easy extension to new domains and facilitates reproducibility,
inspection, and further research.
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