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Abstract
We propose a principled approach to quantify-
ing prediction uncertainty in machine learning for
drug-drug synergy, a burgeoning subfield within
drug discovery where human decision-makers re-
quire a clear understanding of the errors asso-
ciated with predictions. To address the limita-
tions of traditional point prediction models typ-
ically outputting a single value (for regression
settings) or a single label (for classification set-
tings) without any measure of uncertainty, we
introduce Mondrian inductive conformal predic-
tion for drug-drug synergy with probabilistic guar-
antees on the accuracy of each prediction. By
providing statistically valid prediction regions at
predefined confidence levels, inductive Mondrian
conformal predictors enhance the interpretability
and reliability of computational drug-drug syn-
ergy models, with observed unconfidence and
fuzziness scores of 0.13± 0.02.

1. Introduction
Conformal prediction is a machine learning framework that
extends traditional prediction models by providing prob-
abilistic guarantees on the accuracy of predictions (Vovk
et al., 2005). Instead of outputting a single label or value
without any indication of prediction uncertainty, conformal
prediction provides prediction sets (in classification settings)
or intervals (in regression settings) that contain the true tar-
get with a certain user-defined probability.

The key concept in conformal prediction is validity. A
conformal predictor is considered valid if, under repeated
application to different datasets, it guarantees that the true
target will fall within the predicted set or interval with a
predefined probability. This contrasts with traditional point
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prediction models that do not offer such guarantees and
may produce inaccurate predictions without any measure of
uncertainty associated with those predictions.

Conformal prediction offers several advantages over simi-
lar methods to estimate the reliability of predictive models
in medicinal chemistry (Norinder et al., 2014; Svensson
et al., 2018). Applicability domain methods that define
distance between test and training instances in descriptor
space to identify promising subspaces where the model can
be expected to work reliably do not guarantee statistical
validity; the fraction of test instances whose true value or
label lies within a prediction region is not guaranteed to
be proportional to a given, user-defined confidence level
(Cortés-Ciriano & Bender, 2019). Methods whose outputs
are well-calibrated probability distributions have a high com-
putational cost; Gaussian process methods, for example,
require the inversion of large covariance matrices during
the training phase. Conformal predictors are flexible and
can be integrated with any machine learning algorithm at
low computational cost (Devetyarov & Nouretdinov, 2010;
Svensson et al., 2018), offering ease of interpretability for
the computed prediction regions in both classification and
regression settings.

This work proposes a principled approach to quantifying
prediction uncertainty in machine learning for drug-drug
synergy, a burgeoning subfield within drug discovery where
human decision-makers require a clear understanding of
the errors associated with predictions. We introduce Mon-
drian inductive conformal prediction for drug-drug synergy
with probabilistic guarantees on the accuracy of each predic-
tion, demonstrating high conformal efficiencies (at observed
unconfidence and fuzziness scores of 0.129 ± 0.022) and
inter-species transferability at comparable efficiencies. By
providing statistically valid prediction regions at predefined
confidence levels, inductive Mondrian conformal predictors
enhance the interpretability and reliability of computational
drug-drug synergy models.
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2. Methodology
2.1. Drug Combination Screening Data

The conformal predictors in this work were trained, cal-
ibrated, and tested on a recently published, open-access
database (AADB) spanning 3,035 combinations of 83 antibi-
otics with 226 adjuvants tested against 325 bacterial strains,
compiled from 106 scientific articles by human experts (Lv
et al., 2023b). Transferability experiments were conducted
on Gram-negative bacterial strains with the highest number
of samples in the database: Escherichia coli, Pseudomonas
aeruginosa, and Salmonella typhimurium. Seven features
extracted from AADB were used as molecular descriptors
and are listed in Table 1; the first five constitute critical
physicochemical paramaters in Lipinski’s rule of five for
evaluating drug-likeness (Lipinski, 2001; 2004).

2.2. Drug-Drug Synergy Definition

We used the synergy assignments in AADB (Lv et al.,
2023b) computed according to the Bliss Independence
model for the null or expected additive response of adminis-
tering a drug-drug combination (Bliss, 1939). This synergy
reference model assumes statistical independence between
drugs (i.e., the modes of action of constituent drugs in a
combination differ), symmetry in drug interactions, zero
variability in responses, and continuous dose-response rela-
tionships. Mathematically, Bliss excess is defined as:

EBliss = EAB − (EA + EB − EA × EB) (1)

where EAB is the observed effect of the drug combination,
and EA and EB are the observed individual effects of drugs
A and B, respectively. EBliss = 0 is the threshold for addi-
tivity, while EBliss > 0 indicates synergy and EBliss < 0
indicates antagonism.

2.3. Inductive Conformal Prediction Framework

In the conformal prediction framework (Vovk et al., 2005;
2016), a prediction set (Γϵ) is deemed credible based on
the training data (z1, ..., zl) consisting of labelled objects
or examples (xi, yi), the non-conformity measure (A) for
generating p-values, and the user-defined significance level
(ϵ). More formally, a conformal prediction set is defined for
a new test object (x) as the set of labels (y), for which the
associated p-value (py) is greater than ϵ:

Γϵ(z1, ..., zl, x) := y | py > ϵ (2)

The transductive approach to conformal prediction is on-
line and computationally expensive as the underlying model

must be retrained for each new test object. In inductive con-
formal prediction (ICP), training is off-line with the training
set split into a proper training set for the base learner and
a calibration set for generating non-conformity scores (Pa-
padopoulos, 2008). However, standard ICP does not guar-
antee class-conditional local validity: a lower error rate for
the majority class may compensate a higher error rate for
the minority class, such that predictions are still statistically
valid overall, satisfying global validity. Mondrian inductive
conformal predictors (MICPs) offer class-specific calibra-
tion of validity, as well as null-class predictions where there
is insufficient evidence for the MICP model to include either
class in the conformal prediction set, and dual-class predic-
tions where the threshold for significance is sufficiently low
to include both classes in the conformal prediction set (Vovk,
2012).

An MICP constructs class-conditional, statistically valid
prediction sets based on labelled calibration data. The non-
conformity measure assesses the similarity between new test
objects and training examples, creating prediction sets that
contain the true label with a predefined probability (tolerated
error rate) for each class locally, as well as both classes
globally, in the binary classification setting. The size of the
prediction region reflects the uncertainty associated with the
prediction. The py-value of a new test object is determined
by comparing its non-conformity score to the class-wise
distribution of non-conformity scores for the calibration
set. The class-wise sorted lists of non-conformity scores are
termed Mondrian class lists. First, the number of calibration
examples per class with non-conformity scores lower than
or equal to the non-conformity score of the test object is
computed. This count is then compared to the size of the
Mondrian class lists to determine the size of the prediction
region.

Class-conditional, off-line MICPs were constructed with
Random Forests (Breiman, 2001) as the underlying ma-
chine learning method using the open-source R packages,
caret (Kuhn, 2015) and conformal (Cortés-Ciriano et al.,
2015). The number of decision trees was set to 100, and 5-
fold cross-validation was selected as the resampling method
for hyperparameter tuning and model selection. The non-
conformity measure was defined as the fraction of decision
trees in the forest voting for a given class. Isotonic regres-
sion was applied as a post-processing technique to improve
calibration in the binary classification setting.

2.4. Defining Conformal Efficiency

2.4.1. ϵ-FREE CRITERIA

The quality of MICP predictions was measured against three
ϵ-free criteria (Vovk et al., 2016), under which efficiency
does not depend on the user-defined significance level, ϵ.
The simplest of these criteria is the S criterion (with “S”



Efficiency and Transferability of Inductive Mondrian Conformal Predictors for Drug–Drug Synergy

Table 1. Seven features extracted from AADB (Lv et al., 2023b)
used as molecular descriptors for all RF-based MICP models in
this work.

FEATURE DESCRIPTION

LOGP OIL-WATER PARTITION COEFFICIENT
HBA NUMBER OF HYDROGEN BOND ACCEPTORS
HBD NUMBER OF HYDROGEN BOND DONORS
TPSA TOTAL POLAR SURFACE AREA
ROTB NUMBER OF ROTATABLE BONDS
AROM NUMBER OF AROMATIC RINGS
ALERTS NUMBER OF STRUCTURAL ALERTS

standing for “sum”), which defines efficiency as the average
sum of p-values, pyi , generated from the Mondrian class list
for each y in the label space and all k test instances:

S =
1

k

k∑
i=1

∑
y

pyi (3)

The U criterion (where “U” stands for “unconfidence”) in
Equation 4 defines efficiency as the average unconfidence
across all k test instances, with unconfidence defined for
an individual test instance as the second-largest p-value. In
the case of binary classification, this criterion is equivalent
to the F criterion (where “F” stands for “fuzziness”) de-
fined in Equation 5 as the average fuzziness across all k
test instances, with fuzziness defined for an individual test
instance as the sum of all p-values excepting the largest one.
Smaller values are preferable, indicating higher conformal
efficiency.

U =
1

k

k∑
i=1

min
y

max
y′ ̸=y

py
′

i (4)

F =
1

k

k∑
i=1

(∑
y

pyi −max
y

pyi

)
(5)

The OU (“observed unconfidence”) criterion defined in
Equation 6 measures efficiency as the average observed
unconfidence across all k test instances, with observed un-
confidence for an individual test instance defined as the
largest p-value for false labels y ̸= yi. In the case of binary
classification, this criterion is equivalent to the OF (“ob-
served fuzziness”) criterion in Equation 6, which defines
efficiency as the average observed fuzziness across all k
test instances, with observed fuzziness for an individual test
instance defined as the sum of all p-values for false labels

y ̸= yi. Smaller values are preferable, indicating higher
conformal efficiency.

OU =
1

k

k∑
i=1

max
y ̸=yi

pyi (6)

OF =
1

k

k∑
i=1

∑
y ̸=yi

pyi (7)

Unlike the OU and OF criteria, the S, U, and F criteria are
prior criteria that do not depend on observed labels.

2.4.2. ϵ-DEPENDENT CRITERIA

The quality of MICP predictions was further assessed
against three ϵ-dependent criteria (Vovk et al., 2016), un-
der which efficiency is a function of the user-defined sig-
nificance level, ϵ. The simplest of these criteria is the N
criterion (with “N” standing for “number”), which defines
efficiency as the average size (number of labels) of the pre-
diction sets, Γϵ := {y | py > ϵ}:

N =
1

k

k∑
i=1

|Γϵ
i | (8)

Values closer to 1 are preferable, indicating higher confor-
mal efficiency.

The M (“multiple”) criterion in Equation 11 defines effi-
ciency as the percentage of k test instances with prediction
sets containing more than one label. The OM (“observed
multiple”) criterion in Equation 12 defines efficiency as the
percentage of k test instances with prediction sets contain-
ing a false label. In the case of binary classification, these
criteria are equivalent to the E (“excess”) criterion and OE
(“observed excess”) criterion, respectively (see Appendix 4).
Smaller values are preferable, indicating higher conformal
efficiency.

M =
1

k

k∑
i=1

1{|Γϵ
i |>1} (9)

OM =
1

k

k∑
i=1

1{Γϵ
i\{yi}≠∅} (10)

Unlike the OM criterion, the N and M criteria are prior
criteria that do not depend on observed labels.
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Table 2. Conformal prediction efficiencies against various ϵ-free criteria.
CRITERION EFFICIENCY

GLOBAL ANTAGONISTIC SYNERGISTIC

S (SUM OF p-VALUES) 0.697± 0.026 0.675± 0.024 0.719± 0.037
U (UNCONFIDENCE) & F (FUZZINESS) 0.066± 0.008 0.079± 0.008 0.054± 0.013
OU & OF (OBSERVED UNCONFIDENCE & FUZZINESS) 0.129± 0.022 0.148± 0.028 0.111± 0.031

Figure 1. Calibration plot showing global validity and label-wise
local validities versus the user-specified confidence level (1− ϵ).

3. Results
3.1. Conformal Validity

Calibration ensures that the prediction regions produced by
MICPs have the specified coverage probability or confidence
level, 1 − ϵ. The calibration plot in Figure 1 shows the
statistical validity of MICP classification globally as well
as in a class-conditional manner for both synergistic and
antagonistic drug-drug combinations. At a confidence level
of 80%, the property of statistical validity guarantees that
80% of the predictions deemed reliable will be correct.

3.2. Prior and Observed Conformal Efficiencies

3.2.1. ϵ-FREE CONFORMAL EFFICIENCIES

The class-wise py-values produced for the test set according
to the MICP framework are shown in Figure 2. Synergistic
drug-drug combinations tend to be assigned a higher p-value
for the synergistic class label versus the antagonistic class
label, and vice versa for antagonistic drug-drug combina-
tions. This illustrates that the MICP model tends to assign
higher reliability to the correct label; in ambiguous cases
that are less conforming to the training examples, the MICP
model tends to assign low reliability to both labels.

Figure 2. Conformal prediction p-values computed using Mon-
drian class lists.

Table 2 lists the ϵ-free efficiency scores. According to the
prior S criterion, which is the average sum of py-values over
the test set, the constructed MICP model has only moderate
efficiency, but this is unalarming as even a maximally effi-
cient conformal predictor will produce high p-values for the
true class label, thereby increasing the S score (Vovk et al.,
2016). According to the observed OU and OF criteria,
which are equivalent in the binary classification setting, the
constructed MICP model is highly efficient with observed
unconfidence and fuzziness scores of 0.129 ± 0.022 glob-
ally, indicating that the MICP can successfully assign low
p-values to incorrect class labels. According to the prior U
and F criteria, which do not depend on the observed labels,
the constructed MICP model is extremely efficient with
global unconfidence and fuzziness scores of 0.066± 0.008.
For all ϵ-free criteria (except S), the MICP model achieves
higher efficiency for synergistic drug-drug combinations,
which is desirable for predictive in silico modelling as syn-
ergistic combination therapies offer the possibility of en-
hanced pharmacological efficacies (Narayan et al., 2020),
with reduced effective doses and associated host toxicities
(Jia et al., 2009).
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Figure 3. Distribution of class labels included in MICP prediction sets with increasing confidence (1− ϵ).

Figure 4. Conformal prediction efficiency according to the prior
ϵ-dependent N criterion.

3.2.2. ϵ-DEPENDENT CONFORMAL EFFICIENCIES

Influence of the user-defined confidence level (1− ϵ) on the
drug-drug synergy class labels included in MICP prediction
sets is shown in Figure 3. The number of drug-drug combi-
nations in the test set predicted to belong to both synergistic
and antagonistic classes increases with the confidence level

Figure 5. Conformal prediction efficiency according to the prior
ϵ-dependent M criterion.

used as a threshold for the class-wise py-values generated
by comparing the non-conformity score of each test object
with the Mondrian class lists constructed from the calibra-
tion set. It can be seen that there is a trade-off between the
confidence level and singleton prediction rate, as previously
documented in the literature on MICPs (Cortés-Ciriano &
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Bender, 2019). The confidence level is negatively correlated
with the number of null-class predictions; conversely, the
confidence level is positively correlated with the number
of dual-class predictions. Increasing the confidence level
(or equivalently, decreasing the significance level) is not
always the better choice as this could lead to the assignment
of dual-class predictions for drug-drug combinations that
were assigned singleton predictions at lower confidence lev-
els. The size of the prediction region indicates the model’s
uncertainty: as the confidence level increases, or the signifi-
cance level (ϵ) decreases, the conformal predictor outputs
increasingly larger prediction sets to ensure the specified
coverage.

Influence of the user-defined confidence level (1−ϵ) on the ϵ-
dependent conformal efficiency scores of the MICP model is
shown in Figures 4-6. Figure 4 illustrates this ϵ-dependence
according to the prior N criterion, which measures the aver-
age number of labels contained in prediction sets across test
objects. At a confidence level of 0.8 (or ϵ = 0.2), nearly all
prediction sets contain a single label. A confidence level
of 0.9 (or ϵ = 0.1) offers increased confidence with only
a modest increase in N score, as most prediction sets con-
tain a single label. This trend holds globally, as well as
locally for each drug-drug synergy class. Figure 5 illustrates
the ϵ-dependence of conformal efficiency according to the
prior M criterion, which measures the percentage of pre-
diction sets containing multiple labels. The percentage of
non-singleton predictions rises steeply after 1− ϵ ≥ 0.8 for
antagonistic drug-drug combinations. For synergistic drug-
drug combinations, which are of particular interest to the
drug-drug synergy modelling community, the percentage
of non-singleton predictions rises steeply after 1− ϵ ≥ 0.9.
Figure 6 illustrates the ϵ-dependence of efficiency according
to the observed OM criterion, which measures the percent-
age of prediction sets containing an incorrect label. While
the N and M scores show that most MICP prediction sets
for synergistic drug-drug combinations are singletons at
1− ϵ = 0.9, roughly 20% of these predictions are incorrect.

3.3. Inter-Species Conformal Transferability

To evaluate the transferability of Mondrian inductive confor-
mal predictors across bacterial strains, we compared the effi-
ciencies of MICPs trained on one bacterial strain and tested
on another at a significance level of ϵ = 0.2, which repre-
sented a suitable trade-off between the confidence level and
singleton prediction rate (see Figure 3), and is commonly
used as the user-defined threshold in literature (Svensson
et al., 2018). Figures 7 and 8 show the results of the var-
ious intra-species and inter-species permutations investi-
gated against ϵ-free and ϵ-dependent criteria, respectively.
MICPs trained on Escherichia coli and tested on Salmonella
typhimurium show robust efficiency against all criteria, com-
parable to MICPs trained and tested on Escherichia coli.

Figure 6. Conformal prediction efficiency according to the ob-
served ϵ-dependent OM criterion.

This trend holds in the reverse direction for MICPs trained
on Salmonella typhimurium and tested on Escherichia coli,
with comparable efficiencies against all criteria for confor-
mal efficiency. MICPs tested on Pseudomonas aeruginosa
exhibited lower efficiencies against the ϵ-free criteria for un-
confidence (U) or, equivalently, fuzziness (F), as well as the
ϵ-dependent criteria for multiple (M) or excess (E) predic-
tions, for both inter-species and intra-species experiments,
indicating that this dataset may be particularly challenging
to model (Majha et al., 2024). Overall, these findings corrob-
orate the monochromatic bacterial group-group interactions
reported by Lv et al. (2023a).

4. Conclusion
In conclusion, we propose a principled approach to uncer-
tainty quantification in machine learning for drug-drug syn-
ergy. By providing statistically valid prediction regions at
user-defined, tolerated error rates, Mondrian inductive con-
formal predictors enhance the interpretability and reliability
of computational drug-drug synergy models, with observed
unconfidence and fuzziness scores of 0.13± 0.02, and inter-
species transferability at comparable conformal efficiencies.
We report that MICPs are highly efficient at quantifying pre-
diction uncertainty for synergistic drug-drug combinations
according to both prior and observed criteria for ϵ-free and
ϵ-dependent efficiencies. Conformal prediction can be inte-
grated flexibly as a wrapper with any underlying machine
learning model for drug-drug synergy at low computational
cost.
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Figure 7. Intra-species and inter-species conformal prediction ef-
ficiencies against ϵ-free criteria. Upper panel: S scores; middle
panel: U and F scores; lower panel: OU and OF scores.

Figure 8. Intra-species and inter-species conformal prediction effi-
ciencies against ϵ-dependent criteria at ϵ = 0.2. Upper panel: N
scores; middle panel: M and E scores; lower panel: OM and OE
scores.
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Appendix
The E criterion (where “E” stands for “excess”) is an ϵ-
dependent, prior criterion for conformal efficiency and is
defined as the average number of labels exceeding 1 in
prediction sets across all k test instances:

E =
1

k

k∑
i=1

(|Γϵ
i | − 1)+ (11)

where t+ := max(t, 0).

The OE criterion (where “OE” stands for “observed ex-
cess”) is an ϵ-dependent, observed criterion for conformal
efficiency and is defined as the average number of false
labels included in prediction sets across all k test instances:

OE =
1

k

k∑
i=1

|Γϵ
i \ {yi}| (12)


