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Abstract

This paper investigates the ability of large lan-001
guage models (LLMs) to solve complex tasks002
under strict rule-based constraints. Focusing on003
enhancing the reasoning capabilities of LLMs,004
it proposes an innovative framework that com-005
bines cognitive learning and knowledge-guided006
optimization to improve task completion and007
traceability. The research introduces a bench-008
mark dataset that integrates multi-domain tasks,009
explicit rules, and traceable question-answer010
pairs to evaluate LLMs performance in con-011
strained problem-solving scenarios, requiring012
creative responses. Empirical experiments013
demonstrate that the proposed framework sig-014
nificantly enhances LLMs reasoning consis-015
tency, knowledge completeness, and adherence016
to rules. This study provides useful insights017
for improving the effectiveness of LLMs in018
tackling real-world challenges, where problem-019
solving often involves navigating complex con-020
straints and innovative solutions.021

1 Introduction022

The resolution of complex tasks by large language023
models (LLMs) depends on their ability to integrate024
advanced reasoning with adherence to structured con-025
straints—a challenge akin to solving "rule-based enig-026
mas," where ambiguous or conflicting rules require log-027
ical coherence amid uncertainty(Figure 1). These enig-028
mas illustrate how tasks, rules, and questions intercon-029
nect to form a system of bounded rationality, testing030
the capacity of intelligent agents to derive solutions031
within predefined logical boundaries. Translating this032
paradigm into computational contexts, we propose that033
datasets structured around explicit task-rule-question034
hierarchies serve as rigorous benchmarks for evaluat-035
ing and enhancing LLMs’ problem-solving abilities,036
particularly in interdisciplinary scenarios that demand037
rule-bound reasoning(Figure 2).038

Previous research has explored the capabilities of039
LLMs in constrained reasoning through two primary040
avenues. One line of work focuses on decomposing041
tasks into subtasks governed by predefined rules, such042
as Rasal (2024)’s CAMEL framework for multi-agent043
autonomy and Chen et al. (2024b)’s adaptation of TRIZ044

Figure 1: This image depicts a family rule paradox,
emphasizing the challenge of completing a 53-minute
kitchen cleanup by 10 PM while barred from the kitchen
after 9 PM, highlighting the complexity of problem-
solving under multiple constraints.

for inventive problem solving. Another line empha- 045
sizes dynamic collaboration and creativity, as seen in 046
Liu et al. (2024a)’s CoQuest for human-AI co-creation 047
and Zhao et al. (2024)’s analysis of multi-LLM idea 048
elaboration. However, these approaches often lack gran- 049
ular mechanisms to enforce structured constraints or 050
trace reasoning paths, limiting their ability to quantify 051
logical consistency or systematically improve rule adher- 052
ence. In this work, we address this gap by introducing a 053
structured constraint framework inspired by rule-based 054
enigmas. Our approach formalizes complex tasks as in- 055
terconnected systems of rules and questions, where each 056
task requires interdisciplinary reasoning under explicit 057
logical boundaries, similar to resolving contradictions 058
in a “Rule-Based Weird Tales.” We further propose a 059
two-phase optimization framework combining cognitive 060
learning and knowledge-guided approaches to improve 061
the transparency of LLM reasoning and compliance with 062
rules. By designing analogy-driven reasoning paths and 063
dynamically addressing knowledge gaps, our method 064
ensures that models not only solve tasks, but also align 065
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Figure 2: This image compares two problem-solving
methods: direct holistic resolution (Task-Solution) and
decompositional resolution (Task-Problem-Solution),
which breaks tasks into sub-problems for systematic
resolution.

their reasoning with rigorous predefined constraints.066
Our work includes three main contributions:067
Benchmark Dataset for Rule-Constrained Prob-068

lem Solving: First, we introduce a benchmark dataset069
that integrates interdisciplinary tasks, structured rules,070
and traceable question-answer pairs. This dataset for-071
malizes the challenge of rule-constrained problem solv-072
ing and provides a standardized foundation for evaluat-073
ing reasoning under constraints.074

Agent-Based Optimization for LLMs: Second, we075
propose an agent-based optimization framework de-076
signed to systematically enhance the reasoning consis-077
tency and knowledge completeness of large language078
models (LLMs). By leveraging structured refinements,079
this framework improves the alignment of LLMs with080
rule-based reasoning paradigms.081

Empirical Validation and Performance Gains:082
Third, extensive experiments validate the effectiveness083
of our approach. Models enhanced by our framework084
demonstrate significant improvements in task comple-085
tion and traceability, with rule adherence identified as a086
key factor in performance gains.087

Overall, our work contributes to the evaluation and088
enhancement of LLMs’ ability to navigate real-world089
complexities through structured, rule-bound reasoning.090
By addressing both dataset standardization and model091
optimization, we provide a comprehensive pathway for092
improving the robustness and reliability of LLMs in093
constrained problem-solving scenarios.094

2 Dataset and Task Setup095

2.1 Dataset Construction096

We adopt an interconnected framework of tasks, ques-097
tions, and rules to construct the dataset, ensuring the098
rationality of question design and the accuracy of an-099
swers, as shown in Figure 3. Each dataset revolves100
around a complex task involving interdisciplinary rea-101
soning, covering domains such as ethics, law, science,102

technology, and economics. The task design defines 103
the core issues and provides a framework for question 104
development. Ten questions are constructed based on 105
the task, with each answer contributing to the overall 106
objective of the task. The questions include causal rea- 107
soning, logical contradictions, ethical trade-offs, and 108
other types, assessing different dimensions of cognitive 109
and creative abilities. Each dataset is accompanied by 110
a set of rules, which establish logical boundaries and 111
provide a reasoning framework, ensuring that answers 112
adhere to structured constraints. This structure ensures 113
that task execution aligns with predefined logic, that 114
question design is focused and challenging, and that 115
the rules offer the necessary foundation for reasoning, 116
enabling in-depth analysis and innovative solutions to 117
complex problems. 118

Model answers are a crucial component of the 119
dataset, providing high-quality, logically reasoned re- 120
sponses to the complex tasks. For instance, in the "Art 121
Authenticity Determination" task (Figure3), the model 122
addresses the question: "Can art be authentic if methods 123
and materials match but the artist differs?" (Question 124
2). The model leverages advanced systems like GPT- 125
4 to generate rigorous, systematic, and interpretable 126
responses. These answers must align with the task’s 127
objective (Task 1: Combining philosophy and tools to 128
navigate life’s dualities) and adhere to the dataset’s 129
rules (e.g., Rule 2: "Authenticity needs history and con- 130
text, not just methods and materials") to ensure logical 131
consistency. The model identifies the core contradic- 132
tion in the task: the technical consistency of materials 133
and methods (physical dimension) versus the relation- 134
ship between the creator’s historical background and 135
the work’s cultural context (humanities dimension). It 136
then employs an art history knowledge graph to analyze 137
historical differences in artist identity symbols across 138
periods. Ultimately, the model concludes with a logical 139
loop: " materialauthenticity ̸= artauthenticity," 140
showcasing its multidimensional analytical capability. 141
This model answer serves as the benchmark for subse- 142
quent experiments, providing a standard for evaluating 143
the problem-solving abilities of different language mod- 144
els and ensuring the scientific rigor and comparability 145
of the results. 146

The quality validation mechanism verifies whether 147
generated tasks, rules, and questions meet predefined 148
standards to evaluate large language models’ capabili- 149
ties in solving complex tasks. As shown in Figure 4, the 150
validation process focuses on three dimensions: tasks, 151
rules, and questions. Tasks are validated for novelty, 152
coverage of core domain-specific issues, and necessity 153
of complex reasoning. Rules are verified for applica- 154
bility within task domains and precision of core propo- 155
sitions. Questions are examined for semantic align- 156
ment with task objectives and inclusion of complex 157
constraints. In each iteration, 5% of generated content 158
is randomly sampled for validation. Manual efforts 159
prioritize task novelty and rule applicability, while AI- 160
assisted methods address remaining criteria. Data fail- 161
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Figure 3: Dataset construction flow, from task to question generation, guided by rules and evaluated with benchmark
answers.

Figure 4: Task, rule, and question validation framework.

ing validation undergoes regeneration until compliance162
is achieved. This mechanism guarantees high-quality163
datasets, providing rigorously validated tasks, rules,164
and questions to test large language models’ problem-165
solving abilities in complex scenarios.166

2.2 Tasks Aligned with the Dataset167

The dataset developed in this study aims to system-168
atically evaluate the comprehensive problem-solving169
abilities of large models and their answer traceability.170
It focuses on verifying problem-solving capabilities un-171
der innovative reasoning and multidimensional logical172
constraints. By designing interdisciplinary tasks with173
innovative problem types and structured rule constraints,174
the dataset simulates complex decision-making environ-175
ments in real-world scenarios, ensuring logical consis-176
tency between the objectives and data collection. The177
task-driven question generation mechanism strength-178
ens the model’s requirements for integrating knowledge179
across multiple domains and fostering creative thinking,180
while the rule framework guides traceable reasoning181
paths through boundary conditions. Its innovation lies182
in combining answer traceability with innovative tasks183
across multiple domains, emphasizing not only the cor-184
rectness of answers but also the transparency of the185
reasoning process. This provides a scientific bench-186
mark for evaluating the cognitive depth and dynamic187
adaptability of large models in complex systems.188

2.3 Metric Design 189

The evaluation system developed in this study includes 190
Task Completion Status Score(TCSS), Adherence to In- 191
structions Score(AIS), Adherence to Rules Score(ARS), 192
and Traceability Score(TS), aiming to comprehensively 193
assess the performance of large models in complex tasks, 194
their adherence to instructions, and the transparency 195
of their reasoning process. In designing the evalua- 196
tion framework, we referenced the multidimensional 197
evaluation approach in the FLAMES framework (Rasal 198
(2024)), particularly in task completion and rule ad- 199
herence, which provided significant guidance for the 200
scoring system in this study. 201

The task completion score measures the model’s abil- 202
ity to effectively and comprehensively solve complex 203
tasks, the instruction adherence score evaluates whether 204
the model strictly follows the instructions in the task, 205
the rule adherence score assesses whether the model’s 206
responses strictly follow the provided rules, and the 207
traceability score evaluates whether the reasoning be- 208
hind the model’s answers can be traced back to the 209
corresponding rules, and whether this reasoning logi- 210
cally supports the final conclusion. All metrics use a 211
binary scoring system, where 1 indicates compliance 212
with the standard and 0 indicates non-compliance. 213

Considering that solving complex tasks is typically a 214
continuous process rather than a simple binary judgment 215
(solved/unsolved), this study employs a continuous scor- 216
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Metric Score Explanation

TCSS 9 Only question 1 scored 0,
with strong overall
performance.

AIS 10 The model’s answers fully
comply with instructions.

ARS 5 The answers to questions 1,
2, 6, 9, and 10 did not fully
follow rules.

TS 7 Questions 1, 2, and 6 need
better reasoning
transparency.

Table 1: Model Performance Metrics

ing method, where the scores for each question are accu-217
mulated to reflect the model’s performance differences218
during task completion (as shown in Table 1). For ex-219
ample, in Task 1, the instruction adherence score is 10220
points (indicating full compliance with the instructions),221
while the rule adherence score is 5 points (indicating222
that Questions 1, 2, 6, 9, and 10 did not fully adhere223
to the rules). Subsequently, the average score for each224
metric across all tasks is calculated to systematically225
compare the performance of different models on each226
metric.227

3 Methodology228

In complex reasoning tasks, enhancing the reasoning229
capabilities of large language models (LLMs) requires230
not only ensuring the correctness of answers but also231
guaranteeing that the model possesses robust reason-232
ing strategies and a comprehensive knowledge structure.233
To address this, we propose an optimized framework234
combining Cognitive Learning and the Knowledge-235
Guided Approach (Figure 5), aimed at systematically236
training the model’s reasoning process and addressing237
its knowledge gaps. The method achieves enhancement238
through two-phase optimization: the Cognitive Learning239
phase guides the model in constructing analogy-based240
logical reasoning paths, while the Knowledge-Guided241
phase identifies and fills knowledge gaps in the reason-242
ing paths. The synergistic effect of both phases not only243
ensures the reliability of individual reasoning instances244
but also enhances the model’s problem-solving ability245
across a broader range of domains, aligning with the246
approach outlined by Yan et al. (2024).247

3.1 Cognitive Learning248

The core objective of cognitive learning is to guide the249
model in following consistent logic during reasoning250
tasks, rather than relying on pattern matching or exam-251
ples from training data. Since tasks consist of multiple252
interrelated questions, optimizing the answer quality253
for individual questions can enhance the model’s over-254
all ability to solve the task. To achieve this, we adopt255
the method of analogy questions, enabling the model256

Figure 5: A systematic framework for improving the
model’s problem-solving and reasoning capabilities.

to abstract general reasoning paths and establish con- 257
nections across different domains. Specifically, we de- 258
sign analogy questions for each original question based 259
on the core reasoning structure of the task (Figure 5, 260
Step 1). For instance, in the task of "constructing an 261
internationally recognized ethical-legal framework to 262
address ownership disputes, liability ambiguities, and 263
definitional conflicts in emerging technologies, environ- 264
mental claims, and cases at the edge of temporal juris- 265
diction," an analogy question could be: "If a company 266
develops new technology by utilizing discarded satel- 267
lite components to build a spacecraft, but inadvertently 268
infringes on the expired patent of another company dur- 269
ing the process, should the company be held liable for 270
infringement?" This analogy question helps the model 271
understand how to resolve unexpected liability ques- 272
tion arising from technological innovation within the 273
existing legal framework. Subsequently, the reasoning 274
process will be evaluated by an expert model (Figure 275
5, Step 2) to ensure logical consistency and reusabil- 276
ity. This enables the model to reuse validated reasoning 277
paths when addressing new questions, producing robust 278
and interpretable answers. 279

3.2 Knowledge-Guided Approach 280

Although cognitive learning establishes effective rea- 281
soning methods, the quality of reasoning is limited by 282
the model’s knowledge completeness. Therefore, we 283
introduce a knowledge-guided approach (Figure 5, Step 284
3). An agent is employed to decompose the original 285
question, identify knowledge gaps, and retrieve rele- 286
vant information from external sources. This process 287
constructs a comprehensive knowledge framework, en- 288
hancing the model’s knowledge storage and application 289
capabilities. Finally, through a closed-loop validation 290
process, the original answer is further optimized (Figure 291
5, Step 4) to ensure the reliability of the reasoning path 292
and the consistency of knowledge application. 293
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Model TCSS AIS ARS TS Avg.
BL Prop. BL Prop. BL Prop. BL Prop. BL Prop.

deepseek-v3 8.18 8.28 9.90 10.00 9.36 9.88 9.38 9.88 9.21 9.51
gemini-2.0-flash 8.08 8.20 9.98 9.98 9.36 9.82 9.32 9.74 9.19 9.44
qwen-72b 8.32 8.30 9.98 9.98 9.12 9.90 9.20 9.90 9.16 9.52
llama3.3-70b 8.26 8.50 9.96 10.00 8.60 9.88 8.64 9.93 8.87 9.58
glm-9b 7.55 7.98 10.00 9.98 8.74 8.84 8.75 8.46 8.76 8.82
qwen-7b 5.30 7.58 9.92 9.98 7.58 9.38 7.04 9.16 7.46 9.03

Table 2: Metrics comparison between Baseline (BL) and Proposed Method (Prop.)

4 Experiment294

In this section, we conduct experiments to evaluate the295
problem-solving capabilities of large language models296
(LLMs) on complex tasks and investigate the impact297
of the Cognitive Learning and Knowledge-Guided Ap-298
proach modules on model performance.299

4.1 Experimental Setup300

The experiments were conducted on a server equipped301
with 8 NVIDIA GeForce RTX 3090 GPUs, each with302
24GB of VRAM, running CUDA 12.4 to optimize303
model inference performance. This configuration sup-304
ports LLM inference tasks and allows for parallel execu-305
tion across multiple GPUs. Inference was performed via306
API calls to mainstream large models, using the OpenAI307
and Google GenAI libraries for interface management.308
Strict control was maintained over the request format-309
ting to ensure consistency in input structure. During the310
experiments, all baseline models used the same prompt311
structure to ensure uniformity in experimental condi-312
tions. The Temperature for the baseline models was set313
to 0.7, while for the expert model (GPT-4o), it was set314
to 0. The maximum sequence length for both input and315
output was limited to 1000 tokens.316

4.2 Datasets Baselines and Metrics317

The dataset used in the experiments consists of 3,000318
entries, each containing a complex task, 10 correspond-319
ing questions and answers, and 20 explicit rules. The320
baseline models selected for evaluation are widely used321
in natural language processing tasks and exhibit strong322
reasoning capabilities, with varying model parameters.323
These models include DeepSeek-V3, Qwen2.5-72B,324
Qwen2.5-7B, LLaMA3.3-70B, Gemini-2.0-Flash, and325
GLM-9B. The expert model chosen for comparison is326
GPT-4o. The models were evaluated using four metrics:327
TCSS, AIS, ARS, and TS. For the evaluation process,328
three experts in large language models were invited to329
participate. They manually scored a random 10% sam-330
ple of the dataset. To assess consistency, the manual331
scores were compared with the automated evaluation332
results from GPT-4o using Pearson’s correlation coef-333
ficient. Samples with consistency lower than 0.7 were334
discarded and re-sampled, further enhancing the relia-335
bility and stability of the evaluation results.336

4.3 Experimental Results 337

Main Results Table 2 presents the results across various 338
evaluation metrics, including TCSS, AIS, ARS, and TS, 339
showing improvements in the performance of all models 340
after applying the optimization scheme. Overall, all 341
models exhibited enhanced performance compared to 342
the baseline. 343

Among all evaluated models, DeepSeek-V3 demon- 344
strated the most stable performance across all metrics, 345
particularly excelling in task completion and traceability, 346
with an average score improving from 9.21 to 9.51. This 347
indicates that the optimization significantly strength- 348
ened the model’s ability to execute tasks, adhere to 349
instructions and rules, and improve the transparency of 350
its reasoning process. 351

Qwen-72B and LLaMA3.3-70B also showed strong 352
performance improvements, particularly in ARS and TS 353
metrics. For example, Qwen-72B improved its average 354
score from 9.16 to 9.52, demonstrating notable progress 355
in following instructions and generating rule-compliant 356
answers. 357

On the other hand, GLM-9B and Qwen-7B exhibited 358
more modest improvements, especially in TCSS and 359
TS. Qwen-7B had the lowest baseline task completion 360
score (5.30), although its optimized score improved to 361
7.58, suggesting considerable progress. However, it 362
still lagged behind other models, indicating that signifi- 363
cant improvements are needed in its task execution and 364
reasoning capabilities. 365

In general, the experimental results reveal different 366
performances across language models in improving 367
complex task-solving capabilities and adherence to rule 368
constraints. The optimization scheme’s impact was par- 369
ticularly evident in AIS and TS, which are crucial for 370
ensuring that models not only correctly answer ques- 371
tions but also maintain the transparency and consistency 372
of their logical reasoning. This evaluation framework 373
provides a solid foundation for assessing large models’ 374
capabilities and guiding further improvements in their 375
reasoning and knowledge application abilities. 376

Correlation Analysis of Metrics From the Kendall 377
rank correlation analysis(Figure 6), we observe a signif- 378
icant correlation between different metrics. Specifically, 379
TCSS is highly positively correlated with TS and the av- 380
erage score (0.87 and 0.86), suggesting that models with 381
higher transparency in their reasoning processes tend to 382
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Figure 6: Correlation heatmap

perform better in completing tasks and achieving higher383
overall scores. Additionally, the correlation between384
ARS and TS is strong (0.83), indicating that models385
that adhere to established rules tend to have more trace-386
able reasoning, enhancing the interpretability of their387
answers. Moreover, the positive correlation between388
ARS and TCSS (0.83) suggests that strict adherence to389
rules improves task completion in complex tasks.390

However, the correlation between AIS and other key391
metrics is relatively low, particularly its correlation with392
the average score (0.38), which is much lower than the393
correlations observed among other metrics. This in-394
dicates that strictly following instructions alone does395
not necessarily ensure the model’s success in complex396
tasks. Notably, TS consistently shows a high correlation397
with ARS across both baseline and proposed methods398
(0.83–0.96), further confirming that traceability is a399
critical factor for evaluating model reliability. Overall,400
TCSS, ARS, and TS jointly determine the model’s over-401
all performance, while AIS has a limited impact on final402
task-solving ability.403

In summary, the results indicate that ARS and TS are404
key factors influencing task completion, with models405
in the optimized approach tending to rely more on rule406
execution and knowledge guidance rather than merely407
following instructions. This optimization strategy en-408
hances the model’s reasoning capabilities in complex409
tasks and improves the transparency of problem-solving410
processes. The study further suggests that the future411
enhancement of large language models’ capabilities in412
solving complex tasks should focus on optimizing rule413
structures and reasoning transparency, rather than solely414
relying on task instructions, to establish more reliable415
reasoning mechanisms.416

Correlation Between GPT-4o and Manual Scores417
The analysis of the correlation between GPT-4o scores418
and manual scores (Table 3)reveals a high degree of419
consistency across all evaluation metrics. Notably, the420
TCSS score has the highest correlation (0.991), indi-421

cating near-complete alignment between GPT-4o’s un- 422
derstanding and execution of task instructions and the 423
expert manual scores. However, the correlation between 424
GPT-4o and manual scores for ARS and TS is somewhat 425
lower (0.895 and 0.879), indicating some discrepancies 426
in rule adherence and reasoning transparency. Based on 427
these results, we conclude that GPT-4o shows a high 428
level of consistency with expert manual scoring in auto- 429
mated evaluations, particularly in task execution and in- 430
struction adherence. Nonetheless, further optimization 431
of GPT-4o’s evaluation methods for rule adherence and 432
reasoning transparency is warranted to ensure higher 433
consistency in more complex evaluation tasks. 434

Metrics r
Task completion status 0.911
Adherence to Instructions 0.991
Adherence to Rules score 0.895
Traceability score 0.879
Avg. r 0.919

Table 3: Pearson correlation coefficients for different
metrics

4.4 Ablation 435

This section presents an ablation study conducted using 436
Gemini-2.0-Flash to systematically assess the contri- 437
bution of key modules to the model’s ability to solve 438
complex problems. The experimental design focuses 439
on two core components: Cognitive Learning (analogy 440
reasoning) and Knowledge-Guided Approach (agent 441
process), employing a layer-by-layer ablation strategy 442
for comparative analysis. Specifically, four control ex- 443
periments were designed to verify: 1) the removal of 444
the entire analogy reasoning module (Exp1); 2) the 445
complete removal of the agent process (Exp2); 3) the 446
removal of the question-answer evaluation submodule 447
within the analogy reasoning module (Exp3); and 4) 448
the removal of the knowledge supplementation function 449
during the task decomposition phase (Exp4). The ex- 450
perimental metrics focus on assessing changes in the 451
model’s key capabilities in the absence of specific mod- 452
ules, including answer quality stability and traceability. 453
Through fine-grained ablation comparisons, the study 454
effectively distinguishes the contribution of different 455
submodules to the model’s reasoning ability, ensuring 456
scientific validity, reproducibility, and interpretability 457
of the results. 458

TCSS AIS ARS TS Avg.

Exp 1 7.96 9.96 9.80 9.64 9.34
Exp 2 8.14 9.96 9.86 9.72 9.42
Exp 3 8.16 9.98 9.78 9.74 9.42
Exp 4 8.26 9.90 9.86 9.74 9.44

Table 4: Ablation Results
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Figure 7: Analysis Process of Poor Performance ques-
tion.

The results(Table 4) show that the removal of differ-459
ent modules has varying impacts on the model’s rea-460
soning ability and task completion quality. In terms of461
TCSS, Exp1 (7.96) performed the worst, while Exp4462
(8.26) performed the best, suggesting that the knowl-463
edge supplementation function during the task decompo-464
sition phase plays a crucial role in task execution. AIS465
showed minimal variation across all experiments (above466
9.90), indicating that this capability is less affected by467
the ablation strategy. In terms of ARS, Exp3 (9.78) was468
slightly lower than the other groups (9.80 and above),469
indicating that the removal of the question-answer evalu-470
ation submodule has a certain impact on rule adherence.471
For TS, Exp1 (9.64) had the lowest score, highlight-472
ing the importance of maintaining the integrity of the473
analogy reasoning module for traceability.474

The average scores showed that Exp1 (9.34) had the475
lowest score, while Exp4 (9.44) had the highest, under-476
scoring the significant contribution of the knowledge477
supplementation function during task decomposition478
to overall performance. Exp2 and Exp3 both scored479
9.42, suggesting that both had a similar impact on the480
model’s overall performance. Overall, the analogy rea-481
soning module significantly impacts task completion482
and traceability, while the knowledge supplementation483
function during task decomposition notably enhances484
reasoning ability. The removal of the agent process485
and the question-answer evaluation submodule led to486
fluctuations in rule adherence and answer quality.487

4.5 Case Study488

Figure 7 illustrates the process of analyzing the issue of489
poor performance. According to classical perfect com-490
petition theory, low entry barriers and information trans-491
parency make it difficult for technological innovations492
to maintain a dominant position in the long term, as com-493

petitors can quickly imitate them. However, Rules 17 494
and 18 provide potential ways to overcome this theory: 495
companies can establish technological barriers through 496
proprietary resources or intellectual property (Rule 17) 497
and maintain a competitive edge through continuous in- 498
novation (Rule 18). The combination of these two rules 499
demonstrates the possibility of maintaining innovation 500
leadership under specific conditions. 501

Although the model identified the complexity of the 502
problem during task decomposition, it still overly re- 503
lied on classical economic theory in its reasoning. The 504
model failed to fully understand the key impact of Rules 505
17 and 18 on the answer and did not consider their syn- 506
ergistic effect, leading it to deviate from the constraints 507
of the rules and ultimately conclude "no." This suggests 508
that the large model exhibits a tendency to overly depend 509
on general theories, failing to adequately integrate the 510
interrelationships between theory and rules, and lacking 511
the flexibility to adapt to specific contexts. 512

5 Related Work 513

5.1 LLM Problem Solving 514

Recent studies have explored the use of large lan- 515
guage models (LLMs) in multi-agent systems and 516
problem-solving frameworks. Rasal (2024) introduces 517
the CAMEL framework, which enhances autonomy in 518
multi-agent systems, while Barbosa et al. (2024) focuses 519
on collaboration within the Autogen framework for solv- 520
ing complex tasks in manufacturing. Ge et al. (2024) uti- 521
lizes Chain-of-Thought (CoT) to reduce cognitive load 522
and improve creativity, and Lingo et al. (2024) enhances 523
problem decomposition through the REAP method, im- 524
proving task understanding and solution generation. In 525
reasoning frameworks, Yao et al. (2024) and Ong et al. 526
(2024) propose models that balance efficiency with ac- 527
curacy, with the latter introducing SELF-TAUGHT to 528
tailor demonstrations. Chen et al. (2024b) adapts LLMs 529
to the TRIZ method for inventive problem-solving, and 530
Jiayi and JIANG (2024) applies LLMs to scaffold task 531
analysis and solution iterations. Alexandrov (2025) 532
stresses the need for further LLM advancements for 533
reliable decision-making in high-stakes, time-sensitive 534
scenarios. Empirical studies by Wu et al. (2024b) and 535
Wu (2025) highlight cost-performance trade-offs, show- 536
ing that smaller models can outperform larger ones in 537
specific scenarios. Zhang et al. (2024) introduces DiLA 538
to optimize Boolean reasoning, while Deb et al. (2023) 539
explores backward reasoning in math problems, reveal- 540
ing challenges in accuracy. Existing LLM problem- 541
solving frameworks primarily focus on directly solving 542
tasks without decomposing them into question-answer 543
steps. This approach results in a lack of precision in 544
quantifying the task-solving process and limits control 545
over the solution. Existing LLM problem-solving frame- 546
works primarily focus on directly solving tasks without 547
decomposing them into question-answer steps. This 548
approach results in a lack of precision in quantifying the 549
task-solving process and limits control over the solution. 550
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5.2 LLM Creativity551

LLM Creativity has been a prominent focus of research.552
Lu et al. (2024) introduces the three-phase LLM Dis-553
cussion framework, which outperforms both single and554
multi-LLM approaches in creative idea exchange. Zhao555
et al. (2024) finds that LLMs excel in elaboration but556
struggle with originality, with multi-LLM collabora-557
tion enhancing creativity. Franceschelli and Musolesi558
(2024) discusses the societal and ethical concerns of559
LLM creativity, particularly within the creative indus-560
tries. Li et al. (2024a) categorizes over 110 studies on561
human-LLM creative collaboration. Bellemare-Pepin562
et al. (2024) evaluates LLMs’ performance in divergent563
thinking, suggesting that combining human creativity564
with LLM outputs could improve results. Liu et al.565
(2024a) introduces CoQuest for human-AI co-creation,566
showing that breadth-first approaches lead to more cre-567
ative and trustworthy results. In design, Martini (2022)568
explores the transformative role of LLMs in early design569
phases. Chakrabarty et al. (2024) uses the Torrance Test570
of Creative Writing (TTCW) to find that LLM-generated571
stories often fall short of professional standards. Elgarf572
et al. (2024) demonstrates that robot-assisted creativ-573
ity can improve children’s performance in creativity574
assessments. Finally, DeLorenzo et al. (2024) intro-575
duces CreativeEval, finding GPT-3.5 to be the most576
creative among models like GPT, CodeLlama, and Veri-577
Gen. These studies mainly enhance specific aspects of578
LLM creativity, often overlooking the broader context579
of dynamic, open-ended tasks. While improvements in580
structured tasks are evident, LLMs struggle with con-581
sistency and scalability in more complex, real-world582
creative applications.583

5.3 LLM Constraints584

Recent research on LLM constraints has focused on585
efficiency, safety, and scalability. Yang et al. (2024)586
introduces an LTL-based safety module for robotics,587
ensuring secure LLM operations. Liu et al. (2024b)588
presents Constrained DPO (C-DPO) to balance help-589
fulness and harmlessness, outperforming Safe RLHF.590
Guo et al. (2024) develops CaStL, converting natural591
language constraints into PDDL and Python to enhance592
planning success. Oh et al. (2024) optimizes LLM in-593
ference with a 15.2× throughput and 6× latency im-594
provement. Wu et al. (2024a) proposes a multi-layered595
security approach to address GPT-4 vulnerabilities. Luo596
(2024) explores LLM scaling challenges, emphasizing597
the need for architectural innovations. Further studies in598
resource optimization include Ge et al. (2023), who com-599
bines LLMs with expert models for self-improvement,600
and Chen et al. (2024a), which applies LLMs to opti-601
mize Bayesian Optimization for analog layout synthesis.602
Huynh et al. (2024) focuses on REST API testing, while603
Li et al. (2024b) develops CoLLM to improve infer-604
ence efficiency in resource-constrained devices. Huang605
et al. (2024) explores using LLMs to construct physical606
models from text, and Shekhar et al. (2024) optimizes607

LLM usage costs, reducing them by 40These studies 608
push the boundaries of LLMs in real-world applications, 609
but they still face challenges such as handling dynamic, 610
unforeseen constraints and improving the scalability of 611
constraint enforcement. 612

6 Conclusions and Future Work 613

Based on the research conducted on large language mod- 614
els (LLMs) in solving complex tasks, the results demon- 615
strate that the proposed optimization framework signif- 616
icantly enhances model performance across multiple 617
dimensions. The integration of Cognitive Learning and 618
the Knowledge-Guided Approach improves reasoning 619
ability by not only guiding models through analogy- 620
based logical reasoning but also addressing knowledge 621
gaps. Experimental findings confirm that models bene- 622
fiting from this approach show notable improvements 623
in task completion, adherence to instructions and rules, 624
and traceability of reasoning. Notably, DeepSeek-V3 ex- 625
hibited the highest stability and performance across eval- 626
uation metrics, particularly excelling in task completion 627
and traceability. These results underline the importance 628
of enhancing reasoning transparency and consistency, 629
suggesting that rule adherence and traceability are criti- 630
cal factors for improving model performance in complex 631
task-solving scenarios. Moreover, the study emphasizes 632
that the future direction of LLM optimization should fo- 633
cus on refining rule structures and enhancing reasoning 634
transparency to facilitate more reliable problem-solving 635
in diverse real-world applications. 636

Limitation 637

While the experiments in this paper highlight the im- 638
portance of key modules in LLM reasoning, there are 639
areas for improvement. First, the impact of task types 640
and model parameters on module performance remains 641
underexplored, particularly the similar results of Exp2 642
and Exp3, which warrant further analysis. Second, with 643
only 10% of the data evaluated by humans, expanding 644
the sample size or adding more evaluation perspectives 645
would improve assessment comprehensiveness. Yuan 646
et al. (2023)Finally, while typical error patterns were 647
identified, a more detailed quantitative analysis, espe- 648
cially on reasoning chain interruptions and rule applica- 649
tion, is needed. Future work should address these issues 650
to enhance diversity, sample size, and quantitative eval- 651
uation. 652
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A Appendix
A.1 Prompt Details

Data Prompt

In the same context, generate 10 "Yes/No" questions.
Answering each question requires reasoning through multiple rules.
The questions are complex and require creative thinking.
Only generate the questions.
Generate a complex task based on the questions.
The task should have broad or innovative characteristics.
The answers to the 10 questions should help solve the task.
Generate only the concise task in one paragraph.
Generate the answer to each question, only in yes or no.
Generate 20 corresponding rules based on the questions and task.
Answering each question requires reasoning through multiple rules.
Only generate the 20 rules.

Ans Prompt

rules{rules}
questions{question}
Answer the question according to the above rules.
You must respond with 'yes' or 'no', provide all corresponding rules and explanations.
Give answer in this format:
'yes' or 'no'.
Corresponding rules:
Explanation:

Eval Prompt

The task is: {task}.
The rules are: {rules}.
The question and answer are: {question} {answer}.
evaluate the answer based on the following two criteria:
i) Adherence to Rules
0: The rules used in the answer do not match the provided rules.
1: The rules used in the answer fully align with the provided rules.
ii) Traceability of the Answer
0: The rules in the answer cannot reasonably support or explain the response.
1: The rules in the answer can reasonably support and explain the response.
ONLY Give the result in this format: [x, x]
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