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ABSTRACT

We propose and analyze a deterministic sampling framework using Score-Based Transport Mod-
eling (SBTM) for sampling an unnormalized target density π. While diffusion generative mod-
eling relies on pre-training the score function ∇ log ft using samples from π, SBTM addresses
the more general and challenging setting where only the ∇ log π is known. SBTM approximates
the Wasserstein gradient flow on KL(ft∥π) by learning the time-varying score ∇ log ft on the
fly using score matching. The learned score gives immediate access to relative Fisher infor-
mation, providing a built-in convergence diagnostic. The deterministic trajectories are smooth,
interpretable, and free of Brownian-motion noise, while having the same distribution as ULA.
We prove that SBTM dissipates relative entropy at the same rate as the exact gradient flow, pro-
vided sufficient training. We further extend our framework to annealed dynamics, to handle non
log-concave targets. Numerical experiments validate our theoretical findings: SBTM converges
at the optimal rate, has smooth trajectories, and is easily integrated with annealed dynamics. We
compare to the baselines of ULA and annealed ULA.

1 INTRODUCTION

Diffusion generative modeling (DGM) (Song & Ermon, 2019; Song et al., 2020b) has emerged as a powerful set
of techniques to generate “more of the same thing,” i.e., given many samples from some unknown distribution
π, train a model to generate more samples from π. While the SDE-based generation is most commonly used
in practice, its deterministic counterpart, termed “probability flow ODE” by Song et al. (2020b), offers several
practical advantages – higher order solvers (Huang et al., 2024), better dimension dependence (Chen et al., 2024),
and interpolation in the latent space (Song et al., 2020a). The two processes are given by the reverse of the
Ornstein-Uhlenbeck (OU) process and the corresponding ODE, respectively:

dXt = (Xt + 2∇ log ft(Xt)) dt+
√
2 dBt (DGM SDE)

dXt = (Xt +∇ log ft(Xt)) dt, (DGM ODE)

where ft is the law of the OU process. The score ∇ log ft is learned by running the OU process from π to
N (0, Id), which crucially depends on having many samples from π. In this work we pose and attempt to answer
the following question: How to deterministically unnormalized density π in the absence of samples, using
techniques of diffusion generative modeling? This is a much harder problem than DGM. Indeed, DGM can be
reduced to unnormalized density sampling by estimating the score ∇ log π on the samples, but the converse is not
true. Hence, we tackle a strictly harder and more general problem than DGM.

Our main contribution is a deterministic sampling algorithm and a proof of exponentially fast convergence to
log-concave distributions. Unlike the classic Langevin dynamics, our algorithm produces smooth deterministic
trajectories, and gives access to the otherwise intractable score ∇ log ft. The convergence analysis is based on a
system of coupled gradient flows – a novel framework that can be of independent interest as a general technique
for analyzing convergence of NN-based approximations of gradient flows. In particular, we are not aware of any
other work that uses the neural tangent kernel for analyzing dynamically changing loss. Our main result is theorem
3.7.
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Figure 1: Left: Langevin dynamics (stochastic). Right: ours (deterministic). The deterministic algorithm has the
same density as the stochastic one but with smooth trajectories.

In Section 2 we introduce the system of coupled gradient flows, building on Score-Based Transport Modeling (Boffi
& Vanden-Eijnden, 2023). In Section 3 we prove that the resulting dynamics achieve the optimal convergence rate.
Section 4 adapts some of the results to annealed dynamics. Finally, in Section 5 we verify convergence in several
numerical experiments. We defer proofs to the Appendix.

2 WASSERSTEIN GRADIENT FLOW

Diffusion generative modeling (DGM SDE) and (DGM ODE) mixes fast because it is the reverse of a fast process,
namely the OU process. In the absence of samples from π, there is no known numerically tractable process
that can be run from π to f0 and reversed. Thus, the standard approach to classical sampling is to greedily
minimize some divergence, such as relative entropy KL(ft||π) := Eft log

ft
π , between ft and π at every time

step. In continuous time, this is called a Wasserstein gradient flow (GF). The Wasserstein GF on KL(·||π) can be
implemented stochastically or deterministically, mimicking equations (DGM SDE) and (DGM ODE):

dXt = ∇ log π(Xt) dt+
√
2 dBt, Bt := Brownian motion, (GF SDE)

dXt = ∇ log π(Xt) dt−∇ log ft(Xt) dt, ft := law(Xt), . (GF ODE)

See Jordan et al. (1998) for derivation and connection to Optimal Transport. For a deterministic process we focus
on (GF ODE). Since we assume access to the unnormalized density π, its score ∇ log π is known. The score
∇ log ft must be computed from samples X1

t , ..., X
n
t ∼ ft alone. This is the idea behind score-based transport

modeling.

Remark 2.1. While equations (DGM ODE) and (GF ODE) look similar, there is a big difference in how ∇ log ft
is obtained. In (DGM ODE), ∇ log ft is given by the OU process, and is approximated by a NN pre-trained on the
OU process. In (GF ODE), there is only one process – the gradient flow. Hence, ∇ log ft is given by the gradient
flow, and is approximated by a NN trained on the current sample without the costly pre-training.

2.1 SCORE-BASED TRANSPORT MODELING

Score-based transport modeling (SBTM) was introduced by Boffi & Vanden-Eijnden (2023) as a method of solving
Fokker-Planck equations, of which (GF ODE) is a special case. Additionally, SBTM was successfully employed
to other Fokker-Planck-type equations (Ilin et al., 2024; Lu et al., 2024; Huang & Wang, 2024).
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The core idea of SBTM is to approximate ∇ log ft with a neural network sΘt trained on the sample X1
t , ..., X

n
t .

The training is done the same way as in DGM – by minimizing the score matching loss (Hyvärinen, 2005):

L(s, f) : = Ef∥s−∇ log f∥2

= Ef

(
∥s∥2 + 2∇ · s

)
+ const(s) (expand ∥ · ∥2, integrate by parts)

=
1

n

n∑
i=1

(
∥s(Xi

t)∥2 + 2∇ · s(Xi
t)
)
+ const(s) if f =

1

n

n∑
i=1

δXi
t
.

Thus the SBTM dynamics are given by the coupled set of equations
dXt

dt
= ∇ log π(Xt)− sΘt(Xt), X0 ∼ f0 iid

dΘt

dt
= −η∇ΘtL(s

Θt , ft), Xt ∼ ft,

(SBTM)

where η(t) is a time rescaling factor that controls the amount of NN training relative to sampling dynamics.
Following Karras et al. (2022), we use the second-order Heun time integrator, which allows for larger time steps
without losing stability.

Remark 2.2. The neural network trains on the particles that were produced following the same neural network,
as opposed to the true solution of the Wasserstein GF (GF ODE). The commonsense intuition makes one suspect
that local errors will accumulate uncontrollably. Miraculously, this does not happen, see remark 3.3.

3 CONVERGENCE ANALYSIS

How quickly does ft converge to π in (SBTM)? To answer this question we must study decay rate of the
Lyapunov functional KL(ft||π). See Chewi (2023) for an excellent exposition.

3.1 ENTROPY DISSIPATION

Since (SBTM) approximates the Wasserstein GF on KL(ft||π), it is natural to ask for a simple sufficient condition
to guarantee the optimal rate of entropy dissipation. First, recall the following classical result

Theorem 3.1. If ft follows the Wasserstein GF on KL(·||π) then relative entropy dissipates at the rate of the
relative Fisher information:

− d

dt
KL(ft||π) = F(ft||π) := Eft

∥∥∥∥∇ log
ft
π

∥∥∥∥2 .
Additionally, if π satisfies the log-Sobolev inequality with constant α (e.g. if π is α-log-concave) then

KL(ft||π) ≤ KL(f0||π)e−
1
α t.

Thus, the best we can hope for when approximating the true Wasserstein GF with (SBTM) is to recover the original
rate of entropy dissipation − d

dtKL(ft||π) = F(ft||π). Indeed, this holds if the score matching loss is small:

Theorem 3.2 (Small loss guarantees optimal entropy dissipation). If ft is the density of Xt, which follows
dXt

dt
= ∇ log π(Xt)− st(Xt), X0 ∼ f0,

for any time-dependent vector field st, then

− d

dt
KL(ft||π) = F(ft||π)− Eft

〈
st −∇ log ft,∇ log

ft
π

〉
≥ 1

2
F(ft||π)−

1

2
L(st, ft). (3.1)

In particular, if L(st, ft) ≤ 1
2F(ft||π), then

− d

dt
KL(ft||π) ≥

1

4
F(ft||π).
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While theorem 3.2 looks deceptively simple, it has remarkable properties that form the intuition about SBTM.

Remark 3.3. Integrating (3.1) in time, one obtains

KL(fT ||π) ≤ −1

2

∫ T

0

F(ft||π) dt+
1

2

∫ T

0

L(st, ft) dt.

Since there no exponential term eT in the bound, local errors do not accumulate.

Remark 3.4. Theorem 3.2 applies to any time dependent vector field st(x), such as the RKHS parametrization in
Maoutsa et al. (2020). But, unlike kernels, the neural network parametrization can achieve any desired accuracy
by scaling compute.

3.2 BOUNDING SCORE MATCHING LOSS

John von Neumann famously said: “With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.” Similarly, with sufficient number of weights and training a neural network can fit arbitrary (finite) data.

Theorem 3.5. Assume that ft is any time-dependent density, X1
t , . . . , X

n
t are distributed according to ft, and the

neural network s = sΘt is trained with gradient descent

dΘt

dt
= −η∇Θt

Ln(st, ft), Ln(st, ft) :=
1

n

n∑
i=1

∥s(Xi
t)−∇ log f(Xi

t)∥2

and is such that the Neural Tangent Kernel (NTK)

Hi,j
α,β(t) =

N∑
k=1

∇θks
α
t (X

i
t)∇θks

β
t (X

j
t ), s(x) = (s1(x), . . . , sd(x))

is lower bounded by λ = λ(t) > 0, i.e. ∥Hv∥2 ≥ λ∥v∥2. Then as long as

η(t) ≥ n

λ

∂

∂τ

∣∣∣
τ=t

logLn(st, fτ ),

the loss Ln(st, ft) is non-increasing, i.e.

d

dt
Ln(st, ft) ≤ 0.

Remark 3.6. The assumption that the NTK is lower bounded in theorem 3.5 is non-trivial, but holds under rela-
tively mild assumptions (Karhadkar et al., 2024); the most restrictive one is that the NN size is superlinear in the
number of datapoints. We expect that even this can be weakened under additional regularity assumptions of the
target function.

Combining theorems 3.1 and 3.5 shows that the convergence rate of SBTM matches the convergence rate of the
true GF (GF ODE).

Theorem 3.7. Suppose that Xt and Θt follow (SBTM) and η and H are as in theorem 3.5. If the initial loss is
small and the true loss L is well-approximated by the training loss Ln

Ln(s0, f0) ≤
1

4
ε, ε := inf

t≤T
F(ft||π), (3.2)

|Ln(st, ft)− L(st, ft)| ≤
1

4
ε, (3.3)

then SBTM dissipates relative entropy at the same rate, up to factor 1
4 , as the true Wasserstein GF on KL(·||π):

− d

dt
KL(ft||π) ≥

1

4
F(ft||π).

If π satisfies the log-Sobolev inequality with constant α then convergence is exponential:

KL(ft||π) ≤ KL(f0||π)e−
1
4α t.
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Remark 3.8. Since st ≈ ∇ log ft, relative Fisher information may be approximated by

F(ft||π) ≈ Fn(ft||π) :=
1

n

n∑
i=1

∥s(Xi)−∇ log π(Xi)∥2.

One may stop the sampling when Fn(ft||π) ≤ ε for some predefined ε. This makes condition (3.2) practical.

If particles X1(t), . . . , Xn(t) were independent, the law of large numbers would imply

lim
n→∞

|Ln(st, ft)− L(st, ft)| = 0,

satisfying condition (3.3) for large enough n. Further, one may hope for propagation of chaos, namely that as
n → ∞, any finite subset of particles becomes independent. We have not attempted to find the set of assumptions
to guarantee this. However, in numerical experiments, we treat Ln as L, and observe the optimal rate of relative
entropy dissipation (e.g. in the left panel of figure 2).

4 ANNEALED LANGEVIN DYNAMICS

Classical sampling can be broken down into three distinct parts: mode discovery, mode weighting, and mode
approximation. While Langevin dynamics performs mode approximation very fast, both mode discovery and
mode weighting are challenging. For example, even without any dynamics, in the absence of samples from π, the
mere discovery of a mode with support of small width h in d dimensions requires Ω

(
h−d

)
function evaluations.

This is in contrast to DGM, where the reverse of the OU process converges to π fast, without any log-concavity
assumptions, see Chen et al. (2022). While the problem of mode discovery is fundamentally hard, empirically it
helps to pick an interpolation or annealing between f0 and π to “guide” ft, similar to how the forward OU process
guides the reverse process in DGM. The standard annealing path is the geometric interpolation πt ∝ f1−t

0 πt (Neal,
2001). While classical, this interpolation may require teleportation of mass, because the velocity Ẋt can become
singular, as noted by Máté & Fleuret (2023); Chemseddine et al. (2024). Recently, the dilation interpolation was
proposed by Chehab & Korba (2024), which also suffers from an exploding velocity at t = 0 but the singularity
can be controlled numerically.

One obtains a similar entropy dissipation estimate in annealed dynamics. Taking πt = π recovers theorem 3.2.

Theorem 4.1 (Entropy Dissipation in Annealed Dynamics). If πt is any time-dependent density, st any time-
dependent vector field, and

dXt

dt
= ∇ log πt(Xt)− s(Xt)

then

− d

dt
KL(ft||π) = Eft

〈
st −∇ log π,∇ log

ft
πt

〉
− Eft

〈
st −∇ log ft,∇ log

ft
π

〉
.

In particular, if L(st, ft) = 0, then

− d

dt
KL(ft||π) = Eft

〈
∇ log

ft
π
,∇ log

ft
πt

〉
. (4.1)

Theorem 4.1 gives an indirect way to test for L(st, ft) = 0 by testing equality (4.1). This is important, because
the loss L(st, ft) cannot be computed from a finite sample X1

t , . . . , X
n
t of ft. Numerically, we observe that (4.1)

nearly holds (see figures 4 and 6).

5 EXPERIMENTS

We demonstrate the optimal rate of relative entropy dissipation in several experiments in low dimensions, including
challenging non log-concave targets. We compare SBTM to its stochastic counterpart given by (GF SDE). Addi-
tionally, we demonstrate the flexibility of SBTM by simulating annealed Langevin dynamics with the geometric
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and the dilation annealing paths (Chehab & Korba, 2024) on the two most challenging examples, and compare to
the corresponding SDEs such as the ULA used in (Chehab & Korba, 2024). We do not compare SBTM to SVGD
(Liu & Wang, 2016) because without additional tricks such as momentum and cherry-picking the kernel band-
width we were unable to obtain even remotely good performance from SVGD. We emphasize while the numerical
experiments presented below would be trivial in the context of DGM, they are quite challenging in our context.

5.1 LINEAR FOKKER-PLANCK EQUATION

First, we consider an example that admits an analytic solution, ft in (5.1), which allows us to compute the true
entropy dissipation and the L2 distance to the true solution.

π = N (0, 1), ft = N
(
0, 1− e−2(t+0.1)

)
(5.1)

The SDE solution is more noisy than SBTM. Moreover, SBTM exhibits close-to-optimal relative entropy dissi-
pation rate, as evidenced by the close alignment of the orange, green, and red lines in the left panel of figure 2.

Figure 2: Left: entropy dissipation of SBTM (ours) and SDE (stochastic). SBTM approximates entropy decay rate
perfectly, while SDE is extremely noisy. Right: L2 error to the true solution. SBTM produces lower error with
much smoother trajectory.

5.2 GAUSSIAN MIXTURE

This and all other examples do not admit an analytic solution but we can still compare the quality of the final
sample as well as compare the trajectories of the SDE and SBTM. Here we sample from the Gaussian mixture
π = 1

4N (−2, 1) + 3
4N (2, 1). As evidences by the change of slope in the right panel of figure 3, around t = 2.5

the Markov chain enters metastability, which plagues the convergence to non log-concave targets. Here the non-
log-concavity is mild, so the Markov chain still converges in a reasonable time frame.

5.3 GAUSSIAN MIXTURE WITH GEOMETRIC ANNEALING

When the target is non log-concave, its annealed score can be used. Here we use the classical geometric annealing.

π =
1

4
N (−4, 1) +

3

4
N (4, 1)

∇ log πt = (1− t)∇ log f0 + t∇ log πt.

The match between the orange and blue lines in the right panel of figure 4 indirectly indicates very good score
approximation, as per (4.1).
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Figure 3: Left: reconstructed density of SBTM. It approximates the solution pefectly. Right: entropy dissipation
of SBTM (ours) and SDE (stochastic). SBTM approximates entropy decay rate perfectly, while SDE is extremely
noisy.

Figure 4: Left: reconstructed density of SBTM. It approximates the solution well despite the non-log-concavity.
Right: entropy dissipation of SBTM (ours) and SDE (stochastic). SBTM approximates entropy decay rate perfectly
even in annealed dynamics.

5.4 GAUSSIAN MIXTURE WITH DILATION ANNEALING

Sampling from a Gaussian mixture with 16 modes requires a better annealing path. We employ the annealing
schedule πt(x) = π

(
T
t x

)
from Chehab & Korba (2024). Figure 5 shows the densities at different time points, and

figure 6 shows the entropy dissipation as in (4.1). This is a very challenging example for classical sampling due
to the extreme non-log-concavity of the target. While the dilation annealing performs much better on this example
than the geometric annealing, both perform equally sub-par on example 5.3.

6 CONCLUSION

In this work we use tools and intuition from diffusion generative modeling to tackle the harder problem of sam-
pling π given only ∇ log π but not samples from π. Our method allows for deterministic sampling with smooth
trajectories and optimal rate of entropy dissipation. Additionally, SBTM gives access to the score, which allows
for the computation of relative Fisher info to estimate convergence, making the dynamics interpretable. Finally,
SBTM integrates well with annealed dynamics to sample from challenging non log-concave densities.
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Figure 5: Top: SBTM (ours). Bottom: SDE (Chehab & Korba, 2024).

Figure 6: Relative entropy decay in SBTM. The estimate in (4.1) nearly holds, indicating good score approximation
and allowing for convergence monitoring.
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7 APPENDIX

7.1 RELATED WORK

Stochastic-gradient MCMC. Classical samplers such as the overdamped and unadjusted Langevin algorithms
can be interpreted as Wasserstein gradient flows (WGF) of the KL functional. Their convergence is now well
understood under log-Sobolev or isoperimetric conditions (Roberts & Tweedie, 1996; Wibisono, 2018; Dalalyan
& Karagulyan, 2017; Vempala & Wibisono, 2019; Chewi, 2023). Although provably fast for log-concave targets,
these stochastic methods mix slowly in multimodal landscapes, motivating variance reduction, tempering, and
control-variate extensions.

Deterministic interacting particles. Stein Variational Gradient Descent (SVGD), introduced by Liu & Wang
(2016), performs steepest descent of KL(ft ∥ π) in a Stein-RKHS and admits a mean-field limit that solves a
nonlinear Fokker–Planck PDE (Duncan et al., 2019). Follow-ups improved uncertainty quantification via annealing
(Corrales et al., 2025), proposed kernel mean-embedding flows (Wang & Nüsken, 2024), introduced unit-time
sampling with the Kernel Fisher–Rao flow (Maurais & Marzouk, 2024), and connected these ideas to ensemble
Kalman transport maps (Taghvaei et al., 2018). While fully deterministic, such methods still rely on handcrafted
kernels and can suffer in high dimensions.

Score matching for unnormalised models. Score matching, proposed by Hyvärinen (2005), estimates the score
without the partition function. Its link to denoising autoencoders was clarified by Vincent (2011). In the sampling
context, minimum-discrepancy and energy-based variants have been developed (Oates, 2022; Chen et al., 2022),
but none analyse the feedback loop created when the score network is trained online from the evolving particle
cloud—an issue central to our setting.

Score-driven deterministic flows. Probability-flow ODEs are exact deterministic counterparts of score-based
diffusions (Song & Ermon, 2019; Song et al., 2020b). Recent analyses establish fast convergence when the score
is pre-trained from data (Huang et al., 2024; Chen et al., 2024). Learning the score on the fly for an unnormalised
target was first proposed in Score-Based Transport Modeling (SBTM) by Boffi & Vanden-Eijnden (2023) and
later extended via neural JKO schemes (Xu et al., 2022) and smooth deterministic diffusions (Elamvazhuthi et al.,
2024). Our work tightens these results by proving entropy decay for the coupled particle–network dynamics.

Annealing and tempering. Bridging a simple reference distribution and a rugged target through an
inverse-temperature path is a staple of importance sampling and sequential Monte Carlo (Neal, 2001). Determin-
istic analogues include annealed SVGD (Corrales et al., 2025) and, on the diffusion side, temperature-scheduled
probability-flow ODEs (Huang et al., 2025).

Summary. We unify and advance these strands by (i) coupling a transport ODE with online score matching for
an unnormalised target, (ii) proving dimension-free exponential decay of KL(ft ∥ π) under standard log-Sobolev
assumptions, and (iii) extending the analysis to annealed schedules for non-convex densities—thereby pushing
deterministic sampling closer to practical applicability.

7.2 PROOFS

Theorem 7.1 (Entropy Dissipation in Annealed Dynamics). If πt is any time-dependent density, st any time-
dependent vector field, and

dXt

dt
= ∇ log πt(Xt)− s(Xt)
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then

− d

dt
KL(ft||π) = Eft

〈
st −∇ log π,∇ log

ft
πt

〉
− Eft

〈
st −∇ log ft,∇ log

ft
π

〉
.

In particular, if L(st, ft) = 0, then

− d

dt
KL(ft||π) = Eft

〈
∇ log

ft
π
,∇ log

ft
πt

〉
.

Proof. If ft is the density of Xt, where Xt satisfies

d

dt
Xt = ∇ log πt(Xt)− st(Xt)

then ft satisfies the Fokker-Planck equation

∂tft +∇ · (ft(∇ log πt − st)) = 0.

Thus, we may explicitly compute the relative entropy dissipation rate as

d

dt

∫
Rd

ft log
ft
π

dx

=

∫
Rd

∂tft(log ft − log π) dx+

∫
Rd

ft∂t log ft dx

= −
∫
Rd

⟨st −∇ log πt,∇ log ft −∇ log π⟩ ft dx,

where we used integration by parts and that
∫
Rd ft∂t log ft dx is zero for the last equality.

Proofs of 3.1 and 3.2. By choosing πt = π in the proof of theorem 4.1, we obtain

d

dt

∫
Rd

ft log
ft
π

dx

= −
∫
Rd

⟨st −∇ log π,∇ log ft −∇ log π⟩ ft dx.

By taking st = ∇ log ft exactly, we recover the proof of the classical result 3.1. Otherwise, adding and subtracting
∇ log ft in the integrand, we get

d

dt

∫
Rd

ft log
ft
π

dx

= −
∫
Rd

∥∇ log ft −∇ log π∥2ft dx+

∫
Rd

⟨∇ log ft − st,∇ log ft −∇ log π⟩ ft dx

≤ −1

2

∫
Rd

∥∇ log ft −∇ log π∥2ft dx+
1

2

∫
Rd

∥∇ log ft − st∥2ft dx

The last line is by Young’s inequality.

Proof of theorem 3.5. We start with an elementary computation based on chain rule.
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d

dt
L(st, ft) =

∂

∂τ

∣∣∣
τ=t

L(sτ , ft) +
∂

∂τ

∣∣∣
τ=t

L(st, fτ )

∂

∂τ

∣∣∣
τ=t

L(sτ , ft) = ∇ΘL · d

dt
Θ

= −η

N∑
k=1

(∇θkL)
2

= − η

n2

N∑
k=1

(
[s(Xi)−∇ log f(Xi)] · ∇θks(X

i)
)2

= − η

n2

n∑
i,j=1

d∑
α,β=1

[sα(X
i)−∇α log f(Xi)]Hi,j

α,β [sβ(X
j)−∇β log f(X

j)]

= − η

n2
∥s−∇ log f∥2H .

where

Hi,j
α,β =

N∑
k=1

∇θksα(X
i)∇θksβ(X

j)

is called the Neural Tangent Kernel. Its lowest eigenvalue determines the convergence speed of gradient descent.
If ∥Hv∥2 ≥ λ∥v∥2, then

d

dt
L(st, ft) =

∂

∂τ

∣∣∣
τ=t

L(sτ , ft) +
∂

∂τ

∣∣∣
τ=t

L(st, fτ )

≤ −ηλ

n
L(st, ft) +

∂

∂τ

∣∣∣
τ=t

L(st, fτ ).

Thus, the loss is non-increasing if

η(t) ≥ n

λ

∂

∂τ

∣∣∣
τ=t

logL(st, fτ ).
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