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ABSTRACT

Accurate blind docking has the potential to lead to new biological breakthroughs,
but for this promise to be realized, docking methods must generalize well across
the proteome. Existing benchmarks, however, fail to rigorously assess generaliz-
ability. Therefore, we develop DOCKGEN, a new benchmark based on the ligand-
binding domains of proteins, and we show that existing machine learning-based
docking models have very weak generalization abilities. We carefully analyze
the scaling laws of ML-based docking and show that, by scaling data and model
size, as well as integrating synthetic data strategies, we are able to significantly in-
crease the generalization capacity and set new state-of-the-art performance across
benchmarks. Further, we propose CONFIDENCE BOOTSTRAPPING, a new train-
ing paradigm that solely relies on the interaction between diffusion and confidence
models and exploits the multi-resolution generation process of diffusion models.
We demonstrate that CONFIDENCE BOOTSTRAPPING significantly improves the
ability of ML-based docking methods to dock to unseen protein classes, edging
closer to accurate and generalizable blind docking methods.

1 INTRODUCTION

Understanding how small molecules and proteins interact, a task known as molecular docking, is
at the heart of drug discovery. The conventional use of docking in the industry has led the field to
focus on finding binding conformations when restricting the search to predefined pockets and eval-
uating these on a relatively limited set of protein families of commercial interest. However, solving
the general blind docking task (i.e. without pocket knowledge) would have profound biological
implications. For example, it would help us understand the mechanism of action of new drugs to
accelerate their development [Schottlender et al., 2022], predict adverse side-effects of drugs be-
fore clinical trials [Luo et al., 2018], and discover the function of the vast number of enzymes and
membrane proteins whose biology we do not yet know [Yi et al., 2015]. All these tasks critically
require the docking methods to generalize beyond the relatively small class of well-studied proteins
for which we have many available structures.

Existing docking benchmarks are largely built on collections of similar binding modes and fail to rig-
orously assess the ability of docking methods to generalize across the proteome. Gathering diverse
data for protein-ligand interactions is challenging because binding pockets tend to be evolutionarily
well-conserved due to their critical biological functions. Therefore, a large proportion of known
interactions fall into a relatively small set of common binding modes. Moreover, human biases in
the collection of binding conformational data further compromise the representativeness of existing
benchmarks. To address these problems, we propose DOCKGEN, a new benchmark that aims to test
a method’s ability to generalize across protein domains. With DOCKGEN, we show that existing
machine learning-based docking methods poorly predict binding poses on unseen binding pockets.

With this new benchmark, we analyze the scaling laws of DIFFDOCK, the state-of-the-art ML-
based blind docking method, with respect to the size of both its architecture and its training data.
The results show that increasing both data and model can give significant generalization improve-
ments. Further, we devised and integrated a synthetic data generation strategy based on extracting
side chains as ligands from real protein structures. Putting these together, our new DIFFDOCK-L
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Figure 1: Visual representation of the CONFIDENCE BOOTSTRAPPING training scheme. The
dashed lines represent the reverse diffusion generation rollouts that the model executes. The dotted
lines illustrate the bootstrapping feedback from the confidence model that is used to update the like-
lihood of the early diffusion steps by changing the weights of the score model. The pink regions of
the protein represent areas to where the docking algorithm is still attending, which starts from being
the whole protein and then gradually narrows to the local environment around the current pose.

increases the top ML-based DOCKGEN performance from 7.1% to 22.6% setting a new state-of-the-
art. However, with the current data and computing resources available today, this trend alone might
not be sufficient to fully bridge this generalization gap.

To move beyond this challenge, we propose CONFIDENCE BOOTSTRAPPING, a novel self-training
scheme inspired by Monte Carlo tree-search methods, where we fine-tune directly on protein-ligand
complexes from unseen domains without access to their structural data. The fine-tuning is enabled
by the interaction between a diffusion model rolling out the sampling process and a confidence
model assigning confidence scores to the final sampled poses. These confidence scores are then
fed back into the early steps of the generation process (see Figure 1 for a visual representation).
This process is iterated to improve the diffusion model’s performance on unseen targets, effectively
closing the generalization gap between the diffusion model and the confidence model.

We test CONFIDENCE BOOTSTRAPPING on the new DOCKGEN benchmark by fine-tuning a small
and efficient version of DIFFDOCK on individual protein clusters. In each of these clusters, within
the first few iterations of bootstrapping, the diffusion model is pushed to generate docked poses with
increasingly high confidence. This increased confidence also translates into significantly higher
accuracy with the fine-tuned models improving from 9.8% to 24.0% success rate overall, and above
30% in half of the protein domains.

2 RELATED WORK

Search-based docking Due to its importance in biological research and drug discovery, molecular
docking has for decades been a central challenge for the computational science community [Halgren
et al., 2004; Jain, 2003; Thomsen & Christensen, 2006]. Originally, most techniques followed the
search-based paradigm, which is still prevalent today. These methods consist of a scoring function
and an optimization algorithm. The latter searches over thousands or millions of different confor-
mations, which are passed to the scoring function that determines their likelihood/goodness. While
these methods tend to show relatively robust generalization across protein classes, they are signifi-
cantly affected by the size of the search space, which grows exponentially as the ligand gets larger
or as assumptions are removed (e.g. receptor rigidity).

ML-based docking Researchers have recently tried to move beyond the search-based paradigm
and directly generate poses with deep learning models. The first attempts [Stirk et al., 2022; Lu
et al., 2022] framed the docking task as a regression problem; this showed significant improvements
in runtime but did not reach the accuracy of search-based methods. Corso et al. [2022] proposed
DIFFDOCK, a generative model based on the diffusion modeling framework that is trained to sample
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Figure 2: A. An example of the superimposition of the pockets of two proteins in PDBBind,
1QXZ in pink and 5M4Q in cyan, that share a very similar binding pocket structure (a bound ligand
is shown in red), but have only 22% sequence similarity. While sequence similarity splits would
classify them in separate clusters, our approach correctly identifies that the binding domain of these
two proteins is the same. B. Comparison of binding sites in train vs test set for both PDBbind and
DOCKGEN datasets. BLOSUMG62 and harmonic mean similarity metrics (more details in Appendix
A.2) have a maximum of 1 (most similar) and a minimum of 0 (least similar). The densities are
clipped at 1% of the maximum value for both datasets to emphasize contamination. Every binding
site in the train set was compared to every binding site in the test set showing significantly higher
train-test similarity in the PDBBind dataset compared to the DOCKGEN dataset.

docked ligand poses. In particular, DIFFDOCK uses a diffusion model to sample a small number of
possible poses that are then passed to a confidence model that ranks and assigns a score to each.

Blind docking benchmarks The majority of previous ML-based methods used the PDBBind
dataset [Liu et al,, 2017], a curated set of protein-ligand crystallographic structures from PDB
[Berman et al., 2003], to train and test models. In particular, they adopted a time-based split of
the dataset where structures that were resolved before 2019 went into training and validation, and
those from 2019 formed the test set. Stirk et al. [2022] and others also evaluate the performance on a
reduced set of proteins with different UniProt-ID [Consortium, 2015] compared to those in the train-
ing set. Here, while ML methods show a drop in performance, they remain in line with search-based
techniques [Corso et al., 2022]. Similarly, concurrent works [Masters et al., 2023; Buttenschoen
et al., 2024] define new splits or benchmarks based on global sequence similarity.

3 THE DOCKGEN BENCHMARK

We argue that the existing approaches used to evaluate the ML docking methods fall short in ana-
lyzing their generalization capacity to different parts of the proteome. Binding pockets, due to their
importance to many biological mechanisms, are often among the most well-conserved regions in
proteins. Therefore, just looking at the UniProt-ID of a protein or its global sequence similarity
often leads to proteins in the train and test sets that have the same underlying pocket. Figure 2-A
shows an example of such failures, where two proteins, even with only 22% sequence similarity
(30% is often used as cutoff), share very similar binding pockets.

To better detect these cases we delve one level deeper into the organization of proteins and look at
protein domains. Protein domains are the structural and functional units that compose proteins. Very
similar domains can appear in different sequences but have similar local structural characteristics.
Therefore, by looking at the protein domains where ligands bind, we can form a more granular
classification of the protein-ligand interactions.

To classify each domain, we used the ECOD [Cheng et al., 2014] classification. This clustering
divides the 17k complexes from PDBBind before 2019, which have been used for training and
validation of previous ML models, into 487 clusters. The remaining data from 2019, from which the
test set was generated, presents only 8 additional clusters composed of a total of 15 complexes. This
clustering approach is very different from that taken by other methods based on global sequence
similarity.
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Table 1: Top-1 RMSD performance of different methods on the PDBBind and DOCKGEN bench-
marks. Runtimes were computed as averages over the PDBBind test set. * run on CPU. Med.
indicates the median RMSD. Ex. refers to the level of exhaustiveness of the search in case this was
increased above the default value. Tmore details in Section 5.

PDBBind DOCKGEN-full | DOCKGEN-clusters Average

Method %<2A  Med. | B<2A Med. | %<2A Med. Runtime (s)
SMINA 18.7 7.1 79 13.8 2.4 16.4 126*
SMINA (EX. 64) 25.4 55 10.6 13.5 4.7 14.7 347*
P2RANK+SMINA 20.4 4.3 7.9 14.1 1.2 16.4 126*
GNINA 229 7.7 14.3 15.2 9.4 14.5 127
GNINA (EX. 64) 32.1 4.2 17.5 8.1 11.8 6.2 348
P2RANK+GNINA 28.8 4.9 13.8 16.2 4.7 15.3 127
EQUIBIND 5.5 6.2 0.0 13.3 0.0 13.3 0.04
TANKBIND 20.4 4.0 0.5 11.6 0.0 11.1 0.7
DIFFDOCK (10) 35.0 3.6 7.1 6.8 6.1 6.0 10
DIFFDOCK (40) 38.2 33 6.0 73 3.7 6.7 40
DirFDock-LT (10) 43.0 2.8 22.6 4.3 27.6 3.7 25
DIFFDOCK-S + C.B.T (10) - - - - 24.0 3.8 2.8

To obtain a more sizable test set without retraining the models on a reduced set, we turn to the Bind-
ing MOAD dataset [Hu et al., 2005]. Similar to PDBBind, Binding MOAD is a curated collection
of protein-ligand complexes from the PDB. However, due to its different filtering and requirements
(e.g. no requirement for known affinity), it contains a set of 41k complexes partially disjoint from
PDBBind. These come from 525 ECOD clusters, 346 of which are in common with PDBBind, and
179 of which are not present in PDBBind.

To generate the validation and test datasets of the new benchmark, we randomly divide these remain-
ing clusters in two and then apply a number of further filtering steps (more details in Appendix A). In
particular, we exclude protein-ligand complexes with multiple ligands interacting in the same pocket
(i.e. no additional bound cofactors). We also remove metals, crystal additives, and large molecules
with more than 60 heavy atoms. To maintain a chemical balance we only keep up to 5 complexes
with the same ligand in the validation and test datasets. This leaves us with 141 complexes in the
validation and 189 complexes in the test set. A careful analysis of the binding-site similarity of the
different datasets highlights the vast improvement brought by DOCKGEN in terms of binding site
generalization (Figure 2.B and Appendix A.2).

We then run a number of baselines considered to be the state-of-the-art open-source or open-access
models: for search-based methods, SMINA [Koes et al., 2013] and GNINA [McNutt et al., 2021],
while for ML methods, EQUIBIND [Stirk et al., 2022], TANKBIND [Lu et al., 2022] and DIFFDOCK
[Corso et al., 2022]. Since search-based methods have been shown to improve their blind docking
performance by first selecting a pocket with a pocket finder method like P2ZRANK [Krivik & Hoksza,
2018], we also report these performances.

Previous ML methods significantly underperform in this new benchmark (Table 1), and their perfor-
mances are only a fraction of those that they have in the time-split complexes from the PDBBind test
set, with regression methods having nearly no success. On the other hand, search-based methods
have a significantly lower drop in performance, but even when increasing the exhaustiveness of their
search, they are not able to find the true pose in the vast majority of cases, motivating the need for
the development of more accurate methods.

4 CONFIDENCE BOOTSTRAPPING

Docking, along with other structural biology problems like protein folding, has been commonly
treated as an NP-hard combinatorial optimization problem [Thomsen, 2007; Mukhopadhyay, 2014].
Although the success of ML methods such as AlphaFold2 [Jumper et al., 2021] has demonstrated
that deep learning methods can significantly shorten the search in practice. The NP perspective
suggests a useful insight into the problem: it is easier to check that a pose is good than to generate
a good pose. This perspective points towards the exploration of new self-training-based strategies
where feedback from a discriminative model is used to update the generative model exploring the
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space of conformations and help the latter generalize to protein domains where we have no data for
ground truth poses.

4.1 BACKGROUND

Diffusion models Let p(x) be some data distribution of interest. Score-based diffusion gener-
ative models [Song et al.,, 2021] are trained to sample from p by defining a continuous diffu-
sion process dx = f(x,t)dt + g(t)dw, where w represents the Wiener process that transforms
the data distribution in a simple prior, and learns to reverse such a process. This is enabled by
the existence of a corresponding reverse diffusion process which can be expressed by the SDE
dx = [f(x,t) — g(t)? Vx log p(x)]dt + g(t)dw where p;(x) is the likelihood of the evolving data
distribution. To run this reverse diffusion equation, we need to learn to approximate the score of the
evolving data distribution sy(x,t) &~ Vx log p;(x). This is achieved by optimizing the parameters
via the denoising score matching loss:

0 = argemin {Eth[o,T] {)\(t)Ex(mNpm]Ex(t)‘xm) [HSQ(X(t),t) — V.o logpot(x(t)|x(0))||§} }]

where U refers to the uniform distribution, A(¢) is a positive weighting function and py; the transition
kernel of the forward diffusion process. One view of diffusion models is via the lens of their iterative
denoising generation ladder which, at every step, exponentially reduces the size of candidate poses’
posterior distribution (progressively higher resolution), a perspective we will use to motivate our
approach. Diffusion models were also generalized to compact Riemannian manifolds [De Bortoli
et al., 2022], a formulation that is particularly well suited for scientific applications where the main
degrees of freedom can be well represented by actions on a low-dimensional Riemannian manifold
[Corso, 2023]. This idea underlies DIFFDOCK and other recent advances in computational sciences
[Jing et al., 2022; Watson et al., 2023].

Self-training methods Self-training refers to a range of techniques that have been employed in
several different ML application domains where labels predicted by some model on unlabelled data
are used for training. For example, in the setting of image classification, Xic et al. [2020] used
unlabelled images to improve a classifier by first generating labels from the clean image with the
current classifier version, and then training the classifier to make the same prediction on noisy ver-
sions of the same image. This method was taken as inspiration for the self-distillation technique
used by AlphaFold2 [Jumper et al., 2021], where after a first training iteration, predicted structures
satisfying a certain residue pairwise distance distribution were used for a second iteration of model
training.

In the realm of generative models, McClosky et al. [2006] used the labels predicted by a discrimina-
tive reranker to select the best parses generated by a generative parser and add them to the training
set. Jin et al. [2021] took a similar approach for antibody optimization via the feedback of a neutral-
ization predictor. Finally, Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] also
use the feedback from a discriminator to train a generative model. However, in GANs one relies on
having in-distribution data to jointly train the discriminator.

4.2 METHOD

These existing self-training methods do not, however, directly exploit the structure of the generative
process they optimize. Moreover, they often fail if the initial generator has a low signal-to-noise
ratio. Iterating on such generators amplifies the initial errors [McClosky et al., 2006]. We argue
that diffusion models, because of their multi-resolution structure, offer a unique opportunity to more
precisely target the effect of self-training and avoid error amplification.

A large challenge for the diffusion model is that in the first steps of the reverse diffusion process,
the model needs to determine both the pocket and approximate pose of the ligand, without having
a clear view of how well that pose will fit in the pocket. If the model finds that the pocket does not
fit the ligand adequately after the ligand has been partially docked, the model can not backtrack its
decisions' or learn from its mistakes.

"Note that in theory at every step the conditional distribution learned by the diffusion model spans the whole
search space; however, in practice the model learns, based on the prior, to not to look for a conformation beyond
a distance that is much larger than the current noise level.
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We introduce CONFIDENCE BOOTSTRAPPING, a training mechanism that refines a diffusion gen-
erator based on feedback from a confidence model. The diffusion model is used to “roll out” the
reverse diffusion process, generating poses that are then scored with the confidence model. These
scores are used to inform how to update the parameters of the early steps of the diffusion process
so that the model will generate more poses close to those with high confidence (see a graphical
representation in Figure 1). This process is then repeated for several steps.

There are several reasons why we hypothesize that the diffusion model would be able to learn from
the feedback of the confidence model. As discussed above, while generating a ligand pose for a
new protein is difficult, testing whether a pose is satisfactory is a local and simpler task that, we
believe, can more easily generalize to unseen targets. Intuitively, the more difficult the underlying
task the more a model is likely to overfit, capturing some spurious correlations in the data instead
of the underlying signal. Similarly, early steps of the reverse diffusion process that have to decide
the most likely among the different pockets and poses will struggle more than the late steps where
the remaining posterior is significantly more localized. Training the early steps of the reverse dif-
fusion based on the confidence outcomes of the rollouts, CONFIDENCE BOOTSTRAPPING is able to
exploit the multi-resolution structure of diffusion models and close the generalization gap between
the different diffusion steps.

From this perspective, our procedure of (1) rolling out the steps of the generation process, (2) eval-
uating the success at the end, and (3) feeding back information from the end to the initial steps
resembles the Reinforcement Learning (RL) algorithm used to master games such as Go [Silver
et al., 2016]. Instead of score and confidence models, they use policy and value networks, and the
diffusion process is replaced by a Monte Carlo tree-search. More generally, our problem can be
loosely seen as an RL problem, where confidence is the reward. We discuss this connection in more
detail in Appendix D.

Although it adds complexity to the training process, CONFIDENCE BOOTSTRAPPING is particularly
well suited for the molecular docking task. Firstly, as discussed in Section 3, the limited amount
of training data and its lack of diversity make alternative training methods critical for the success
of blind docking. Furthermore, CONFIDENCE BOOTSTRAPPING can leverage information from
very large affinity datasets such as BindingDB [Liu et al., 2007]. Exploiting this binding data is
largely unexplored for the docking task. Finally, docking screens are usually run on a very large
number of complexes (up to tens of billions [Gorgulla et al., 2020]) using a restricted set of proteins.
Therefore, any time that one would spend fine-tuning the docking algorithm for the restricted set
would be largely amortized throughout the screen.

4.3 FORMALIZATION

We now formalize the CONFIDENCE BOOTSTRAPPING training routine. For simplicity, we will
present it based on the diffusion model formulation in Euclidean space. However, note that this di-
rectly applies to the Riemannian diffusion formulation [De Bortoli et al., 2022] used by DIFFDOCK.

Let pg(x;d) be the probability distribution of poses learned by the diffusion model with score

s9(x®) t; d) where d is the known information about the complex (e.g, protein and molecule iden-
tity). Let c4(x, d) be the output of the confidence model, and let D = {d, d, ...} be a set of known
binders (e.g. from BindingDB) for the target distribution of interest.

CONFIDENCE BOOTSTRAPPING consists of K iterations where at each iteration ¢ the score model
weights 6 are updated based as following optimization:

gitt = arg;nin I:EtNU[O,T]{)‘(t) Ex(0) dropian Ex(®) [x(0) [||89(X(t)7t; d) — Vym logp()t(x(t)\x(o))H%}

+ N(t) B dnpy, , Exo|x© {Hso(x(t),t; d) — Vi IOgPOt(X(t)|X(O))||§] }]

where 6° are the weights of the pretrained diffusion model (if not trained from scratch), and
Po,o(X,d) x pg(x;d) expleg(x,d)].

Each of these iterations ¢ € [0, K) is achieved by performing a rollout stage, followed by an update
stage. During the rollout stage, we first sample d from D, then sample points from py: (-, d), forming
a buffer B = [(x1,d1), ...]. During the update stage, a fixed number of stochastic gradient descent
steps are performed where half of the fine-tuning complexes are taken from the training dataset (first
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half of the objective) and half are taken from the buffer B (second half). In particular, to approximate
samples from py: 4(x, d), the elements (x, d) of B are sampled with probabilities proportional to

explcg(x, d)).

Using different A and )\’ allows us to take advantage of the multiresolution decomposition of dif-
fusion models and direct the bootstrapping feedback principally to update the initial steps of the
reverse diffusion. The samples taken from the combination of diffusion and confidence models are
likely to be too noisy to provide fine-grained guidance for small ¢. To prevent the model from for-
getting how to perform the final steps, we still take samples from the training dataset and give them
a larger weight for small £. Further details on the implementation and optimization of this routine
can be found in Appendix C.

5 EXPERIMENTS

5.1 ANALYZING DOCKING SCALING LAWS

Empirically, we first analyze the effect that scaling the training data and the model size has on the
generalization capacity of DIFFDOCK. This analysis is important to evaluate the potential impact
of community efforts to increase the amount of available high-quality training data and develop
large-scale ML docking models.

Increasing the training data We investigate how much the addition of more data, within the pro-
tein domains that the model already sees, can help with generalization outside of those domains.
This is an important question because in recent years there has been a call from the research com-
munity for pharmaceutical companies to release the large number of crystallography structures they
possess. We test this question by including in the training data all MOAD complexes from the same
binding protein domains as those seen in PDBBind training and validation sets and released before
2019 (to maintain the validity of the benchmarks). After filtering out duplicates and non-conformant
ligands, this increases the number of training data points by approximately 52%.

Van der Mer-inspired docking augmentation Additional training data from MOAD contributes
modestly to pocket diversity, as the extra data points lie within the same protein domain clusters.
To increase pocket diversity, we design a novel auxiliary training task based on the generation of
synthetic docked poses using protein sidechains as surrogate ligands. We take inspiration from the
concept of a van der Mer (vdM), which has been used successfully in the design of proteins that bind
target ligands [Polizzi & DeGrado, 2020]. A van der Mer is an amino acid that interacts with another
amino acid that is distant in the 1D protein sequence, which can closely approximate a noncovalent
protein-ligand interaction. In a given protein crystal structure, we select a sidechain with a large
number of protein contacts distant in sequence. The interacting amino acids are assigned as the
“binding pocket” for the chosen sidechain. We remove the coordinates of the “ligand” residue and
its sequence-local neighbors from the protein to generate the new target complex (more details on
how exactly these are chosen can be found in Appendix B.2).

The advantage of these synthetic protein-ligand complexes is that they are myriad and easy to com-
pute, since any (even unliganded) protein structure can be used to generate such examples. Thus,
we can potentially dramatically increase the structural and chemical diversity of binding domains
and pockets. This diversity could help the model understand the chemical and geometrical envi-
ronments of different pockets. The drawbacks are that these synthetic complexes are of unknown
affinity (many could be weak binders), and the chemical diversity of ligands is limited to the 20
amino acids.

Increasing the model size Further, we evaluate how the generalization ability of the docking
models changes when scaling their capacity. The relationship between model capacity and gener-
alization has been a topic of significant study in the machine learning community. On one hand,
the traditional learning theory perspective suggests that once the model overfits to some amount of
training data increasing the model size will only likely make the overfitting worse. On the other
hand, recent evidence for deep learning models has shown the opposite behavior with “overparame-
terized” models increasing their ability to generalize when given more capacity [Belkin et al., 2019].
We compare score models of the size of the original DIFFDOCK (~20M parameters) with others of
smaller (~4M) and larger ones (~30M).
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Figure 3: Analysis of the scaling laws of DiffDock when measuring its ability to generalize to unseen
protein domains. par indicates the number of parameters and the different colors indicate different
training sets and augmentations. For the 30M architecture, only one model was trained due to its
expensive training cost. Inference tuning refers to tuning various reverse diffusion hyperparameters
at inference time.

Experimental results The results of these experiments, shown in Figure 3, highlight a clear trend
of improvement both when increasing the training data and when increasing the size of the model.
The vdM augmentation strategy also seems to provide some improvements when scaling to larger
model sizes. Combining these components we develop DIFFDOCK-L, which we release publicly?.
DirFDOCK-L improves the ML-docking performance on DOCKGEN from 7.1% to 22.6%, even
outperforming the best search-based method (17.5%). DIFFDOCK-L also achieves state-of-the-art
blind docking performance on both PDBBind (see Table 1) and PoseBusters test sets (see Appendix
E.1). Overall we believe that the analysis of these trends may prove useful for many practitioners and
to support the effort of the community in developing even larger open-source datasets and models.

5.2 CONFIDENCE BOOTSTRAPPING

We test® CONFIDENCE BOOTSTRAPPING on the new DOCKGEN benchmark, where we fine-tune
a model on each protein domain cluster. In particular, we use DIFFDOCK-S, the 4M parameters
version of DIFFDOCK introduced in Appendix C.2. For computational feasibility, we use clusters
with at least 6 complexes and restrict the test set to 8 separate clusters (5 for validation) for a total
of 85 complexes, which compose the DOCKGEN-clusters subset.

As can be seen from Figure 4-A, for most of the clusters, the median confidence of the predicted
structures increases along the fine-tuning. Critically, Figure 4-B and 4-C show that also the accuracy
of most clusters significantly improves over the course of the bootstrapping process. In Figure 4-D,
we plot the average performance across all clusters in comparison to that of the baselines. From
this, we see that, in DOCKGEN-clusters, CONFIDENCE BOOTSTRAPPING considerably raises the
baseline DIFFDOCK-S’s performance going from 9.8% to 24.0% and doubles that of the traditional
search-based methods even when run with high exhaustiveness.

The analysis becomes even more interesting when looking into the evolution of the performance
in the individual clusters. In half of the clusters, the model is able to reach top-1 RMSD < 2A
performance above 30%. These clusters mostly constitute those in which the original model has
non-zero accuracy with an initial performance varying from around 2% to 20%. Then we have one
cluster where the accuracy is improved to only ~10% and three clusters where the model never
selects good poses neither before nor after the bootstrapping. These results, further supported by
the performance when run using an oracle confidence model in Appendix E.2, suggest that future

>We release data, instructions, code, and weights at https: //github.com/gcorso/DiffDock.
3Code for these experiments can be found at https://github.com/LDeng0205/
confidence-bootstrapping.
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Figure 4: Empirical performance of CONFIDENCE BOOTSTRAPPING across the 8 protein domain
clusters within DOCKGEN-cluster. We did two fine-tuning runs for each cluster and report the
averaged results. All performances are measured based on top-1 pose when taking 8 samples with
the fine-tuned models. A. Median confidence of sampled points over at every iteration. B. Proportion
of top-1 predictions below 2A over the course of the iterations for each cluster. C. Performance for
each cluster before the fine-tuning and after the K=60 steps of CONFIDENCE BOOTSTRAPPING. D.
Aggregated performance along the fine-tuning for all the clusters weighted by their count with, as
references, the performance of some of the baselines on the same set.

improvements to either the score or confidence models will lead to even further gains when finetuned
with CONFIDENCE BOOTSTRAPPING.

6 CONCLUSION

Given the potential utility of high-accuracy blind docking in biology and drug discovery, it is impor-
tant to track the progress of ML-based methods to generalize to unseen pockets. To this end, we have
proposed DOCKGEN, a new benchmark for blind docking generalization based on the classification
of binding protein domains. Evaluating existing ML methods on the DOCKGEN benchmark high-
lights how overfitting training data prevents generalization to unseen binding modes. By scaling the
training data and model size as well as integrating a novel synthetic data generation technique, we
were able to significantly improve the generalization ability and developed and released DIFFDOCK-
L, a new state-of-the-art docking method.

To improve generalization even further, we proposed CONFIDENCE BOOTSTRAPPING, a self-
training method that only relies on the interaction between a diffusion and a confidence model and
exploits the multi-resolution structure of the sampling process. This allows the direct fine-tuning of
the docking model on classes of proteins where binding structural data is not available. Empirically,
the method shows significant improvements on the DOCKGEN benchmark, going from 10% to 24%
success rate for efficient and fast models. Finally, we believe this opens up the possibility of training
even larger-scale docking models that have so far been obstructed by the size and diversity of the
available data, bringing us one step closer to a generalizable solution to the docking challenge.
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A DOCKGEN BENCHMARK DETAILS

A.1 DATASET CREATION

In this section, we specify the details of how the Binding MOAD dataset was parsed and filtered
to obtain the DOCKGEN benchmark validation and test sets. The benchmark was created following
these steps:

1. We perform the ECOD-based clustering. Each ligand in a protein is classified by the ECOD
domain (t group) of the chain that is making the most contacts with the ligand. The t-group
of the ligand is assigned using the consensus of per-residue t-group assignments of each
contacting amino acid (4.8A heavy atom distance) in the dominant chain. We use this
approach to classify both the complexes in PDBBind and MOAD. There are 179 clusters
in MOAD that do not appear in PDBBind. These 179 are randomly and equally divided
between validation and test datasets.

2. Within these clusters, since most docking tools do not support the simultaneous docking of
multiple ligands, we discard ligands that are within 4.8A from the heavy atoms of another
ligand.

3. We discard the ligands labeled by MOAD as “part of proteins” as these are constituted
mostly by metals and covalent binders.

4. We discard very large ligands formed by more than 60 heavy atoms.

5. Ligands with equal chemical composition that are bound to the same protein are also clus-
tered together forming a single ligand with multiple correct poses.

6. To ensure diversity in the benchmark, if the same ligand appears bound to different biolog-
ical assemblies of the same PDB entry we only select one of these at random.

7. To avoid overrepresentation of certain ligand classes, we limit the maximum number of
ligands to 5 of the same molecule separately in the validation and test sets. This avoids,
for example, the presence of a large number of NAD ligands when considering the "NAD-
binding domain” cluster.

8. To follow the convention that has been used to train previous ML-based blind docking
algorithms, we select only the protein chains that have a C-alpha atom within 10A of a
ligand’s heavy atom. In the cases of multiple equal ligands bound to the same complex,
one was selected as a reference for the filtering.

After these steps we are left with a validation set composed by 141 unique complexes from 70
different clusters and a test set formed by 189 complexes from 63 clusters.

A.2 DATASET ANALYSIS

In this section, we compare the test set of the newly generated DOCKGEN benchmark and the one
of PDBBind.

Receptor and ligand dimension In Figure 5 we plot the distribution of the sizes of the receptors
and ligands in the two sets. These are not too different, but on average DOCKGEN seems to present
slightly smaller ligands but larger protein receptors. The latter might be one of the explanations for
why even traditional search-based docking methods that are often considered to generalize relatively
well (even though they also present a number of parameters fitted to experimental data) do worse in
the DOCKGEN test set.

Binding site similarity analysis To evaluate binding site similarity between datasets, we extract
residues in contact with the ligand (defined as protein’s heavy atoms within 5A of ligand heavy
atoms) and merge them into a single chain to handle binding sites at protein-protein interfaces. We
then TMalign every extracted binding site in the training set to every extracted binding site in the
test set for both the PDBbind and DOCKGEN datasets. We parse the TMalign output for any aligned
residues and record their amino acid identities for both the target and query binding sites. We then
compute the fraction of the target and query matched by the alignment and take the harmonic mean
of those fractions as a first metric for binding site similarity. We then use the BLOSUMG62 amino acid
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Figure 5: Comparison of the sizes of the ligand and the receptor between the test sets of PDBBind
and DOCKGEN.

substitution matrix to quantify similarity in the case that two amino acids are structurally aligned
but not exact sequence matches. Amino acids that are more similar have larger values in this matrix.
We normalize the BLOSUM matrix to values between 0 and 1 and then take the average of these
normalized values across all structurally matched residues as a second similarity metric.

We compare these metrics across the PDBBind and DOCKGEN test sets when compared to PDBBind
training set in Figure 2 and show that binding sites in PDBBind tend to be more similar to those in
the test set compared to the same comparison for the DOCKGEN dataset: the density in the top right
corner indicates significant binding site overlap in PDBBind and little in the case of DOCKGEN.

B DATA AUGMENTATION STRATEGIES DETAILS

B.1 INCREASING THE TRAINING DATA

To increase the training data using the clusters of Binding MOAD that did not go into the validation
or test set, we first take the clusters that remained after applying step 1 above. We also remove all
complexes resolved in 2019 or later to maintain the validity of the PDBBind test set. Then, we again
discard all ligands that are close to other ligands and those with a single heavy atom.

We take the remaining complexes, forming a dataset with 20,012 ligand poses bound to 14,214
different biological units, and use them for training. For ligands that are bound to the same biological
unit, at every epoch we select a single ligand at random for training. At training time, we simply
concatenate this dataset to PDBBind’s training set. One should note that the two datasets are not
disjoint and many complexes will appear in both. We avoid removing the redundancy to give more
weight to complexes that passed both filtering processes of MOAD and PDBBind and are therefore
more likely to be of higher quality.

B.2 VAN DER MER-INSPIRED TRAINING

To extract van der Mer-like amino-acid ligands, we start from a large collection of protein structures
that comprise the ProteinMPNN [Dauparas et al., 2022] training set. At preprocessing time, for
every sidechain s in the protein, we compute ng the number of other amino acids that have heavy
atoms within SA and are not local in primary sequence (within 10 residues). This determines the
extent to which the remaining part of the protein forms a pocket around the selected sidechain, once
the adjacent sequence on each side is removed.

At training time, we iterate over the clusters of proteins in the dataset. We use the same clusters
adopted by ProteinMPNN that were generated with a sequence similarity cutoff of 30%. For each
cluster, we take one protein at random, and within this, we select a sidechain s at random with
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Figure 6: Visualization of the van der Mer-inspired synthetically generated docked poses. In this
case, a tyrosine (in red) is taken to be the ligand, and the amino acids that are nearby in the primary
sequence are removed from the protein structure of 1QXZ (the created chain breaks are highlighted
in orange).

probability proportional to max(0, ns — 5) sampling buried residues with a higher likelihood. If no
sidechain has more than 5 contacts then the protein is skipped.

Once a sidechain is selected, the sequence-local segment of the protein chain, consisting of 21
residues centered at the selected sidechain (i.e. 10 residues on either side), is removed from the
protein structure. The sidechain and its backbone atoms are then used as the ligand that the model
is trained to dock. An example of such resulting complex is represented in Figure 6.

Note that for computational efficiency, instead of re-computing the embedding each time we truncate
a protein structure, we compute the ESM embeddings [Lin et al., 2022] used by DiffDock only once
with the full sequence and then simply crop the removed sequence out (even though the embedding
of the remaining residues might be affected by the residues that were removed).

C CONFIDENCE BOOTSTRAPPING DETAILS

In this section, we discuss the CONFIDENCE BOOTSTRAPPING procedure and our experimental
setup. We demonstrate that CONFIDENCE BOOTSTRAPPING improves blind docking performance
of the pretrained score model on a previously unseen cluster without knowing the ground-truth poses
of that cluster. This is achieved by iteratively sampling from the score model (the rollout process),
evaluating these samples with the confidence model, and updating the score model treating high-
quality samples as ground-truth poses. Our procedure assumes a DIFFDOCK score model and a
confidence model both pretrained. We use the procedure outlined in Corso et al. [2022] to train and
sample from the score model.

C.1 TRAINING PROCEDURE

The training procedure takes as input ligand/receptor pairs D = {dy, dz, ...} from a cluster of in-
terest, a pretrained diffusion model parametrized by 6 with learned distribution over poses py(x; d)
and score sp(x(*), ; d), and a pretrained confidence model c,(x, d). At each step, we sample com-
plexes from the score model through the reverse diffusion process, score these complexes with the
confidence model, and use high-confidence samples to update the score model. More specifically,
we start with the buffer B that is initially empty; at step 4, we sample ¢ candidate poses (x;, d;) for
Jj€{l,--,q}foreachd; € D from py: (x;d)and evalute these candidate poses with cs. We use

the exponential moving averaged version of model weights 6, as in Corso et al. [2022] to stabi-
lize the inference over different training epochs. We add the sampled poses with a confidence score

¢y(x,d) > k, where k is the confidence cutoff, to the buffer: B = BU {(x;,d;) | co(xj,d;) > k}.
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Then, we update the score model 67 by treating complexes in B as ground truth poses and performing
a fixed number of SGD update steps on the diffusion objective to obtain #**1,

To train the original model we use the denoising score matching loss presented in Section 4.1 with
a weighting \(t) = t/u? where 1, is the expected score magnitude at time ¢. During fine-tuning we
use N (t) = 1/2u? and N (t) = t/u?2, to give more emphasis to the bootstrapping examples at high
noise levels. Note that these different weightings can also be seen as sampling ¢ from different beta
distributions while always normalizing by the expected score.

There are a few nuances to building and using the buffer B. First, we resample a constant m
complexes from B to train the score model at every step. Motivated by the intuition that higher-score
poses should be sampled more frequently, the poses are sampled from the distribution p(x,d) ~
% explce(x,d)] where Z is a normalization constant. Additionally, we enforce an upperbound on
the number of samples per complex to encourage diversity across complexes in B by only keeping
the n highest scoring poses per protein/ligand pair. Moreover, as alluded to in 4.3, updating the
score model with samples from the buffer may cause it to lose information about how to perform
steps with ¢ < t,;, and/or learn to sample from pathological spaces of the confidence model, where
the confidence model assigns high scores to poses distant from the ground truth. Therefore, at each
training step, we also include p randomly sampled complexes from MOAD training set in addition to
complexes sampled from B. In our scheme, k, p, ¢, m, and n are hyperparameters selected through
testing the method on the validation dataset.

C.2 MODEL ARCHITECTURE

To enable the efficient execution of the CONFIDENCE BOOTSTRAPPING iterative training routine,
we make a number of changes to the architecture of DIFFDOCK’s score (obtaining what we refer to
as DIFFDOCK-S) and confidence models.

Score model We speed up the architecture and execution of DIFFDOCK’s score model in a number
of ways. First, we add a number of embedding message-passing layers which, unlike the cross-
attentional interaction layers of DIFFDOCK, independently process the protein and ligand structures.
This allows us to increase the depth of the architecture with very little added runtime. In fact, due
to the significantly higher number of nodes, the main complexity of the embedding layer lies in the
protein component. However, under the rigid protein assumption, the structure is the same across
all the different samples and diffusion steps. Therefore, the protein embedding can be computed
only once resulting in minor computational overhead. Further, we limit the order of the spherical
harmonics used to represent the edges to one (with minor loss in accuracy), and we batch and move
the whole reverse diffusion process to GPU to improve parallelization and memory transfers.

Confidence model We also change a number of design choices in the confidence model to make
it more efficient and better suited for CONFIDENCE BOOTSTRAPPING. The first choice is to force
the model to reason about local interactions, as the affinity of a ligand to a particular pose is largely
a local property. We achieve this by simply feeding to the model the receptor structures of only the
amino acids whose C-alpha is within 20A of any of the predicted ligand atoms’ positions.

Further, during the binary classification training of the confidence model, we try to remove the bias
of the model against hard targets by balancing the proportion of positive and negative examples the
model is trained over. When not possible with sampled poses (because the model only samples
negatives), we use the so-called conformer-matched ligand poses [Jing et al., 2022] as positive ex-
amples. Moreover, to make the transition smoother and reduce the perceived variance in the labels,
we separate the positive (poses with RMSD<2A) and negative classes (>4A)*. Finally, we super-
vise the model not only to predict the label of the whole ligand but also that of each individual atom
(supervised on their individual distance to the ground truth pose).

C.3 EXPERIMENTAL DETAILS

Setup. We tested CONFIDENCE BOOTSTRAPPING on DOCKGEN-clusters, a subset of DOCKGEN
containing 8 clusters with at least 6 complexes each. For every cluster in DOCKGEN-clusters, we

*We note that concurrent work Masters et al. [2023] also applies this strategy.
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started with the same pretrained diffusion and confidence models, and ran 60 iterations of CONFI-
DENCE BOOTSTRAPPING, where each iteration contained a rollout step and an update step with 200
SGD updates. We did two evaluation runs with the same hyperparameters and reported the aver-
aged results. To evaluate the generated complexes, we computed the symmetric-corrected RMSD of
sPyRMSD [Meli & Biggin, 2020] between the predicted and the crystal ligand atoms. We reported
the percentage of top-ranked predictions that have an RMSD less than 2A, a metric generally con-
sidered to be representative of getting the correct pose [Alhossary et al., 2015; Hassan et al., 2017;
McNutt et al., 2021; Corso et al., 2022].

Hyperparameters. In our experiments, we chose confidence cutoff k£ = —4, number of complexes
sampled from PDBBind p = 100, number of complexes sampled from the buffer m = 100, number
of inference samples ¢ = 32, and maximum samples per protein/ligand pair n = 20. At the rollout
step, we ran 4 inference steps each with 8 samples and compute the RMSD less than 2A metric with
the top-ranked pose from each inference step to reduce variance in the reported metric. Additionally,
we set number of inference samples to 80 for the first bootstrapping inference step to fill the initially
empty buffer. These parameters were selected by testing the method on the 5 DOCKGEN validation
clusters.

C.4 COMPUTATIONAL COST

The runtime cost of our fine-tuning approach depends on the number of complexes sampled and the
number of gradient update steps. In our experiment, on average we sample 320 complexes in the
cluster for every 200 gradient update steps (with batch size of 5). We interleave these two operations
60 times. With these parameters and training on one NVIDIA A6000 GPU, the average run time is
8 hours.

One can try compare this cost with for example running GNINA (here we assume the default version
without extra search exhaustiveness), which generalizes better without retraining but it is consider-
ably slower and cannot be finetuned on specific domains. Assuming the methods (GNINA and
DiffDock w/ confidence bootstrapping) work similarly, then one can ask in which setting would it
be faster to run either one of them. It takes 232 inference complexes for DiffDock to ammortize the
cost of the finetuning and from then onwards it can provide significant runtime improvements. As
many screening campaigns require significantly more than 232 complexes, we believe that the idea
of finetuning a docking model to the specific target class of interest may prove a useful feature in
the future.

D CONFIDENCE BOOTSTRAPPING AND REINFORCEMENT LEARNING

In the section we discuss the connection of CONFIDENCE BOOTSTRAPPING to Reinforcement
Learning (RL). Our objective can be approximately formulated as finding some score model pa-
rameters 6* to maximize the confidence conditioned on a cluster, and can be written as

0* = argmax Jy
0

where
Jg = Epg(x;d) [C¢,(X; d)] (1)

This objective can be directly formulated as the RL objective, where the reward function is the
confidence model ¢, and the policy is the diffusion model pg(x;d). Then, our method can be seen
as loosely related to the policy gradient method, where the gradient of Equation 1 can be written as

VgJo = vGIEpe(X;ol) [%(XQ d)]
= Ep, (i) [V 10g po(x; d)cg (x; d)]

1 n
~ o > Vo logpe(xi; d)eg(xi; d)

i=1

In the policy gradient method, n samples are collected to approximate the expected value, which
corresponds to the number of poses we sample per complex during training. However, computing
V log pg(x;; d) is intractable for diffusion models. Instead, we modify the reward to exp(c4(x; d))
and the objective to:
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Ox = argrgnax Epg (x;0) [exp(cg (x; d)) log pe(x)]
= argmin Ep, (i) exp(ey (xi) [~ 108 Po (X))

= arggnin Epsi’d)(x,d) [—log po(x)]

Again this cannot be estimated directly but we can use the denoising score matching loss with
Poi (X, d) as our data distribution to derive an upper bound that can be optimized [Song & Ermon,
2019]:

Bp,: ,(x.d) [—logpe(x)] < Tpsm () +C

where C is a constant that does not depend on 6 and Jpsas(0) is the denoising score matching loss.

Avoiding overoptimization Note that unlike traditional RL problems we not only have the (de-
noising score matching) loss based on the reward from our confidence model, but we also keep the
loss component that came from our training set optimization. While the RL objective is to directly
maximize reward/confidence, we also want to prevent the model from overfitting into pathological
spaces of the confidence model (where the confidence model gives high confidence for bad poses),
aka “overoptimization”, which is why we included the real samples from training set.

RL in docking Reinforcement learning has been applied in the past for the docking task, for
example, Wang et al. [2022] uses it for protein-ligand docking while Aderinwale et al. [2022] applies
it to multimeric protein docking. These works have two strong differences with our approach: (1) RL
is used to optimize the pose at inference time for a specific complex not to train/fine-tune a model (2)
the specific methodologies used are very different from the idea of CONFIDENCE BOOTSTRAPPING.

E ADDITIONAL EXPERIMENTS

E.1 POSEBUSTERS BENCHMARK

We report in Table 2 the results of DIFFDOCK-L on the PoseBusters benchmark test set compared
to the recent ROSETTAFOLD-ALLATOM [Krishna et al., 2023] and all the methods reported by But-
tenschoen et al. [2024]: GOLD [Jones et al., 1997], VINA [Forli et al., 2016], DEEPDOCK [Méndez-
Lucio et al., 2021], UNI-MOL [Zhou et al., 2023], EQUIBIND [Stirk et al., 2022], TANKBIND [Lu
et al., 2022] and DIFFDOCK [Corso et al., 2022]. Even on this benchmark DIFFDOCK-L performs
best among blind docking methods.

E.2 CONFIDENCE BOOTSTRAPPING ORACLE EXPERIMENTS

In a separate experiment, we tested CONFIDENCE BOOTSTRAPPING with “oracle” confidence pre-
dictions. The oracle confidence predictor is a monotonic transformation of the true RMSD between
the ground truth pose and the predicted pose: cy(x,d) = —4 tanh (2 RMSD(x,x*) — 2). Note
that this is not a practical setting as we would not have access to the ground truth poses x* in real
applications. However, this is an illustrative experiment establishing an upperbound on the perfor-
mance gains achievable through CONFIDENCE BOOTSTRAPPING with a “perfect” confidence model
(Figure 7).

E.3 CONFIDENCE BOOTSTRAPPING ABLATION STUDIES

To better understand the benefits of different components of CONFIDENCE BOOTSTRAPPING, we
conducted ablation experiments and report the ablation results (Figure 8) on the DOCKGEN vali-
dation dataset. This validation dataset is selected by choosing all clusters with four or more com-
plexes in DOCKGEN, excluding those in DOCKGEN-clusters. We further exclude one cluster where
DIFFDOCK-L already achieves higher than 80% RMSD less than 2, and another where an insuffi-
cient number of samples pass the confidence threshold, resulting in 7 clusters. Here, we provide a
description of each ablation experiment.
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Table 2: Comparison of the performance on the PoseBusters dataset. Pocket-based docking methods
receive further information about the location and shape of the binding pose. T unlike the other blind
docking methods reported ROSETTAFOLD-ALLATOM (1) does not take as input the holo-structure
of the protein, (2) does take as input the information about the cofactors involved in the binding, and
(3) uses as training cutoff date April 2020 instead of December 2018.

Method RMSD < 2A
Pocket-based docking

GOLD 58%
VINA 60%
DEEPDOCK 20%
UNI-MoOL 22%
Blind docking

EQUIBIND 2%
TANKBIND 16%
DIFFDOCK 38%
ROSETTAFOLD-ALLATOM 42%
DIFFDOCK-L 50%

Temperature = 0 Instead of sampling from the buffer with p o< explcg(x, d)], which can be inter-
preted as p o< explkcy(x, d)] with temperature k£ = 1, we investigate the effects of drawing buffer
samples with uniform probability (t = 0).

t sampling We change the distribution of ¢ € [0, 1], the amount of noise added to each sample
during training time. Heuristically, we would prefer to sample higher values of ¢ more often to
finetune the earlier stages of the reverse diffusion process, guiding the model into finding the right
pocket. ¢ is sampled from a beta distribution Beta(a, 8). In addition, samples from py,, use a
different value of a and /3 from buffer samples. In CONFIDENCE BOOTSTRAPPING, we have a = 2,
B = 1 for buffer samples, and « = 1, 8 = 1 for pyun samples, with ¢, = 0. We experiment with
different variations of these default parameters (Figure 8).

Removing samples from py,;, In this experiment, we remove py,i, complexes (real samples)
from the update steps of the diffusion model, using only samples from the buffer. These complexes
were initially added to avoid the overoptimization problem as discussed previously, and removing
them, unsurprisingly, decreases the performance of our method (though our method still significantly
outperforms the baseline DiffDock).
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Figure 7: Empirical performance of CONFIDENCE BOOTSTRAPPING with oracle confidence across
the 8 protein domain clusters within DOCKGEN-cluster, the bootstrapping method is run twice for
every cluster and we show the average results of the two runs. All performances are measured based
on the top-1 pose when taking 8 inference samples with the fine-tuned models. A. Median confi-
dences of sampled points at every iteration for each cluster. B. Proportion of top-1 predictions below
2A over the course of the iterations for each cluster. C. Performance for each cluster before the fine-
tuning and after the K=60 steps of CONFIDENCE BOOTSTRAPPING. D. Aggregated performance for
all the clusters weighted by their number of complexes, showing results using the oracle confidence
model and pretrained confidence model.
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Figure 8: Ablation studies on CONFIDENCE BOOTSTRAPPING tested on the 7 protein domain clus-
ters within the validation set. All performances are measured based on the top-1 pose when taking
8 inference samples with the fine-tuned models. No Real Samples refer to the algorithm using only
buffer samples in the loss, and Alpha=3 refers to the altered distribution of noise schedule during
training. A. Aggregated performance for all the clusters weighted by their number of complexes,
showing results for the different ablation experiments. B. Performance for each cluster before the
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