
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARAPHRASE-ROBUST CONFORMAL PREDICTION FOR
RELIABLE LLM UNCERTAINTY QUANTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Uncertainty quantification (UQ) provides interpretable measures of predictive
confidence and supports reliable decision-making with large language models
(LLMs). However, existing UQ methods are often neither statistically rigor-
ous nor robust to paraphrase variations. To address these limitations, we pro-
pose a new framework for paraphrase-robust UQ, which builds on conformal
prediction to ensure valid coverage and introduces a paraphrase-aware noncon-
formity score to enhance robustness. The score is derived by generating se-
mantic paraphrases of each query, training an ancillary model that both ap-
proximates and robustifies the predictive distribution, and aggregating variabil-
ity across these paraphrases. On five general multiple-choice Question Answer-
ing (MCQA) datasets and two medical MCQA datasets with Qwen2.5-7B, our
method achieves nominal coverage with compact prediction sets and demon-
strates improved robustness to paraphrase shifts in an adversarial setting. The
results also generalize to Llama-3.1-8B and Phi-3-small, underscoring
the reliability of the framework across model families. Code is available at
https://anonymous.4open.science/r/paraphrase_uq-FDD8.

1 INTRODUCTION
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Figure 1: Comparison with prior work.

Large language models (LLMs) have
been rapidly deployed in high-stakes do-
mains such as education and medicine
(Bouchard & Chauhan, 2025; López et al.,
2025). Despite their impressive perfor-
mance, LLMs often exhibit overconfi-
dence: the probabilities in their outputs
do not reliably reflect the true uncer-
tainty of their predictions (Shorinwa et al.,
2025). This miscalibration poses serious
risks in safety-critical applications, where
decision-makers need to know how un-
certain the model prediction is. How-
ever, common token-level heuristics (e.g.,
entropy, margins, logit ranks) provide ad
hoc uncertainty estimates without statis-
tical guarantees (Shorinwa et al., 2025;
Nado et al., 2022; Ulmer et al., 2022; Band
et al., 2024; Huang et al., 2024b), which
limits their reliability in practice.

To ensure statistical validity, conformal prediction (CP) provides a principled wrapper: given any
nonconformity score, CP constructs prediction sets with finite-sample coverage under mild ex-
changeability assumptions (Vovk et al., 2005; Shafer & Vovk, 2008). Due to this task-agnostic
guarantee, CP has been applied to many LLM tasks such as multiple-choice question answering
(QA), factuality evaluation, and generation alignment (Quach et al., 2024a; Gui et al., 2024; Ye
et al., 2024; Wang et al., 2024b; Su et al., 2024). A key challenge, however, lies in choosing a
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reliable nonconformity score. Ideally, a nonconformity score should be stable under paraphrasing:
since natural language admits many equivalent expressions, such rewordings should not cause large
fluctuations in the prediction set. For example, the questions “What is the capital of France?” and
“Which city serves as France’s capital?” should yield comparable uncertainty sets. In extreme cases,
adversarial paraphrases can deliberately perturb a model’s predictions while preserving semantics
(see the left panel in Figure 1). Although CP still guarantees valid coverage in theory, different
nonconformity scores behave very differently in finite samples, often producing unstable or inflated
sets. For instance, as shown in Table 1, the prediction set size for two popular CP scores (Sadinle
et al., 2019; Romano et al., 2020) nearly doubles under adversarial paraphrasing compared to clean
inputs. This exposes a fundamental gap in existing CP score design, which has largely overlooked
robustness to paraphrasing.

In this work, we ask whether it is possible to design a nonconformity score that remains robust
under adversarial paraphrasing. We provide an affirmative answer by introducing paraphrase-aware
nonconformity scores that explicitly enforce semantic invariance. As illustrated in the right panel
of Figure 1, our pipeline generates paraphrases for each query, embeds them into a shared semantic
space, and trains a lightweight proxy model to produce calibrated predictive probabilities. The
resulting scores aggregate variability across paraphrases and are inherently robust to rewordings.
When applied to both split CP and the finer quasi-conditional CP (QCCP) (Gibbs et al., 2025), these
scores consistently preserve target coverage while substantially reducing prediction set sizes.

We summarize our contributions as follows:

• New evaluation setting. We introduce adversarial paraphrasing as a new setting for LLM uncer-
tainty evaluation, and show that standard conformal methods fail under semantically equivalent
rewordings.

• Paraphrase-aware scores. We propose paraphrase-aware nonconformity scores that can be
applied within both split CP and QCCP, maintaining formal coverage guarantees while yielding
smaller sets under adversarial paraphrasing.

• Large-scale validation. We conduct large-scale experiments on five general QA and two med-
ical QA benchmarks, showing that our method consistently achieves nominal coverage with up
to 2–4× smaller sets than existing baselines, together with detailed ablations and analyses.

2 RELATED WORK

Heuristic and Calibration-Based Uncertainty for LLMs. LLM uncertainty is often estimated
from token-level signals such as entropy, logits, or ranks, followed by calibration. Early work ana-
lyzes calibration of deep models and NLP tasks (Nado et al., 2022; Ulmer et al., 2022; Si et al., 2022),
and extends to prompt- or generation-level schemes for long-form outputs (Band et al., 2024; Huang
et al., 2024b). Recent methods replace raw probabilities with representation-based surrogates, in-
troducing semantic entropy probes (Kossen et al., 2024), relevance-aware confidence for free-form
generation (Duan et al., 2024), perturbation-based measures (Gao et al., 2024), multi-agent diversity
signals (Feng et al., 2024), and semantic-density metrics (Qiu & Miikkulainen, 2024). Comple-
mentary directions include abstention mechanisms (Madhusudhan et al., 2025), multicalibration for
confidence scores (Detommaso et al., 2024), post-hoc calibration from generated text (Ulmer et al.,
2024), and parameter-efficient Bayesian or ensemble-style methods for fine-tuned LLMs (Balabanov
& Linander, 2025; Wang et al., 2024a). While these methods improve empirical calibration, they
offer neither distribution-free coverage nor robustness to paraphrasing. In contrast, our approach
introduces paraphrase-aware scores that seamlessly integrates conformal prediction to provide cov-
erage guarantees.

Conformal Prediction for LLMs. Conformal prediction (CP) provides distribution-free predic-
tion sets with finite-sample coverage under exchangeability (Vovk et al., 2005; Shafer & Vovk,
2008). Recent work has adapted CP to language modeling in several ways, including conformal lan-
guage modeling (Quach et al., 2024a;b), API-only inference without logit access (Su et al., 2024),
and schemes tailored to multiple-choice questions (Kumar et al., 2023; Yang & Liu, 2025). CP has
also been applied to align and certify outputs (Gui et al., 2024), as well as to benchmark LLMs
with uncertainty metrics beyond accuracy (Ye et al., 2024). Extensions to generation tasks include
ConU, which applies split CP to sets of sampled responses (Wang et al., 2024b), and SConU, which
analyzes exchangeability violations to approximate conditional guarantees (Wang et al., 2025b).
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Further refinements combine CP with re-asking strategies to improve accuracy and compactness
(Vishwakarma et al., 2025), while selective answering with risk control has been explored through
conformal abstention (Tayebati et al., 2025; Wang et al., 2025a). Our approach instead enforces
semantic invariance via paraphrase-robust scores and leverages quasi-conditional calibration on se-
mantic embeddings, yielding stronger coverage guarantees than the marginal coverage provided by
standard split CP.

Toward Conditional Guarantees and Paraphrase Robustness. Exact conditional coverage is
unattainable in finite samples without distributional assumptions (Vovk, 2012; Foygel Barber et al.,
2021), which has motivated relaxations such as quasi-conditional guarantees via augmented quantile
regression (Gibbs et al., 2025). For LLMs, recent extensions of CP exploit feature-conditional
structure (Cherian et al., 2024). In parallel, another line of work emphasizes semantic rather than
purely lexical uncertainty, introducing embedding-based metrics and perturbation procedures (Gao
et al., 2024; Kossen et al., 2024; Huang et al., 2024a). Related approaches probe prompt sensitivity
and meaning-preserving perturbations (Qiu & Miikkulainen, 2024; Cox et al., 2025), though they
do not provide conformal guarantees. Our method integrates these two directions: (i) quantifying
predictive stability across paraphrases using sentence embeddings and a proxy classifier, and (ii)
calibrating these scores with QCCP (Gibbs et al., 2025), thereby producing prediction sets that are
both semantically robust and statistically valid.

3 PARAPHRASE-ROBUST QUASI-CONDITIONAL CONFORMAL PREDICTION

Problem Setup. LLMs often produce predictions that are brittle to paraphrasing and hard to cal-
ibrate. Our goal is to construct prediction sets that not only guarantee statistical coverage but also
remain stable under meaning-preserving rephrasings. Formally, we consider supervised prediction
with input x ∈ X (e.g., a natural language question) and a finite label space Y (e.g., multiple choice
answers). Each example (Xi, Yi) provides a ground-truth label Yi ∈ Y . Our goal is to construct
a prediction set Ĉ(x) ⊆ Y that maintains guaranteed coverage when the input x ∈ X is being
adversarially paraphrased, under both senses of split CP and quasi-conditional CP (QCCP).

3.1 PARAPHRASE-AWARE NONCONFORMITY SCORES

What is the
capital of
France?

Generate Paraphrase

Which city is
France’s capital?

Name the capital
city of France.

...

France’s capital is
which city?

1
Pooling

Pooling

Pooling

2 Get LLM Embedding

Proxy

Proxy

Proxy

3 Train Proxy Model

Options

Options

Options

4 Calculate Score

Options

Scores

5
Define
Class
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Apply Conditional CP6

Class-specific
Threshold

{Paris}

Figure 2: Schematic illustration of our proposed PA score integrated with QCCP.

Method Overview. Our method introduces a paraphrase-aware (PA) nonconformity score that
captures semantic stability by aggregating predictions across paraphrases. The PA score can be inte-
grated with either standard split CP or QCCP, which provides robustness to adversarially reworded
inputs while ensuring statistically valid coverage through the conformal prediction component. At
a high level (Figure 2), our approach first generates paraphrases for each question and extracts the
corresponding LLM hidden states. A lightweight proxy classifier with calibration-aware training
then maps these hidden states to confidence probability estimates, from which paraphrase-aware
nonconformity scores are derived. Finally, the scores are calibrated with either split CP or QCCP to
produce the prediction set for the given question.

Learning a Proxy Classifier for Well-calibrated LLM Uncertainty. Because raw LLM logits
may be over-confident and ill-calibrated, we introduce a lightweight proxy classifier Pθ(y | E(x))
that approximates the LLM’s decision behavior. This proxy takes the mean-pooled last hidden state
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of LLM as input and outputs a confidence probability distribution over labels Y . Implemented as a
shallow two-layer MLP, it is trained on LLM embeddings {E(Xi)} with labels {Yi} using a soft-
binned ECE loss (Karandikar et al., 2021) as calibration loss in addition to task loss (cross-entropy
for classification task). This design mitigates the poor calibration of raw LLM probabilities while
remaining computationally efficient. When the proxy is well calibrated, its outputs are also easy
to interpret. For example, if it assigns Pθ(Paris | E(x)) = 0.8, this means that roughly 80% of
question paraphrases with similar embeddings have “Paris” as the correct answer.

Three Paraphrase-aware Nonconformity Scores. We now turn to the construction of noncon-
formity scores, the core component of our method. A standard choice in CP is the probability-based
score (Sadinle et al., 2019)

Sprob(x, y) = 1− Pθ(y | E(x)),

which simply measures the lack of confidence in assigning label y to question x under the proxy
model Pϕ. While this baseline captures predictive uncertainty for a single prompt, it neglects the
instability that often arises when the same question is rephrased. To address this limitation, we define
three paraphrase-aware nonconformity scores. From the previous paraphrasing step, we collect a
paraphrase set B(x) = {x′

1, . . . , x
′
m} for each question x. Based on this set, the first score

Smean(x, y) =
1

m

∑
x′∈B(x)

Sprob(x
′, y),

averages the base scores across paraphrases, capturing overall semantic stability. The second,

Sweighted(x, y) =

∑
x′∈B(x) w(x, x

′)Sprob(x
′, y)∑

x′∈B(x) w(x, x
′)

, w(x, x′) = exp
(
− sim(E(x), E(x′))

)
,

assigns greater weight to paraphrases that are closer in the embedding space, thereby emphasizing
local semantic similarity. The third,

Sworst(x, y) = max
x′∈B(x)

Sprob(x
′, y)

takes the maximum score across paraphrases, providing a conservative and adversarially robust mea-
sure that is sensitive to the hardest rephrasing.

Mean, weighted, and worst-case scores represent a spectrum from efficiency to robustness. Mean
yields the most compact sets but may miss rare paraphrases. Weighted emphasizes closer variants
to balance compactness and robustness. Worst-case is conservative, guarding against adversarial
rephrasings. We compare all three and quantify their trade-offs in Figure 7.

3.2 SPLIT CONFORMAL AND QUASI-CONDITIONAL CONFORMAL CALIBRATION

To ensure statistically valid coverage, we apply either split CP or its refinement, quasi-conditional
CP (QCCP) (Gibbs et al., 2025), on top of our PA nonconformity scores.

Split CP. Given an i.i.d. calibration set {(Xi, Yi)}ni=1, split CP constructs the prediction set for a
new input Xn+1 as

Ĉ(Xn+1) = {y : S(Xn+1, y) ≤ γ̂α},
where S is a nonconformity score (cf. Section 3.1) and γ̂α is the empirical (1 − α) quantile of
{S(Xi, Yi)}ni=1 ∪ {∞}. If the distribution of each S(Xi, Yi) is continuous, Vovk et al. (2005) show
that split CP achieves marginal coverage:

1− α ≤ P(Yn+1 ∈ Ĉ(Xn+1)) ≤ 1− α+
1

n+ 1
. (1)

Split CP is simple and distribution-free, but it relies on a single global threshold γ̂α for all new inputs
Xn+1, which can be overly conservative in heterogeneous regions of the input space.

Quasi-conditional CP (QCCP). QCCP refines split CP by adapting conformity thresholds to in-
puts. In doing so, it achieves guarantees that interpolate between marginal and conditional coverage.
More specifically, given a precollected i.i.d. calibration set {(Xi, Yi)}ni=1, it first computes scores

4
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Si = S(Xi, Yi) for each i = 1, . . . , n. These scores are then used to fit the following augmented
quantile regressor,

ĝS ∈ argmin
g∈F

1

n+ 1

[ n∑
i=1

ℓα
(
g(Xi), Si

)
+ ℓα

(
g(Xn+1), S

)]
, (2)

where F = {ϕ(·)⊤β : β ∈ Rd} denotes the linear class over the class mapping ϕ (which we will
specify later) and ℓα is the pinball loss, defined by ℓα(θ, S) = (S − θ) (1{S≥θ} − α). At inference
time, for a new pair (Xn+1, Yn+1) produced by the LLM, we construct the prediction set

Ĉ(Xn+1) =
{
y : S(Xn+1, y) ≤ ĝS(Xn+1,y)(Xn+1)

}
. (3)

The advantage of QCCP lies in the introduction of ĝS , which adaptively estimates thresholds based
on the class function ϕ, rather than relying on the fixed global threshold γ̂α used in split CP. Conse-
quently, QCCP provides stronger coverage guarantees than the marginal coverage by split CP (see
Appendix A for details).

Choice of the Class Function ϕ. We now specify the choice of the class function ϕ. At a high
level, we want to group questions by their semantic type (e.g., commonsense vs. factual), so that
QCCP can calibrate thresholds within semantically coherent classes and avoid the conservativeness
of a single global threshold.

However, in practice, most benchmarks lack explicit type annotations, so we construct them auto-
matically. Specifically, we embed each question–context pair using a pretrained SBERT encoder
(all-MiniLM-L6-v2) (Reimers & Gurevych, 2019) to obtain sentence embeddings, and then
perform K-means clustering on the embeddings of the calibration and test splits. Each sample is as-
signed to the nearest centroid, and the resulting cluster assignments serve as ϕ(x). Mathematically,
this amounts to partitioning X into groups {Gj}mj=1 (with m the total number of clusters) and setting
ϕ(x) =

∑m
j=1 1{x ∈ Gj} · ϕj , where ϕj denotes the representative vector of cluster j. The hyper-

parameter K can either be fixed or automatically selected via the silhouette score on calibration
embeddings. In short, our choice of ϕ uses sentence embeddings to generate semantically coherent
clusters and allows QCCP to condition on latent question classes without requiring manual labels.1

Complete Pipeline. We now summarize our full procedure in Algorithm 1. The algorithm inte-
grates paraphrase generation, semantic embeddings, proxy-based uncertainty estimation, and quasi-
conditional calibration into a single framework that produces semantically robust prediction sets.

Algorithm 1: Paraphrase-Robust Quasi-Conditional CP
Input: Calibration set {(Xi, Yi)}ni=1, paraphrase generator, embedding map E, proxy model

Pθ, class function ϕ, confidence level α, score S (mean, weighted, or worst-case).
Train proxy: Fit Pθ on {(E(Xi), Yi)} using a calibration-aware loss.
Compute scores: For each (Xi, Yi), compute Si ← S(Xi, Yi) and record class ϕ(Xi).
for each test question x do

Initialize Ĉ(x)← ∅.
Generate a set of paraphrases B(x) and compute embeddings {E(x′)}x′∈B(x).
Determine class label z ← ϕ(x).
for y ∈ Y do

Compute paraphrase-aware score S(x, y).
Query the class-conditional quantile function ĝz from QCCP.
Add y to Ĉ(x) if S(x, y) ≤ ĝz(x).

return Ĉ(x).

4 EMPIRICAL PERFORMANCE

Datasets. We evaluate our framework on seven benchmark datasets. Five of them are general
multiple-choice question answering (MCQA) datasets from the LLM-Uncertainty-Benchmark (Ye

1For more implementation details see Appendix D.
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et al., 2024), including MMLU, CosmosQA, HellaSwag, HaluDial, and HaluSum. They correspond
to different tasks: question answering (QA), reading comprehension (RC), commonsense inference
(CI), dialogue response selection (DRS), and document summarization (DS). Each dataset contains
10,000 MCQA questions. In addition, we include two medical MCQA datasets, MedMCQA (Pal
et al., 2022) and MedQA (Jin et al., 2021), and sample 10,000 questions from each.

Baselines and Evaluation Metrics. We compare our method with two strong nonconformity score
baselines: Least Ambiguous set-valued Classifiers (LAC) (Sadinle et al., 2019) and Adaptive Pre-
diction Sets (APS) (Romano et al., 2020). Data are split into training, calibration, and test sets with a
40/30/30 ratio. Evaluation on the test set uses two metrics: Coverage Rate (CR), the fraction of ex-
amples where the true label is included in the prediction set, and Set Size (SS), the average number
of labels in the prediction set. Unless otherwise specified, the target coverage is 1− α = 0.90.

Adversarial Paraphrase Generation. To stress-test our PA score, we generate adversarial para-
phrases by prompting a local LLM to rephrase each question while preserving its semantics. We in-
troduce distributional shifts through stochastic generation (temperature sampling) and post-process
outputs to ensure they remain valid, well-formed questions. When the model fails to produce a valid
paraphrase, we retry with a stricter template or fall back to a simple rule-based rewrite. Additional
implementation details are provided in Appendix B.

4.1 PA IS ROBUST TO ADVERSARIAL PARAPHRASES ACROSS DATASETS AND CP METHODS

We first evaluate whether our proposed PA score remains robust under adversarial paraphrasing,
where each test question is automatically paraphrased using the adversarial-generated paraphrases
described above. On Qwen2.5-7B-Instruct (Qwen et al., 2025), we apply different scores to
both split CP and QCCP across five MCQA benchmarks (Table 1). We observe that the PA score
maintains coverage tightly around the 90% target on both normal and adversarial settings, while
producing compact prediction sets. By contrast, APS consistently overshoots coverage (95–97%),
indicating unreliable guarantees, and LAC, although close to nominal coverage, exhibits large set-
size inflation (from 3.44 to 4.79 under the adversarial setting). These results show that our PA score
has two advantages: robustness to distribution shifts and compact prediction sets.

Table 1: Strong performance of the proposed PA nonconformity scores under split CP and QCCP
with Qwen2.5-7B-Instruct . Results are reported on normal and adversarially (Adv.) para-
phrased test sets across five benchmarks. Bold numbers indicate the best.

QA RC CI DRS DS

Method Normal Adv. Normal Adv. Normal Adv. Normal Adv. Normal Adv.

Coverage Rate (CR, %) Better if closer to 90% — Split CP
LAC 89.63 88.43 89.00 90.33 91.80 91.27 89.80 90.37 89.23 90.43
APS 97.97 99.03 93.00 92.27 95.60 91.70 99.07 90.90 92.30 91.87
PA 89.63 89.23 89.77 90.67 91.10 90.57 90.77 90.77 91.77 90.93

Coverage Rate (CR, %) Better if closer to 90% — QCCP
LAC 90.07 88.47 88.87 90.63 91.63 91.00 95.73 90.13 89.70 90.13
APS 96.10 90.20 93.00 92.50 98.87 92.17 92.67 91.40 97.93 91.67
PA 89.67 89.47 90.10 90.33 91.23 90.33 90.87 91.00 91.90 91.13

Set Size (SS) ↓ — Split CP
LAC 3.13 4.79 3.41 3.87 1.94 4.18 3.43 4.51 2.42 3.47
APS 5.45 5.92 4.20 4.19 3.44 4.27 5.78 4.51 3.34 3.82
PA 2.25 2.71 1.19 1.32 1.53 1.97 1.56 2.12 1.00 1.47
Set Size (SS) ↓ — QCCP
LAC 3.12 4.76 3.40 3.91 2.04 4.10 4.96 4.49 2.51 3.44
APS 5.05 5.19 4.20 4.22 5.40 4.32 4.22 4.59 5.20 3.82
PA 2.25 2.71 1.21 1.30 1.65 1.97 1.58 2.13 1.00 1.49

4.2 GENERALIZATION ACROSS LLMS

Next, we evaluate cross-model generalization using two models, Llama-3.1-8B-Instruct
(Dubey et al., 2024) and Phi-3-small-8k-Instruct (Abdin et al., 2024), on MMLU under

6
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both normal and adversarial paraphrase settings. The results mirror the patterns observed in Section
4.1: APS tends to inflate coverage, often overshooting the nominal 90% level, while LAC achieves
target coverage but suffers from inflated set sizes under paraphrasing. In contrast, our score (PA)
consistently produces the most compact prediction sets and aligns well with the nominal coverage.

Table 2: Cross-LLM generalization on MMLU. Coverage Rate (CR, %) closer to 90% is better; Set
Size (SS) ↓ is better. Results are shown for normal vs. adversarial paraphrase inputs (Adv.).

Llama-3.1-8B Phi-3-small

CR (%) SS CR (%) SS

Method Normal Adv. Normal Adv. Normal Adv. Normal Adv.

Split CP
LAC 90.97 89.97 3.65 5.09 98.53 98.67 5.54 5.74
APS 93.87 100.0 3.95 6.00 98.13 97.97 5.51 5.67
PA 89.23 88.53 2.51 2.81 89.27 89.70 1.97 2.59

QCCP
LAC 91.10 90.30 3.67 5.12 95.87 88.47 4.64 4.28
APS 93.87 99.97 3.96 6.00 91.03 75.83 3.96 2.76
PA 89.03 88.97 2.51 2.85 89.23 90.00 1.96 2.61

4.3 ROBUSTNESS ON MEDICAL MCQA DATASETS

Finally, we evaluate whether paraphrase-aware conformal prediction generalizes to domain-specific
settings by testing on two medical MCQA benchmarks, MedMCQA (Pal et al., 2022) and MedQA
(Jin et al., 2021), using Qwen2.5-7B-Instruct under both normal and adversarial paraphrase
conditions. As shown in Table 3, the results mirror the patterns observed in the general domain:
APS variants often overshoot or fluctuate around the 90% target (e.g., 99.6% on MedQA), while
LAC stays closer to nominal coverage but produces inflated sets when paraphrases are introduced.
In contrast, our PA score consistently maintains coverage near the target and yields the most compact
prediction sets (e.g., 2.6–3.1 on MedMCQA vs. 4.4–4.6 for LAC/APS). These findings confirm that
PA robustly preserves both coverage and efficiency even in the medical domain, demonstrating its
ability to generalize beyond general-purpose benchmarks.

Table 3: Results on two medical QA benchmarks with Qwen2.5-7B-Instruct. Coverage rate
(CR, %) closer to the nominal 90% is better, while smaller set size (SS, ↓) denotes better.

MedMCQA MedQA

CR (%) SS CR (%) SS

Method Normal Adv. Normal Adv. Normal Adv. Normal Adv.

Split CP
LAC 89.43 89.50 4.46 4.48 91.67 89.43 4.47 5.00
APS 91.30 91.67 4.47 4.45 99.60 88.80 5.85 4.72
PA 89.67 91.47 2.59 3.01 89.73 89.13 4.02 4.31

QCCP
LAC 90.03 90.43 4.55 4.60 91.23 89.87 4.64 5.02
APS 92.03 91.50 4.59 4.52 93.67 89.57 4.92 4.81
PA 90.43 91.00 2.77 3.09 89.90 89.90 4.03 4.39

5 IN-DEPTH ANALYSIS AND ABLATION STUDIES

Proxy Model Improves Accuracy and Calibration. In our work, the proxy model Pθ is a
lightweight two-layer MLP trained on top of frozen hidden states from the LLM. We argue that
Pθ yields more accurate and better-calibrated distributions than raw LLM logits. As shown in Fig-
ure 3, this proxy consistently outperforms logits across benchmarks on all calibration metrics. For
example, accuracy improves substantially (CI 0.263 → 0.728, QA 0.287 → 0.551), while both
Brier score and NLL decrease (RC Brier 0.126→0.050, NLL 1.592→0.647). Here, Brier captures
the mean squared error between predicted probabilities and true one-hot labels, while NLL penalizes
models that assign low probability to the correct answer, both measuring the calibration quality. This
improvement arises because raw logits are optimized for next-token prediction rather than calibrated
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posteriors, which leads to miscalibration and poor class separation. In contrast, the proxy leverages
hidden states, which encode richer task-relevant signals, and is trained with a calibration-aware loss.
As a result, it has better accuracy and calibration.
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Figure 3: The proxy improves both task performance and calibration consistently. Evaluation of
prediction accuracy and calibration metric using proxy model vs. raw LLM logits across datasets.
Left: accuracy (higher is better). Middle: Brier (lower is better). Right: NLL (lower is better).

Proxy Model Decreases Prediction Set Size. Next, we examine the effect of the proxy model
on prediction set size. To this end, we ablate the proxy model by computing the PA score directly
from LLM logits. Across all five datasets, coverage remains close to the nominal 90%, but set sizes
increase substantially without the proxy under both split CP (in Appendix, Figure 8) and QCCP
(in Figure 4). This shows that the proxy produces better-calibrated predictive distributions, which
translate into materially smaller sets at comparable coverage.
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Figure 4: Effect of removing the proxy model under the quasi-conditional CP setting. Coverage
remains close to 90% (dashed line), but set size increases notably without the proxy model.

Better Class-conditional Coverage. We group questions into semantic classes (or clusters) and
evaluate class-conditional coverage by visualizing empirical coverage rates on different classes. As
shown in Figure 5, PA consistently outperforms LAC and APS across different classes.
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Figure 5: Evaluation of class-conditional coverage with QCCP on the HellaSwag dataset (left) and
HaluDial dataset (right). Results on additional datasets are provided in Figure 9.
Effect of Coverage Levels. To examine the effect of the level α, we vary α ∈ {0.2, 0.05, 0.01}
and evaluate both coverage and prediction set size again. As shown in Figure 6, our PA score
consistently tracks the nominal (1 − α) target while maintaining compact sets. For example, at
α = 0.05, it achieves ≈ 95% coverage with an average set size of 2.7, compared to APS’s inflated
5.0. In contrast, APS again overshoots, while LAC produces smaller but unstable sets. Overall, PA
consistently outperforms across different levels.
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Figure 6: Coverage rate (left) and prediction set size (right) vs. α on MMLU under QCCP.

Larger Paraphrase Budgets Yield Smaller Prediction Sets. We now study the effect of the
paraphrase budget m for Qwen2.5-7B-Instruct (Qwen et al., 2025) on the MMLU dataset.
As shown in Table 4, increasing m ∈ {2, 4, 6} leads our PA score to achieve higher coverage and
smaller set sizes. This is intuitive: more paraphrases provide richer semantic views of each question,
which reduces variance in the aggregated score and enables more precise calibration.

Table 4: Effect of paraphrase budget m.

m=2 m=4 m=6

Coverage Rate (CR, %)
PA (marginal) 89.10 89.47 89.63
PA (conditional) 89.87 89.60 89.67
Set Size (SS)
PA (marginal) 2.42 2.32 2.25
PA (conditional) 2.49 2.34 2.25

Comparison of Different Scores. Finally, we com-
pare the three PA scores, namely Mean, Weighted,
and Worst, introduced in Section 3.1. We evalu-
ate them under both split CP and QCCP settings.
As shown in Figure 7, the Mean score consistently
yields the most compact sets (whose SS ≈1.5–1.6)
while staying close to the target 90% coverage. The
Weighted variant produces moderately larger sets
(whose SS ≈2.3) without noticeable gains in cover-
age, whereas the Worst variant greatly inflates set size
(whose SS ≈3.0) and overshoots coverage (which
≥95%). QCCP mitigates some of the overshoot for Mean and Weighted but largely preserves their
relative ranking. Overall, Mean offers the best efficiency, Weighted provides only a mild trade-off,
and Worst proves overly conservative.
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Figure 7: Comparison of different scores. Left: average coverage (closer to 90% is better). Right:
average set size (smaller is better).

6 CONCLUSION

In this work, we introduced a framework for paraphrase-robust conformal prediction by designing
paraphrase-aware nonconformity scores and applying them to both split CP and quasi-conditional
CP. Our method preserves theoretical coverage guarantees while yielding substantially smaller pre-
diction sets than logit-based baselines. Experiments on five general QA and two medical QA bench-
marks demonstrate that it remains reliable under adversarial paraphrasing and generalizes across
model families. More broadly, our work illustrates how CP can be adapted to address semantic
invariance and distribution shifts in LLM uncertainty quantification. Promising directions include
extending paraphrase-robust scores to free-form generation, integrating them with selective absten-
tion policies, and exploring theoretical bounds under broader perturbation classes.
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A THEORETICAL GUARANTEE OF QUASI-CONDITIONAL CP

Lemma A.1 (Theorem 2 in (Gibbs et al., 2025)) Assume (Xi, Yi)
n+1
i=1 are i.i.d. and that

S(X,Y ) | X has a continuous distribution. Then, for any f ∈ F ,∣∣∣E[f(Xn+1)
(
1{Yn+1 ∈ Ĉ(Xn+1)} − (1− α)

)] ∣∣∣ = O

(
1

n+ 1

)
.

Lemma A.1 establishes the quasi-conditional coverage guarantee for QCCP. This guarantee is
strictly stronger than the marginal coverage of split conformal prediction (the case where F contains
only constant functions) and strictly weaker than full conditional coverage (which would require F
to be all measurable functions), providing a principled middle ground. In practice, computing equa-
tion 3 reduces to a convex optimization; see Section 4 of Gibbs et al. (2025) for details.

B ADVERSARIAL PARAPHRASE GENERATION

We only use this procedure to generate adversarial paraphrases for the input question used in the
adversarial setting evaluation. The set of adversarially reworded questions is not directly used for
calculating the PA score, but is used as another set of input questions.

Adversarial Prompt Pool. We maintain 7 short templates (e.g., “Rephrase this question using
varied vocabulary and phrasing: {question}”). One template is sampled per input to induce lexical
or syntactic variety without changing semantics.

Batched Generation. Given a batch of n questions, we form n prompts and generate once with:
temperature=0.7, top p=0.9, do sample=True, eos/pad token id aligned. We de-
code with skip special tokens=True.

Cleaning & Validation. We remove the prompt prefix and extract the first question sentence via
regex matching the earliest “?”. We then strip boilerplate (“Rephrase:”, “Paraphrase:”, “Here’s a
. . . ”), quotes/bullets/code blocks, and normalize whitespace. The candidate paraphrase must satisfy:
(i) non-empty, (ii) case-insensitive ̸= q, (iii) ends with “?”. Duplicates within the batch are dropped.

Retry & Fallback. Failures are retried with a stricter template: single line, no preface, ≤20 words,
must end with “?”. Remaining failures are rewritten by a deterministic rule set that preserves mean-
ing (e.g., “Which of the following”→“Which option”, add trailing “?”, etc.).

Algorithm 2: Adversarial Paraphrase Pipeline (per question q)
1: Sample a paraphrase template; compose prompt p(q).
2: Generate with (T=0.7, top-p=0.9, sampling).
3: Decode; strip prompt prefix; take first sentence ending with “?”.
4: Clean and validate; if valid, return q̃.
5: Else: retry with strict one-line template; clean and validate.
6: Else: apply rule-based fallback; return q̃.

C DATASET DETAILS

We used five general and two medical MCQA datasets to show that our paraphrase-aware score
can be broadly used and can adapt to high-stakes scenarios where calibration is important. The
five general datasets test a wide range of LLM capabilities and have been used in previous CP
benchmarking papers (Ye et al., 2024; Vishwakarma et al., 2025). We use the five general datasets
processed by Ye et al. (2024). Each of the datasets contains 10,000 questions.

QA, MMLU (Hendrycks et al., 2021): MMLU is a dataset designed to test the general knowledge
and question-answering abilities of LLMs. Question topics range from sociology and high school
geography to electrical engineering and abstract algebra.

RC, CosmosQA (Huang et al., 2019): CosmosQA focuses on gauging an LLM’s reading compre-
hension abilities. The LLM is given a short paragraph and is then asked to answer a follow-up
question based on commonsense reasoning.
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CI, HellaSwag (Zellers et al., 2019): HellaSwag evaluates if LLMs can use commonsense inference
to construct a realistic and meaningful continuation of a given scenario. HellaSwag is deliberately
designed so that LLMs struggle with questions that humans could normally answer with high confi-
dence.

DRS, HaluEval (Li et al., 2023): HaluEval consists of hallucinated LLM responses to user queries.
A subset of HaluEval contains queries that relate to dialogue response selection: the LLM must be
able to choose a logical response for a conversation. We refer to this part of HaluEval as HaluDial.

DS, HaluEval (Li et al., 2023): The HaluEval dataset also has hallucinated document summaries. In
an MCQA setting, the LLM must determine which summary in the answer choices is most relevant
to a provided document. We refer to this part of HaluEval as HaluSum.

MedMCQA (Pal et al., 2022): MedMCQA is a large-scale multiple-choice medical QA dataset
comprising over 194,000 entrance-exam–style questions spanning 2400 healthcare topics and 21
medical subjects. We select a subset of 10,000 single-answer questions from MedMCQA (i.e. where
exactly one option is marked correct) for our experiments.

MedQA (Jin et al., 2021): MedQA is a medical exam QA dataset derived from professional medical
board exams (e.g. USMLE), providing each question paired with candidate answer options and
corresponding references. In our work, we use only the US-part of MedQA, and further restrict to
10,000 multiple-choice items that have exactly one correct answer.

D DETAILED METHOD IMPLEMENTATION

Paraphrase generation for calculating PA score. Paraphrases were generated by prompting
Qwen2.5-7B (Qwen et al., 2025) with the following query: “Rephrase the following question in
your own words (preserving its meaning): Original question: {question} \n Rephrased question:”.
Additional details, such as any context or the answer choices, were not included with the original
question. A total of 6 paraphrases were generated per question. Paraphrases that were equivalent to
the original question or were previously generated were not included in the final set. The temperature
of Qwen2.5-7B (Qwen et al., 2025) was set to 1.1 to encourage diverse responses.

LLM embeddings. We next obtained the LLM embeddings for each question and paraphrase. These
LLM embeddings are used to train the proxy model and serve as the LLM’s representation of the
query. We treated the paraphrases as new samples in the dataset and assigned them the same answer
choices and correct label as their parent question. For each sample, the input prompt included
the question and the list of answer choices without the correct label. The LLM embedding was
extracted from the final hidden layer; this layer simultaneously encodes the LLM’s understanding of
the question and its predicted answer. The LLM logits were also retrieved by finding the raw score
corresponding to each answer represented as a token (e.g. ‘A’, ‘B’, etc.). We then applied softmax
to the logits to obtain a probability distribution over the answer choices. For each dataset except
the DS dataset, the LLM was provided with 2 example questions and their correct labels. Due to
the long context needed for the questions in the DS dataset, only 1 example was provided to the
LLM in this case. We followed this procedure to get the embeddings and logits of the instruction-
tuned versions of Qwen2.5-7B (Qwen et al., 2025) , Llama-3.1-8B (Dubey et al., 2024), and
Phi-3-small-8k (Abdin et al., 2024).

Proxy model. The proxy model calibrates the LLM’s probability distribution of the answer choices
across the paraphrases. We used a 2-layer MLP with ReLU activation as our proxy model. The input
to the proxy model is an LLM’s embedding for a question or paraphrase, and the output is a vector
with dimension |Y|. The loss function used to train the proxy model is Ltotal = LCE+λece×LECE ,
where LCE is the standard cross-entropy loss for multiclass classification and LECE is the soft-
binned expected calibration error loss (Karandikar et al., 2021). λECE is a hyperparameter that can
be tuned to increase or decrease the relative importance of calibration in different contexts. Out of
the 4,000 questions in the training set, 600 questions were used as the validation set. Since each
question has 6 paraphrases, the effective training and validation set sizes are 23,800 and 4,200,
respectively. We conducted grid search on the following hyperparameters: learning rate, weight
decay, λECE , hidden dimension, and the batch size. The hyperparameters used for each dataset and
each model are provided in Appendix E.
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Score calculation. For our baselines, we only use logits from the original question. The LAC
score (Sadinle et al., 2019) is defined as sLAC(x, y) = 1 − f(x)y , where f(x)y is the softmax
probability of label y for a question x. The APS score (Romano et al., 2020) is sAPS(x, y) =∑

y′∈Y: f(x)y′≥f(x)y
f(x)y′ , i.e., the cumulative probability of labels ranked at least as high as y.

To find the score of a question x using the PA method, the LLM embeddings of its paraphrases
(represented by the set B(x)) are inputted into the trained proxy model. Then, the score for answer
choice y of question x is given by Smean(x, y), Sweighted(x, y), or Sworst(x, y) (see Section 3.1). Note
that only the scores of the 6 paraphrases are used in the PA formulas. The LLM’s embedding of the
original question does not contribute to that question’s final PA score. This is in contrast to LAC and
APS, which only rely on the logits of the original question and do not factor in the paraphrases.

Split conformal prediction. Split CP (Vovk et al., 2005) uses a separate calibration dataset to calcu-
late a global score threshold that determines the prediction sets for the test set. For each calibration
example, we use the nonconformity score from the LLM’s softmax probabilities or proxy model’s
probability distribution. These nonconformity scores are collected and the (1 − α) quantile is esti-
mated with a finite-sample correction qα = Quantile({si}, ⌈(n+1)(1−α)⌉/n). At test time, each
example’s prediction set is formed by including all labels whose score is below qα, with a fallback
to the most probable label if the set is empty. This procedure ensures that the empirical coverage
approaches the nominal 1− α guarantee.

Quasi-conditional conformal prediction. In contrast to split CP, QCCP (Gibbs et al., 2025) cal-
culates class-specific thresholds for pre-defined classes. A function ϕ is defined that assigns a
class to a question based on its features. In the case that ϕ is a constant function, then QCCP is
equivalent to split CP; we use this ϕ function (ϕ = intercept) to obtain all split CP results. In our
QCCP analysis, we focus on a ϕ function that takes in the embedding of each question generated
by all-MiniLM-L6-V2 (Reimers & Gurevych, 2019). K-means clustering is used to separate
the questions into clusters, with each cluster acting as a class, and a different score threshold is
defined for each cluster. For a given test question, either a one-hot encoding of its assigned clus-
ter or a vector of its embedding’s distances to the three closest cluster centroids (dist3) can be
used to calculate the threshold. The coverage rates reported using QCCP are calculated marginally
with the exception of Figure 5 and Figure 9, which displays class-wise coverages. We used the
conditionalconformal package (Gibbs et al., 2025) to implement QCCP.
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E HYPERPARAMETER SETTINGS FOR REPRODUCIBILITY

Tables 5 and 6 list the framework hyperparameters for the five general MCQA datasets and the two
medical MCQA datasets, respectively. Tables 7 and 8 report the corresponding hyperparameters for
the proxy model on the general and medical datasets.

Table 5: Hyperparameters for QA, RC, CI, DRS, DS. We train an MLP proxy with ECE regular-
ization and compute paraphrase-aware scores using 6 paraphrases per question. Evaluation includes
QCP with SBERT-clustered Φ and plain CP with intercept Φ, using the same manifest-based splits
and α=0.1.

Setting / Hyperparameter QA, RC, CI, DRS, DS

General

Base LLM (for reps/logits) Qwen2.5-7B-Instruct
Random seed 42
Samples per question (n) 7 (1 base + 6 paraphrases)
Options per item (|Y|) 6 (A–F)

Proxy model (training)

Input dim 3584
Architecture MLP: 3584 → h (ReLU) → 6
Optimizer Adam
Max epochs / patience 200 / 20
Loss CE + soft-binned ECE (15 bins, temp 0.1))

Paraphrase-aware score computation

Paraphrases per question 6
Metric used S mean

Conformal prediction / QCP evaluation

Prompting / ICL base / icl1
Error level (α) 0.1
Split config manifest: tr0.4 / cf0.3 / tf0.3
QCP Φ mode cluster sbert
SBERT model MiniLM-L6-v2
Cluster selection auto
Φ representation dist3
Embedding norm / mini-batch k-means on / on
Also reported (plain CP) intercept Φ (same splits, α)
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Table 6: Hyperparameters for MedMCQA-10k and MedQA-10k. We train an MLP proxy with ECE
regularization and compute paraphrase-aware scores using 6 paraphrases per question. Evaluation
includes QCP with SBERT-clustered Φ and plain CP with intercept Φ, using the same manifest-
based splits and α=0.1.

Setting / Hyperparameter MedMCQA-10k MedQA-10k

General

Base LLM (for reps/logits) Qwen2.5-7B-Instruct
Random seed 42
Samples per question (n) 7 (1 base + 6 paraphrases)
Options per item (K) 6 (A–F)

Proxy model (training)

Input dim 3584
Architecture MLP: 3584 → h (ReLU) → 6
Optimizer Adam
Max epochs / patience 50 / 5
Loss CE + soft-binned ECE (15 bins, temp 0.1)

Paraphrase-aware score computation

Paraphrases per question 6
Metric used S mean

Conformal prediction / QCP evaluation

Prompting / ICL task / icl1
Error level (α) 0.1
Split config manifest: tr0.4 / cf0.3 / tf0.3
QCP Φ mode cluster sbert
SBERT model MiniLM-L6-v2
Cluster selection / K fixed / 20
Φ representation one-hot (cluster ID)
Embedding norm / mini-batch k-means off / off
Also reported (plain CP) intercept Φ (same splits, α)

Table 7: Proxy model specific hyperparameters for the 5 general datasets

Dataset Hidden dimension h Batch size Learning rate Weight decay λECE

MMLU 256 64 1e-3 0.0 0.5
CosmosQA 512 128 1e-3 0.0001 0.5
HellaSwag 256 128 1e-3 0.0001 0.5
HaluDial 256 64 1e-3 0.0 0.5
HaluSum 256 128 1e-4 0.0 0.5

Table 8: Proxy model specific hyperparameters for MedMCQA and MedQA.

Dataset Hidden dimension h Batch size Learning rate Weight decay λECE

MedMCQA 256 64 1e-3 0.0 0.5
MedQA 256 64 1e-3 0.0 0.5
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F ADDITIONAL RESULTS FOR ANALYSIS AND ABLATION STUDIES

F.1 PROXY MODEL ABLATION UNDER SPLIT CP

We report proxy model ablation results under split CP in Figure 8; the same trend holds under QCCP
(Figure 4), where removing the proxy leaves coverage near 90% but substantially enlarges set sizes.
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Figure 8: Effect of removing the proxy model under the split CP setting. Coverage remains close to
90% (dashed line), but set size increases notably without the proxy model.

F.2 CLASS LEVEL EVALUATION FOR ADDITIONAL DATASETS

We report class-conditional coverage for the remaining datasets in Figure 9; the results mirror those
in the main text, with PA consistently achieving better class-level coverage than LAC and APS
across classes.
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Figure 9: Evaluation of class-conditional coverage with QCCP on the MMLU (top left), CosmosQA,
(top right), and HaluSum (bottom center) datasets.

F.3 DIFFERENT RISK LEVEL ANALYSIS UNDER SPLIT CP

We report results at different user-specified risk levels under split CP in Figure 10. The trends mirror
those of QCCP in the main text: PA tracks the nominal (1 − α) target more closely while keeping
sets compact, whereas APS overshoots and LAC has larger set sizes for low values of α.
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Figure 10: Coverage rate (left) and prediction set size (right) vs. α on MMLU under Split CP.
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