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Abstract

It is well known that eigenfunctions of a kernel play a crucial role in kernel
regression. Through several examples, we demonstrate that even with the same
set of eigenfunctions, the order of these functions significantly impacts regression
outcomes. Simplifying the model by diagonalizing the kernel, we introduce an
over-parameterized gradient descent in the realm of sequence model to capture the
effects of various orders of a fixed set of eigen-functions. This method is designed
to explore the impact of varying eigenfunction orders. Our theoretical results show
that the over-parameterization gradient flow can adapt to the underlying structure of
the signal and significantly outperform the vanilla gradient flow method. Moreover,
we also demonstrate that deeper over-parameterization can further enhance the
generalization capability of the model. These results not only provide a new
perspective on the benefits of over-parameterization and but also offer insights into
the adaptivity and generalization potential of neural networks beyond the kernel
regime.

1 Introduction

In recent years, the remarkable success of neural networks in a wide array of machine learning
applications has spurred a search for theoretical frameworks capable of explaining their efficacy
and efficiency. One such framework is the Neural Tangent Kernel (NTK) theory (see, e.g., Jacot
et al. [2018], Allen-Zhu et al. [2019]), which has emerged as a pivotal tool for understanding the
dynamics of neural network training in the infinite-width limit. The NTK theory posits that the
training dynamics of wide neural networks can be closely approximated by a kernel gradient descent
method with the corresponding NTK, elucidating their convergence behaviors during gradient descent
and shedding light on their generalization capabilities. Parallel to this, an extensive literature on
kernel regression (see, e.g., Bauer et al. [2007], Yao et al. [2007]) has studied its generalization
properties, showing its minimax optimality under certain conditions and providing insights into the
bias-variance trade-off. Thus, one can almost fully understand the generalization properties of neural
networks in the NTK regime by analyzing the kernel regression method.

However, the application of NTK theory to analyze neural networks, while invaluable, essentially
frames the problem within a traditional statistical method by a fixed kernel. The NTK analysis, by its
reliance on the fixed kernel approximation, can not entirely account for the adaptability and flexibility
exhibited by neural networks, particularly those of finite width that deviate from the theoretical
infinite-width limit [Woodworth et al., 2020]. Moreover, empirical evidence [Wenger et al., 2023,
Seleznova and Kutyniok, 2022] also suggests that the assumption of a constant kernel during training,
a cornerstone of NTK analysis, may not hold in practical scenarios where the network architecture or
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initialization conditions foster a dynamic evolution of the kernel. Also, Gatmiry et al. [2021] showed
the benefits brought by the adaptivity of the kernel on a three-layer neural network. These results
underscore the need for a more nuanced understanding of neural network training dynamics, one that
considers the intricate interplay between network architecture, initialization, and the optimization
process beyond the simplifications of NTK theory.

Recently, another branch of research has focused on the over-parameterization nature of neural
networks beyond the NTK regime, exploring how over-parameterization can lead to implicit regu-
larization and even improve the generalization. In terms of training dynamics, studies (Hoff [2017],
Gunasekar et al. [2017], Arora et al. [2019a], Kolb et al. [2023], etc.) in this domain have revealed
that over-parameterized models, particularly those trained with gradient descent and its variants,
exhibit biases towards simpler, more generalizable functions, even in the absence of explicit reg-
ularization terms. Moreover, in terms of generalization, recent works [Vaškevičius et al., 2019,
Zhao et al., 2022, Li et al., 2021a] have shown that in the setting of high dimensional linear regres-
sion, over-parameterized models with proper initialization and early stopping can achieve minimax
optimal recovery under certain conditions. These results underscore the potential and benefits of
over-parameterized models that go beyond the traditional statistical paradigms.

In this work, we will incorporate the insights from the kernel regression and the over-parameterization
theory to investigate how over-parameterization can improve generalization and also adaptivity under
the non-parametric regression framework. As a first step towards this direction, we will focus on the
sequence model, which is an approximation of a wide spectrum of non-parametric models including
kernel regression. We will show that, by dynamically adapting to the underlying structure of the signal
during the training process, over-parameterization method with gradient descent can significantly
improve the generalization properties compared with the fixed-eigenvalues method. We believe that
our results provide a new perspective on the benefits of over-parameterization and offer insights into
the adaptivity and generalization properties of neural networks beyond the NTK regime.

1.1 Our contributions

Limitations of the (fixed) kernel regression. In this work, we first investigate the limitations of
the (fixed) kernel regression method by specific examples, illustrating that the traditional kernel
regression method suffers from the misalignment between the kernel and the truth function. We
show that even when the eigen-basis of the kernel is fixed, the associated eigenvalues, particularly
their alignment with the truth function’s coefficients in the eigen-basis, can significantly affect the
generalization properties of the method.

Advantages of over-parameterized gradient descent. Focusing on the alignment between the
kernel’s eigenvalues and the truth signal (the truth function’s coefficients), we consider the sequence
model and introduce an over-parameterization method (8) that can dynamically adjust the eigenvalues
during the learning process. We show that with proper early-stopping, the over-parameterization
method can achieve nearly the oracle convergence rate regardless of the underlying structure of the
signal, significantly outperforming the vanilla fixed-eigenvalues method when the misalignment is
severe. In addition, the over-parameterization method is also adaptive by its universal choice of the
stopping time, which is independent of the signal’s structure.

Benefits of deeper parameterization. Moreover, we also consider deeper over-parameterization
(14) and explore how depth affects the generalization properties of the over-parameterization method.
Our results show that adding depth can further ease the impact of the initial choice of the eigenvalues,
thus improving the generalization capability of the model. We also provide numerical experiments to
validate our theoretical results in Section C.

1.2 Notations

We denote by ℓ2 =
{
(aj)j≥1 |

∑
j≥1 a

2
j < ∞

}
the space of square summable sequences. We write

a ≲ b if there exists a constant C > 0 such that a ≤ Cb and a ≍ b if a ≲ b and b ≲ a, where the
dependence of the constant C on other parameters is determined by the context.
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2 Limitations of Fixed Kernel Regression

Let us consider the non-parametric regression problem given by y = f∗(x) + ε, where ε is the
noise with mean zero and variance σ2, x ∈ X and X is the input space with µ being a probability
measure supported on X . The function f∗(x) represents the unknown regression function we aim
to learn. Suppose we are given samples {(xi, yi)}ni=1, drawn i.i.d. from the model. We denote
X = (x1, . . . , xn)

⊤ and Y = (y1, . . . , yn)
⊤.

Let k : X × X → R be a continuous positive definite kernel and Hk be its associated reproducing
kernel Hilbert space (RKHS). The well-known Mercer’s decomposition [Steinwart and Scovel, 2012]
of the kernel function k gives

k(x, y) =

∞∑
j=1

λjej(x)ej(y), (1)

where (ej)j≥1 is an orthonormal basis of L2(X ,dµ), and (λj)j≥1 are the eigenvalues of k in

descending order. Moreover, we can introduce the feature map Φ(x) = (λ
1
2
j ej(x))j≥1 : X → ℓ2 (as

a column vector) such that k(x, x′) = ⟨Φ(x),Φ(x′)⟩. With the feature map, a function f ∈ Hk can
be represented as f(x) = ⟨Φ(x), β⟩ℓ2 for some β ∈ ℓ2.

Defining the empirical loss as L = 1
2n

∑n
i=1(yi − f(xi))

2, we can consider an estimator ft =
⟨Φ(x), βt⟩ℓ2 governed by the following gradient flow on the feature space

β̇t = −∇βL =
1

n

n∑
i=1

(yi − ⟨Φ(xi), βt⟩ℓ2)Φ(xi), where β0 = 0. (2)

This kernel gradient descent (flow) estimator corresponds to neural networks at infinite width limit by
the celebrated neural tangent kernel (NTK) theory [Jacot et al., 2018, Allen-Zhu et al., 2019].

An extensive literature [Yao et al., 2007, Lin et al., 2018, Li et al., 2024a] has studied the generalization
performance of such kernel gradient descent estimator. From the Mercer’s decomposition, we can
further introduce interpolation spaces for s ≥ 0 as

[Hk]
s :=

{ ∞∑
j=1

βjλ
s
2
j ej

∣∣ (βj)j≥1 ∈ ℓ2
}
, (3)

which is equipped with the norm ∥f∥[Hk]s
= ∥β∥ℓ2 for f =

∑∞
j=1 βjλ

s
2
j ej . Particularly, the

interpolation space [Hk]
1 corresponds to the RKHS Hk itself. Then, assuming the eigenvalue decay

rate λj ≍ j−γ , the standard results (see, e.g., Yao et al. [2007], Li et al. [2024a]) in kernel regression
state that the optimal rate of convergence under the source condition f∗ ∈ [Hk]

s with ∥f∗∥[Hk]s
≤ 1

is n− sγ
sγ+1 . However, since the interpolation space [Hk]

s is defined via the eigen-decomposition of
the kernel, the generalization performance of kernel regression methods is ultimately related to the
eigen-decomposition of the kernel and the decomposition of the target function under the basis, so the
performance is intrinsically limited by the relation between the target function and the kernel itself.
In other words, the choice of the kernel could affect the performance of the method. To demonstrate
this quantitatively, let us consider the following examples.
Example 2.1 (Eigenfunctions in common order). It is well known that kernels possessing certain
symmetries, such as dot-product kernels on the sphere or translation-invariant periodic kernels on the
torus, share the same set of eigenfunctions (such as the spherical harmonics or the Fourier basis). If
we consider a fixed set of eigenfunctions {ej}j≥1 and a given truth function f∗, for two kernels k1
and k2 with eigenvalue decay rates λj,1 ≍ j−γ1 and λj,2 ≍ j−γ2 respectively, it follows that:

f∗ ∈ [Hk1
]s1 ⇐⇒ f∗ ∈ [Hk2

]s2 for γ1s1 = γ2s2.

Given that the convergence rate is dependent solely on the product sγ, the convergence rates relative
to the two kernels will be identical.

Example 2.1 seems to show that when the eigenfunctions are fixed, kernel regression methods yield
similar performance across different kernels. However, it’s important to note that this similarity is due
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to both kernels having the same eigenvalue decay order, which aligns with the predetermined order
of the basis. In fact, if the eigenvalue decay order of a kernel deviates from that of the true function,
even if the eigenfunction basis remain the same, it can lead to significantly different convergence
rates. Let us consider the following example to illustrate this point.
Example 2.2 (Low-dimensional structure). Consider translation-invariant periodic kernels on the
torus Td = [−1, 1)d with the uniform distribution. Then, their eigenfunctions are given by the
Fourier basis ϕm(x) = exp(iπ ⟨m, x⟩), m ∈ Zd. Within this basis, a target function f∗(x) can be
represented as:

f∗ =
∑

m∈Zd

fmϕm(x).

Assuming f∗ exhibits a low-dimensional structure, specifically f∗(x) = g(x1, . . . , xd0
) for some

d0 < d, and considering g belongs to the Sobolev space Ht(Td0) of order t, the coefficients fm can
be shown to simplify to:

fm =

{
gm1

, m = (m1,0), m1 ∈ Zd0 ,

0, otherwise.

Let us now consider two translation-invariant periodic kernels k1 and k2 given in terms of their
eigenvalues: k1 is given by λm,1 = (1 + ∥m∥2)−r for some r > d/2, whose RKHS is the full-
dimensional Sobolev space Hr(Td); k2 is given by λm,2 = (1 + ∥m∥2)−r for m = (m1,0) and
λm,2 = 0 otherwise. Then, the function f∗ belongs to both [Hk1

]s and [Hk2
]s for s = t/r. After

reordering the eigenvalues in descending order, the decay rates for the two kernels are identified
as γ1 = 2r/d and γ2 = 2r/d0. Thus, the convergence rates with respect to the two kernels are
respectively:

2t

2t+ d
and

2t

2t+ d0
.

Therefore, we see that when d is significantly larger than d0, the convergence rate for the second
kernel notably surpasses that of the first.

This example illustrates that the eigenvalues can significantly impact the learning rate, even when
the eigenfunctions are the same. In the scenario presented, the second kernel benefits from the
low-dimensional structure of the target function by focusing only on the relevant dimensions, whereas
the first one suffers from the curse of dimensionality since it considers all dimensions. The key point
to take away from this example is the alignment between the kernel and the target function. To
generalize this example, we can consider the following example where the order of the eigenvalues
does not align with the order of the target function’s coefficients.
Example 2.3 (Misalignment). Let us fix a set of the eigenfunctions (ej)j≥1 and expand the truth
function as f∗ =

∑
j≥1 θ

∗
j ej . Note that by giving (ej)j≥1, we already defined an order of the basis

in j, but coefficients θ∗j of the truth function are not necessarily ordered by j. Suppose that an index

sequence ℓ(j) gives the descending order of
∣∣∣θ∗ℓ(j)∣∣∣. Then we can characterize the misalignment by

the difference between ℓ(j) and j. Specifically, we assume that∣∣∣θ∗ℓ(j)∣∣∣ ≍ j−(p+1)/2 and ℓ(j) ≍ jq for p > 0, q ≥ 1, (4)

where larger q indicates a more severe misalignment. In terms of eigenvalues, let us consider
λj,1 ≍ j−γ , which is in the order of j, while λℓ(j),2 ≍ j−γ , which is in the order of ℓ(j). Then, the
convergence rates with the two sequences of coefficients are respectively

p

p+ q
and

p

p+ 1
.

Therefore, the convergence rates can differ greatly if the misalignment is significant, namely when q
is large.

From Example 2.2 and Example 2.3, we find that it is beneficial that the eigenvalues of the kernel
align with the structure of the target function. However, one can hardly choose the proper kernel a
priori, especially when the structure of the target function is unknown, so the fixed kernel regression
can be limited by the kernel itself and be unsatisfactory. Motivated by these examples, we would like
to explore the idea of an “adaptive kernel approach,” where the kernel can be learned from the data.
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3 Adapting the Eigenvalues by Over-parameterization in the Sequence Model

Motivated by the examples in the last section, as a first step toward the adaptive kernel approach, we
consider adapting the eigenvalues of the kernel with eigenfunctions fixed. To simplify the analysis,
we would like to the following sequence model, which captures the essences of many statistical
models [Brown et al., 2002, Johnstone, 2017].

The sequence model Let us consider the sequence model [Johnstone, 2017]

zj = θ∗j + ξj , j ≥ 1 (5)

where (zj)j≥1 is the observation, θ∗ = (θ∗j )j≥1 ∈ ℓ2 is a sequence of unknown truth parameters
and ξj , j ≥ 1 are (not necessarily independent) ϵ2-sub-Gaussian random variables with mean zero
and variance at most ϵ2. For any estimator θ̂ = (θ̂j)j≥1, the generalization error is measured
by R(θ̂;θ∗) =

∑∞
j=1(θ̂j − θ∗j )

2. Under the asymptotic framework, we are often interested in
the behavior of the generalization error as ϵ → 0. Here, we note that the connection between
non-parametric regression and the sequence model yields ϵ2 ≍ n−1.

To see the connection between the sequence model and the non-parametric regression model, we first
write the gradient flow (2) in the RKHS in the matrix form as

β̇t = −∇βL = − 1

n
Φ(X)Φ(X)⊤βt +

1

n
Φ(X)y,

where the feature matrix Φ(X) = (Φ(x1), . . . ,Φ(xn))∞×n and y = (y1, . . . , yn)
⊤. Now, since the

eigenfunctions (ej)j≥1 are fixed, intuitively, the gradient flow can be diagonalized in the eigen-basis
since 1

nΦ(X)Φ(X)⊤ ≈ Λ = diag(λ1, λ2, . . . ) and the noise components are approximately normal
with variance σ2/n by the central limit theorem. Thus, we reach the sequence model. We refer to
Subsection B.1 for a more detailed explanation of the connection between the sequence model and
the kernel regression model.

Regarding the power series expansion (3) in RKHS, for a sequence (λj)j≥1 of descending positive

numbers (e.g., λj = j−γ), we can consider similarly the parameterization θj = λ
1
2
j βj , j ≥ 1 in ℓ2.

Since (λj)j≥1 corresponds to the eigenvalues of the kernel in the kernel regression, here we also
refer to (λj)j≥1 as the “eigenvalues” with a little abuse of terminology.

With the component-wise loss function Lj(θj) = 1
2 (θj − zj)

2, we can apply a gradient descent
(gradient flow) with early stopping to derive a component-wise estimator θ̂j . If we directly param-

eterize θj = λ
1
2
j βj with only βj trainable, we obtain the vanilla gradient descent method, which

is just the diagonalized version of the kernel gradient descent. The estimator is simply given by
θ̂j = (1− e−λjt)zj , where t is the stopping time, and its generalization error is easily computed as

ER(θ̂GF;θ∗) = B2
GF(t;θ

∗) + ϵ2VGF(t) =

∞∑
j=1

(
e−λjtθ∗j

)2
+ ϵ2

∞∑
j=1

(
1− e−λjt

)2
. (6)

We note here that these quantities also correspond to generalization error in the (fixed) kernel
regression setting [Li et al., 2024a]. In particular, under the setting of (4) and λj ≍ j−γ , by choosing
t ≍ ϵ−

2qγ
p+q , we obtain the convergence rate ϵ

2p
p+q , which is far from optimal if q is large.

3.1 Over-parameterized gradient descent

By the discussion in the previous section, we find it essential to adjust the eigenvalues beyond the
fixed ones (λj)j≥1. Inspired by the over-parameterization nature of neural networks, we can also
consider over-parameterization with gradient descent in our sequence model to train the eigenvalues:
Replacing λ

1/2
j with trainable parameter aj , let us parameterize

θj = ajβj , (7)
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where aj aims to learn the eigenvalues and βj aims to learn the signal. We consider the following
gradient flow (simultaneously for each component j):

ȧj = −∇aj
Lj , β̇j = −∇βj

Lj ,

aj(0) = λ
1/2
j , βj(0) = 0.

(8)

Here, (λj)j≥1 serves as the initial eigenvalues, while the trainable parameters (aj)j≥1 are updated to
adjust the eigenvalues during the training process.

To state our results with the most generality, let us introduce the following quantities on the target
parameter sequence θ∗:

Jsig(δ) :=
{
j :
∣∣θ∗j ∣∣ ≥ δ

}
, Φ(δ) := |Jsig(δ)|, Ψ(δ) =

∑
j /∈Jsig(δ)

(θ∗j )
2. (9)

The quantity Φ(δ) measures the number of significant components in the target parameter sequence
θ, while Ψ(δ) measures the contribution of the insignificant components, which are commonly
considered in the literature on the sequence model [Johnstone, 2017]. For the concrete setting of (4),
it is easy to show that

Φ(δ) ≍ δ−
2

p+1 , Ψ(δ) ≍ δ
2p

p+1 . (10)

Moreover, we make the following assumption on the span of the significant components.
Assumption 1. There exists constants κ ≥ 0 and Csig > 0 such that

max Jsig(δ) ≤ Csigδ
−κ, ∀δ > 0. (11)

Assumption 1 says that the span of the significant components, namely those with
∣∣θ∗j ∣∣ ≥ δ, grows at

most polynomially in 1/δ. This assumption is mild and holds for many practical settings, such as
cases considered in Example 2.3 (κ = 2q

p+1 for the first kernel). In other perspective, it imposes a
mild condition on the misalignment between the ordering of the truth signal and the ordering of the
eigenvalues, where κ measures the misalignment between the ordering of θj and the ordering of j
itself. Then, the following theorem characterizes the generalization error of the resulting estimator.
Theorem 3.1. Consider the sequence model (5) under Assumption 1. Fix λj ≍ j−γ for some γ > 1

and let θ̂Op be the estimator given by the gradient flow (8) stopped at time t. Then, there exists some
constants B1, B2 > 0 such that when B1ϵ

−1 ≤ t ≤ B2ϵ
−1, we have

ER(θ̂Op,θ∗) ≲ ϵ2
[
Φ(ϵ) + ϵ−1/γ

]
+Ψ(ϵ ln(1/ϵ)) as ϵ → 0. (12)

3.2 Towards deeper over-parameterization

Let us further introduce deeper over-parameterization by adding extra D-layers:

θj = ajb
D
j βj (13)

and consider the gradient flow

ȧj = −∇aj
Lj , ḃj = −∇bjLj , β̇j = −∇βj

Lj ,

aj(0) = λ
1/2
j , bj(0) = b0 > 0, βj(0) = 0,

(14)

where b0 is the common initialization of all bj . We remark here if one considers the over-
parameterization θj = ajbj,1 · · · bj,Dβj with the same initialization bj,k = b0, k = 1, . . . , D, then
bj,k’s remain to be the same by symmetry, so this is equivalent to our parameterization θj = ajb

D
j βj .

The following theorem presents an upper bound for the generalization error by this deeper over-
parameterized gradient flow.
Theorem 3.2. Consider the sequence model (5) under Assumption 1. Fix λj ≍ j−γ for some γ > 1

and let θ̂Op,D be the estimator given by the gradient flow (14) stopped at time t. Then, by choosing
b0 ≍ ϵ

1
D+2 , there exists some constants B1, B2 > 0 such that when B1ϵ

−1 ≤ bD0 t ≤ B2ϵ
−1, we

have

ER(θ̂Op,D,θ∗) ≲ ϵ2
[
Φ(ϵ) + ϵ−

2
D+2

1
γ

]
+Ψ(ϵ ln(1/ϵ)) as ϵ → 0. (15)

6



3.3 Discussion of the results

Benefits of Over-parameterization Theorem 3.1 and Theorem 3.2 demonstrate the advantage of
over-parameterization in the sequence model. Compared with the vanilla fixed-eigenvalues gradient
descent method, the over-parameterized gradient descent method can significantly improve the
generalization performance by adapting the eigenvalues to the truth signal. For a more concrete
example, if we consider the setting of (4), plugging (10) yields the following corollary.
Corollary 3.3. Consider the over-parameterized gradient descent in (8) (setting D = 0) or (14).
Suppose (4) holds and λj ≍ j−γ for γ > 1 and γ ≥ p+1

D+2 . Then, by choosing b0 ≍ ϵ
1

D+2 (if D ̸= 0)

and t ≍ ϵ−
2D+2
D+2 , we have

ER(θ̂Op,D,θ∗) ≲ ϵ
2p

p+1 (ln(1/ϵ))
2p

p+1 as ϵ → 0. (16)

In comparison, the vanilla gradient flow method yields the rate ϵ
2p

p+q .

Ignoring the logarithmic factor, Corollary 3.3 shows that the over-parameterized gradient descent
method can achieve a nearly optimal rate ϵ

2p
p+1 , while the vanilla gradient descent method only

achieves the rate ϵ
2p

p+q . The improvement is significant when q is large, which corresponds to the case
that the misalignment between the ordering of the truth signal and the ordering of the eigenvalues
is severe. Moreover, if we return to the low-dimensional regression function in Example 2.2 with
the isotropic kernel k1, we can see that while the vanilla gradient descent method suffers from the
curse of dimensionality with the rate 2t

2t+d , the over-parameterization leads to the dimension-free rate
2t

2t+d0
. Therefore, the over-parameterization significantly improves the generalization performance.

Learning the eigenvalues To further investigate how the eigenvalues are adapted by over-
parameterized gradient descent, we present the following proposition.
Proposition 3.4. Given the same conditions as in Theorem 3.2 or Theorem 3.1 (with D = 0 and
bDj = 1 for Theorem 3.1), the term learning the eigenvalues aj(t)bDj (t) is non-decreasing in t for
each j. Moreover, letting δ ∈ (0, 1), when ϵ is small enough, the following holds at time t chosen as
in Theorem 3.1 or Theorem 3.2:

• Signal component: There exist constants C, c > 0 such that for any component satisfying∣∣θ∗j ∣∣ ≥ Cϵ ln(1/ϵ), it holds with probability at least 1− δ that

aj(t)b
D
j (t) ≥ c

∣∣θ∗j ∣∣D+1
D+2 . (17)

• Noise component: There exist constants c, C,C ′ > 0 such that, for any component where∣∣θ∗j ∣∣ ≤ ϵ and λj ≤ cϵ
2

D+2 , it holds with probability at least 1− δ that

aj(t)b
D
j (t) ≤ Cλ

1
2
j ϵ

D
D+2 = C ′aj(0)b

D
j (0). (18)

From this proposition, we can see that for the signal components, the eigenvalues are learned to be
at least a constant times a certain power of the truth signal magnitude. Thus, over-parameterized
gradient descent adjusts the eigenvalues to match the truth signal as expected. In the case of noise
components, although the eigenvalues are still increasing due to the training process, the eigenvalues
do not exceed the initial values by some constant factor, provided that λj is relatively small. This
finding suggests that over-parameterized gradient descent effectively adapts eigenvalues to the truth
signal while mitigating overfitting to noise. We remark that when λj is relatively large, the method
still tends to overfit the noise components, contributing an extra ϵ−

2
D+2

1
γ term in the generalization

error, but this term becomes negligible for large γ. Moreover, we also remark that there is a ln(1/ϵ)
gap between the signal and noise components. This is because the signal and the noise can not be
distinguished for the components in the middle.

Adaptive choice of the stopping time A notable advantage of the over-parameterized gradient
descent method is its adaptivity. Consider the scenario described by (4), vanilla gradient descent
requires the selection of a stopping time t ≍ ϵ−(2qγ)/(p+q) to achieve the optimal convergence
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rate. However, this choice of stopping time critically depends on the unknown parameters p and
q of the truth parameter, posing a significant challenge in practical applications. In contrast, the
over-parameterized gradient descent only need to choose the stopping time as t ≍ ϵ−

2D+2
D+2 , which

does not rely on the unknown truth parameters, while still achieving the nearly optimal convergence
rate. This independence from the truth parameters allows the over-parameterization approach to
adaptively accommodate any truth parameter structure by employing a fixed stopping time, without
the need for prior knowledge about the truth function’s properties.

Effect of the depth The results in Theorem 3.2 also show that deeper over-parameterization can
further improve the generalization performance. In the two-layer over-parameterization, the extra
term ϵ−1/γ in Theorem 3.1 emerges due to the limitation of the adapting large eigenvalues. With the
introduction of depth, namely adding extra D layers to the model with proper initialization, this term
can be improved to ϵ−

2
D+2

1
γ in Theorem 3.2. This improvement suggests that the depth can refine the

model’s sensitivity to eigenvalue adaptation, enabling a more nuanced adjustment to the underlying
signal structure. This finding underscores the importance of model depth in enhancing the learning
process, providing also theoretical evidence for the empirical success of deep learning models.

Comparison with previous works We will compare our results with the existing literature [Zhao
et al., 2022, Li et al., 2021a, Vaškevičius et al., 2019] on the generalization performance of over-
parameterized gradient descent in the following aspects:

• Problem settings: While the existing literature [Zhao et al., 2022, Li et al., 2021a, Vaške-
vičius et al., 2019] investigate the realms of high-dimensional linear regression, focus-
ing on implicit regularization and sparsity, the present study dives into kernel regression
and its approximation by Gaussian sequence models, emphasizing the adaptivity of over-
parameterization to the underlying signal’s structure, a leap towards understanding model
complexity beyond mere regularization. Moreover, while the literature primarily focuses on
the setting of strong signal, weak signal and noise separation, we consider the more general
setting of the sequence model with arbitrary signal and noise components.

• Over-parameterization setup: The existing work Zhao et al. [2022] considers the over-
parameterization setup by the two-layer Hadamard product θ = a⊙b where the initialization
is the same for each component that a(0) = α1 and b(0) = 0. In comparison, our
work considers initializing the eigenvalues aj(0) = λ

1/2
j differently for each component.

Moreover, we extend the over-parameterization to deeper models by adding extra D layers.
Although Vaškevičius et al. [2019] and the subsequent work Li et al. [2021a] also consider the
deeper over-parameterization, their over-parameterization is in the form of θ = u⊙D − v⊙D

with u(0) = v(0) = α1. Unfortunately, though being easy to analysis because of the
homogeneous initialization, this setup could not bring insights into the learning of the
eigenvalues, which is the key to our results. Furthermore, the analysis for Theorem 3.2
involves the interplay between the differently initialized aj and bj , so our analysis is more
involved than the existing works. We also remark that although we only consider the gradient
flow in the analysis, the results can be extended to the gradient descent with proper learning
rates.

• Interpretation of the over-parameterization: The previous works view the over-
parameterization mainly as a mechanism for implicit regularization, while our work provides
a novel perspective that over-parameterization adapts to the structure of the truth signal by
learning the eigenvalues. Our theory also aligns with the neural network literature [Yang
and Hu, 2022, Ba et al., 2022], where over-parameterization with gradient descent is known
to be beneficial in learning the structure of the target function.

• Connection to sparse recovery: Our results can be phrased for the setting of high dimen-
sional regression with sparsity. Taking a sparse signal (θ∗j )j≥1, e.g., θ∗j = 1 for j ∈ S,
|S| = s and θ∗j = 0 for j /∈ S, we find that Φ(ϵ) = s and Ψ(ϵ) = 0. Consequently, ignoring
the extra error term, the resulting rate obtained by Theorem 3.1 or Theorem 3.2 is Õ(s/n)
(ignoring the logarithmic factor). This rate coincides with the minimax rate for sparse
recovery in high-dimensional regression.
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3.4 Proof outline

In this subsection, we will provide an outline of the proof of Theorem 3.1 and Theorem 3.2. For the
detailed proof, we refer to Section D for the analysis of the gradient flow equation and Section E for
the generalization error.

Equation analysis The proof of Theorem 3.1 and Theorem 3.2 relies on the analysis of the gradient
flow (8) and (14) for each component j. For notation simplicity, we will suppress the index j in the
following discussion. Firstly, the symmetry of the equation allows us to consider only the case z > 0.
Then, one can find that

d

dt
a2 =

d

dt
β2 =

1

D

d

dt
b2 = 2θ(z − θ),

so we get the conservation quantities a2(t) ≡ β2(t) + λ and b2(t) ≡ Dβ2(t) + b20.

Consequently, for the case D = 0, we can obtain the explicit gradient flow of θ:

θ̇ =
√
a40 + 4θ2(z − θ), θ(0) = 0.

Since
√
a40 + 4θ2 can be bounded by a multiple of a20 + 2θ, we can consider the other equation

θ̇ = (a20 + 2θ)(z − θ), which admits a closed-form solution.

For the case D ≥ 1, the equation is more complicated. We will apply a multiple stage analysis
concerning both the effect of a(t) and b(t).

The generalization error In terms of the generalization error, we first separate the noise case when
|ξj | ≥

∣∣θ∗j ∣∣/2 and the signal case when |ξj | <
∣∣θ∗j ∣∣/2. For the noise case, we apply the analysis of

the equation to show that θj(t) is bounded roughly by λj for our choice of t. Moreover, the fact that
λj is summable ensures that error of these noise components does not sum up to infinity. On the
other hand, for the signal case, if

∣∣θ∗j ∣∣ ≥ ϵ ln(1/ϵ), we can show that our choice of t allows θj(t) to
exceed z/2 and converge to z close enough, so the error in these components is only caused by the
random noise and sum up to ϵ2Φ(ϵ). In addition, the remaining signal components contribute to the
error term Ψ(ϵ ln(1/ϵ)). Summing up these two terms, we can obtain the desired generalization error
bound.

4 Numerical Experiments

In this section, we provide some numerical experiments to validate the theoretical results. For more
detailed numerical experiments, please refer to Section C.

We approximate the gradient flow equation (22) and (30) by discrete-time gradient descent and
truncate the sequence model to the first N terms for some very large N . We consider the settings as
in Corollary 3.3 that θ∗ is given by (4) for some p > 0 and q ≥ 1. We set ϵ2 = n−1, where n can be
regarded as the sample size, and consider the asymptotic generalization error rates as n grows.

We first compare the generalization error rates between vanilla gradient descent and over-
parameterized gradient descent (OpGD) in Figure 1 on page 10. The results show that the over-
parameterized gradient descent can achieve the optimal generalization error rate, while the vanilla
gradient descent suffers from the misalignment caused by q > 1 and thus has a slower convergence
rate. Moreover, with a logarithmic least-squares fitting, we find that the resulting generalization error
rates also match the theoretical results in Corollary 3.3 (0.5 for OpGD and 0.33 for vanilla GD).

Additionally, we investigate the evolution of the eigenvalue terms aj(t)bDj (t) over time t as discussed
in Proposition 3.4. The results are shown in Figure 2 on page 10. We find that the eigenvalue terms
can indeed adapt to the underlying structure of the signal: for large signals, the eigenvalue terms
approach the signals as the training progresses, while for small signals, the eigenvalue terms do not
increase significantly. Moreover, we find that deeper over-parameterization reduces the fluctuations
of the eigenvalue terms for the noise components, and thus improves the generalization performance
of the model.

In summary, the numerical experiments validate our theoretical results and provide insights into the
adaptivity and generalization properties of the over-parameterized gradient descent method.
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Figure 1: Comparison of the generalization error rates between vanilla gradient descent and over-
parameterized gradient descent (OpGD). We set p = 1 and q = 2 for the truth parameter θ∗, and
γ = 1.5 for the left column and γ = 3 for the right column. For each n, we repeat 64 times and plot
the mean and the standard deviation.
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Figure 2: The evolution of the trainable eigenvalues aj(t)bDj (t) over the time t across components
j = 100 to 200 for D = 1. The blue line shows the eigenvalues and the black marks show the
non-zero signals scaled according to Proposition 3.4. For the settings, we set p = 1, q = 2 and γ = 2.

5 Conclusion and Future Work

In this work, we studied the generalization properties of over-parameterized gradient descent in the
context of sequence models. We showed that the over-parameterization method can adapt to the
underlying structure of the signal and significantly outperform the vanilla fixed-eigenvalues method.
These results provide a new perspective on the benefits of over-parameterization and offer insights
into the adaptivity and generalization properties of neural networks beyond the kernel regime.

However, there are also limitations of this work and many interesting directions for future research.
For example, one can directly consider the over-parameterization in the kernel regression by replacing
the feature map Φ(x) = (λ

1/2
j ej(x))j≥1 with the learnable one Φ(x;a) = (ajej(x))j≥1, where

aj’s are learnable parameters initialized by aj(0) = λ
1/2
j . However, the analysis would be more

challenging since now the components are mutually coupled in the gradient flow dynamics.

Perhaps one of the most interesting directions is to study how the over-parameterization method
can also learn the eigenfunctions of the kernel during the training process, which leads to the truly
“adaptive kernel method”. We believe that future studies on this topic will provide a deeper theoretical
understanding of the success of neural networks in practice.
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A Additional related works

In this section, we will provide additional related works and further discussions.

Regression with fixed kernel The regression problem with a fixed kernel has been well studied
in the literature. It has been shown that with proper regularization, kernel methods can achieve the
minimax optimal rates under various conditions [Caponnetto and De Vito, 2007, Steinwart et al.,
2009, Lin et al., 2018, Fischer and Steinwart, 2020, Zhang et al., 2023]. Recently, a sequence of
works provided more refined results on the generalization error of kernel methods [Li et al., 2023b,
Bordelon et al., 2020, Cui et al., 2021, Mallinar et al., 2022, Li et al., 2023a, 2024a].

The NTK regime of neural networks Over-parameterized neural networks are connected to kernel
methods through the neural tangent kernel (NTK) theory proposed by Jacot et al. [2018], which
shows that the dynamics of the neural network at infinite width limited can be approximated by a
kernel method with respect to the corresponding NTK. The theory was further developed by many
follow-up works [Arora et al., 2019c,b, Du et al., 2018, Lee et al., 2019, Allen-Zhu et al., 2019]. Also,
the properties on the corresponding NTK have also been studied [Geifman et al., 2020, Bietti and
Bach, 2020, Li et al., 2024b].

Over-parameterization as Implicit Regularization There has been a surge of interest in under-
standing the role of over-parameterization in deep learning. One perspective is that over-parameterized
models trained by gradient-based methods can expose certain implicit bias towards simple solutions,
which include linear models [Hoff, 2017, Vaškevičius et al., 2019, Zhao et al., 2022, Li et al., 2021a],
matrix factorization [Gunasekar et al., 2017, Arora et al., 2019a, Li et al., 2021b, Razin et al., 2021,
Chou et al., 2023], linear networks [Yun et al., 2021, Nacson et al., 2022] and neural networks [Kubo
et al., 2019, Woodworth et al., 2020]. Moreover, variants of gradient descent such as stochastic
gradient descent are also shown to have implicit regularization effects [Li et al., 2022, Vivien et al.,
2022]. However, most of these works focus only on the optimization process and the final solution,
but the generalization performance is not well understood.

Generalization Guarantees for Over-parameterized Models Being the most related to our work,
a few works provided generalization guarantees for over-parameterized models, which only include
linear models [Zhao et al., 2022, Li et al., 2021a, Vaškevičius et al., 2019] and single index model [Fan
et al., 2021]. In detail, the two parallel works [Zhao et al., 2022, Vaškevičius et al., 2019] studied
the high-dimensional linear regression problem under sparse settings and showed that a two-layer
diagonal over-parameterized model with proper initialization and early stopping can achieve minimax
optimal recovery under certain conditions. The subsequent work [Li et al., 2021a] obtained similar
results for multi-layer diagonal over-parameterized models.

The adaptive kernel perspective The idea of an adaptive kernel has appeared in a few recent
works in various forms [Chen et al., 2023, Gatmiry et al., 2021, LeJeune and Alemohammad, 2023,
Yang and Hu, 2022, Ba et al., 2022], which is also known as “feature learning”. Notably, Gatmiry
et al. [2021] showed the benefits brought by the adaptivity of the kernel on a three-layer neural
network, which is similar to our work in the adaptive kernel perspective. However, our work and
theirs consider different aspects of the adaptive kernel: while they considered an adaptive kernel
space in the form of G⊙K∞ around the NTK space, we consider an eigenvalue-parameterized kernel
space with fixed eigen-basis. We believe that these various results, including ours, will contribute to a
better understanding of the generalization properties of over-parameterized models as well as neural
networks.
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B Supplementary Technical Details

B.1 The connection between RKHS and the sequence model

Diagonalized kernel gradient flow as sequence model Moreover, this connection can also be seen
directly from the following. The Mercer’s decomposition of the RKHS H associated with the kernel
k also provides a series representation of the RKHS:

H =


∞∑
j=1

ajλ
1
2
j ei

∣∣ (aj)j≥1 ∈ ℓ2

 , (19)

where we denote by ℓ2 =
{
(aj)j≥1 |

∑∞
j=1 a

2
j < ∞

}
. Therefore, by introducing the feature

mapping Φ : X → ℓ2 defined by

Φ(x) = (λ
1
2
j ej(x))j≥1, (20)

we establish a one-to-one correspondence between a function f ∈ H in the RKHS and a vector
β ∈ ℓ2 in feature space via f(x) = ⟨Φ(x), β⟩ℓ2 for f ∈ H and β ∈ ℓ2. Moreover, it is convenient to
consider Φ(x) as column vectors and also define the feature matrix Φ(X) = (Φ(x1), . . . ,Φ(xn)) for
X = (x1, . . . , xn). Then, the gradient flow (2) in the feature space ℓ2 writes

β̇(t) = −∇βL = − 1

n
Φ(X)Φ(X)⊤β(t) +

1

n
Φ(X)y. (21)

Intuitively, since the j, l-th entry(
1

n
Φ(X)Φ(X)⊤

)
j,l

=
λ

1
2
j λ

1
2

l

n

n∑
i=1

ej(xi)el(xi)

the law of large numbers implies that 1
nΦ(X)Φ(X)⊤ converges to the diagonal operator Λ =

diag(λ1, λ2, . . . ); moreover, since j-th entry(
1

n
Φ(X)y

)
j

=
λ

1
2
j

n

n∑
i=1

f(xi)ej(xi) +
λ

1
2
j

n

n∑
i=1

ej(xi)εi,

the central limit theorem suggest that it can be approximated by λ
1
2
j zj , where zj = θj + ξj and ξj is

a normal random variable with mean zero and variance σ2/n. Therefore, with these approximations,
the equation can be diagonalized as

β̇j(t) = −λjβj + λ
1
2
j zj = −λj(βj(t)− λ

− 1
2

j zj).

Moreover, we can rewrite the representation f(x) = ⟨Φ(x), β⟩ℓ2 into

f =

∞∑
j=1

λ
1
2
j βjej =

∞∑
j=1

θjej , θj = λ
1
2
j βj .

Then, in terms of θ, we have

β̇j(t) = λ
1
2
j β̇j(t) = −λj(θj − zj).

This is exactly the vanilla gradient flow in the sequence model in Section 3.

Furthermore, we can consider the parameterized feature map

Φa(x) = (ajej(x))j≥1 ,

where a = (aj)j≥1. We can consider similar gradient flow in the feature space with both β and a
trainable. Then, with similar diagonalizing argument, we can show that the corresponding gradient
flow in the sequence model is just the over-parameterized gradient flow in (7). Similar correspondence
can be established for the multi-layer models (13).
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B.2 The examples in Section 2

B.2.1 Example 2.1

The deduction in Example 2.1 is straightforward. The series expansion (3) can be written as

[Hk]
s
=

f =
∑
j≥1

fjej |
∑
j≥1

f2
j λ

−s
j < ∞

 .

We recall that λj,1 ≍ j−γ1 and λj,2 ≍ j−γ2 . Let f∗ =
∑

j≥1 f
∗
j ej . Then, for ℓ = 1, 2,

f∗ ∈ [Hkℓ
]sℓ ⇐⇒

∑
j≥1

(f∗
j )

2λ−sℓ
j,1 < ∞ ⇐⇒

∑
j≥1

(f∗
j )

2jγℓsℓ < ∞

Consequently,

f∗ ∈ [Hk1 ]
s1 ⇐⇒ f∗ ∈ [Hk2 ]

s2 for γ1s1 = γ2s2.

B.2.2 Example 2.2

We justify the claims in Example 2.2. Let us consider the torus Td = [−1, 1)d and the uniform
measure µ on Td (namely µ(Td) = 1). Let us recall that the multidimensional Fourier basis is given
by ϕm(x) = exp(iπ ⟨m, x⟩) for m ∈ Zd.

The Sobolev space Hs(Td) is defined via the Fourier coefficients as

Hs(Td) =

f ∈ L2(Td) |
∑

m∈Zd

|fm|2(1 + ∥m∥2)s < ∞

 ,

which is equipped with the inner product (as thus the induced norm)

⟨f, g⟩Hs(Td) =
∑

m∈Zd

fmgm(1 + ∥m∥2)s.

Now, we briefly show that Hs(Td) is an RKHS when s > d/2. It suffices to show that f 7→ f(x) is
bounded for each x ∈ Td [Andreas Christmann, 2008]. Using the boundedness of ϕm, we have

∑
m∈Zd

|fmϕm| ≤
∑

m∈Zd

|fm| ≤

 ∑
m∈Zd

|fm|2(1 + ∥m∥2)s
 1

2
 ∑
m∈Zd

(1 + ∥m∥2)−s

 1
2

Now, ∑
m∈Zd

(1 + ∥m∥2)−s ≲
∫
x∈Rd

(1 + |x|2)−sdx ≲
∫ ∞

0

(1 + r2)−srd−1dr.

Since the last integral is finite when s > d/2, we find that there is a constant C such that∑
m∈Zd

|fmϕm| ≤ C∥f∥Hs(Td).

Therefore, the series expansion f(x) =
∑

m∈Zd fmϕm(x) converges absolutely and uniformly,
and thus |f(x)| ≤

∑
m∈Zd |fmϕm| ≤ C∥f∥Hs(Td), showing that f 7→ f(x) is bounded for each

x ∈ Td.

Moreover, it is easy to see from the Mercer’s decomposition (1) and the power series expansion
(3) that the kernel of Hs(Td) is given by k(x, x′) =

∑
m∈Zd(1 + ∥m∥2)−sϕm(x)ϕm(x′), so its

eigenvalues are λm = (1 + ∥m∥2)−s.
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To determine the eigenvalue decay rate of λm = (1 + ∥m∥2)−s after reordering them in decreas-
ing order, it suffices to determine the count # {m : λm > δ}: the eigenvalue decay rate is β if
# {m : λm > δ} ≍ δ−1/β , see, e.g., Proposition A.1 in Li et al. [2024a]. We have

# {m : λm > δ} = #
{
m : (1 + ∥m∥2)−s > δ

}
≍ Vol(

{
x ∈ Rd : (1 + |x|2)−s > δ

}
)

≍ Vol(
{
x ∈ Rd : |x| < δ−

1
2s

}
) ≍ δ−

d
2s .

We consider a function f∗(x) = g(x1, . . . , xd0
) with low-dimensional structure. Let us denote by

x≤d0
= (x1, . . . , xd0

) and x>d0
= (xd0+1, . . . , xd) for simplicity. Then, the Fourier coefficients of

f∗ are given by

fm = ⟨f∗, ϕm⟩L2(T,dµ)

= 2−d

∫
Td0×Td−d0

g(x1, . . . , xd0) exp(iπ ⟨m≤d0 , x≤d0⟩) · exp(iπ ⟨m>d0 , x>d0⟩)dx≤d0dx>d0

= 2−d0

∫
Td0

g(x1, . . . , xd0) exp(iπ ⟨m≤d0 , x≤d0⟩)dx≤d0

· 2−(d−d0)

∫
Td−d0

exp(iπ ⟨m>d0
, x>d0

⟩)dx>d0

= gm≤d0
· 1{m>d0

=0},

so we show that

fm =

{
gm≤d0

, m = (m≤d0
,0), m≤d0

∈ Zd0 ,

0, otherwise.

We recall that g ∈ Ht(Td0), so∑
m≤d0

∈Zd0

∣∣∣gm≤d0

∣∣∣2(1 + ∥m≤d0∥
2
)t < ∞.

To determine the smoothness of f∗ on [Hk1 ]
s and [Hk2 ]

s, following (3), we compute∑
m∈Zd

|fm|2
[
(1 + ∥m∥2)r

]s
=

∑
m=(m≤d0

,0),m≤d0
∈Zd0

∣∣∣gm≤d0

∣∣∣2 [(1 + ∥m≤d0∥
2
)r
]s

∑
m≤d0

∈Zd0

∣∣∣gm≤d0

∣∣∣2(1 + ∥m≤d0
∥2)rs,

so f∗ belongs to [Hk1
]s and [Hk2

]s for s = t/r

B.2.3 Example 2.3

We recall that f∗ =
∑

j≥1 θ
∗
j ej ,∣∣∣θ∗l(j)∣∣∣ ≍ j−(p+1)/2 and ℓ(j) ≍ jq for p > 0, q ≥ 1,

where ℓ(j) gives the descending order of
∣∣θ∗j ∣∣. To compute the relative smoothness of f∗ w.r.t.

λj,1 ≍ j−γ , we compute∑
j≥1

∣∣θ∗j ∣∣2λ−s
j =

∑
j≥1

∣∣∣θ∗l(j)∣∣∣2λ−s
l(j) ≍

∑
j≥1

j−(p+1)(ℓ(j))γs ≍
∑
j≥1

j−(p+1)jqγs ≍
∑
j≥1

j−1−(p−qγs),

so we have s < p/(qγ) (but arbitrarily close) and the corresponding generalization error rate is
sγ

sγ+1 < p
p+q . The generalization error rate w.r.t. λl(j),2 ≍ j−γ can be computed similarly.
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C Detailed Numerical Experiments

In this section, we provide numerical experiments to validate the theoretical results. The codes are
provided in the supplementary material. We approximate the gradient flow equation (22) and (30) by
discrete-time gradient descent with sufficiently small step size. Moreover, we truncate the sequence
model to the first N terms for some very large N . We consider the settings as in Corollary 3.3 that
θ∗ is given by (4) for some p > 0 and q ≥ 1. We set ϵ2 = n−1, where n can be regarded as the
sample size, and consider the asymptotic performance of the generalization error as n grows. For the
stopping time, we choose the oracle one that minimizes the generalization error for each method. We
first compare the generalization error rates between vanilla gradient descent and over-parameterized
gradient descent (OpGD) in Figure 3 on page 21. The results show that the over-parameterized
gradient descent can achieve the optimal generalization error rate, while the vanilla gradient descent
suffers from the misalignment caused by q > 1 and thus has a slower convergence rate. Moreover,
with a logarithmic least-squares fitting, we find that the resulting generalization error rates are
consistent with the theoretical results in Corollary 3.3 (0.5 for OpGD and 0.33 for vanilla GD); the
oracle stopping times for the over-parameterized gradient descent also match the theoretical value
(0.5).
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Figure 3: Comparison of the generalization error rates between vanilla gradient descent and over-
parameterized gradient descent (OpGD). We set p = 1 and q = 2 for the truth parameter θ∗. The
left and right columns show respectively the generalization error and the orcale stopping time with
respect to n. For the upper row, we set the eigenvalue decay rate γ = 1.5; for the lower row, we set
γ = 3. For each n, we repeat 64 times and plot the mean and the standard deviation.

Furthermore, we investigate the generalization performance of over-parameterized gradient descent
(also with deeper parameterization) for different settings of the truth parameter θ∗, the eigenvalue
decay rate γ and the depth D. The results are reported in Table C on page 22. We find that the
generalization error rates are in general consistent with the theoretical results in Corollary 3.3, while
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p = 0.6 (r∗ = 0.37) p = 1 (r∗ = 0.5) p = 3 (r∗ = 0.75)
γ q = 1 q = 1.5 q = 2 q = 1 q = 1.5 q = 2 q = 1 q = 1.5 q = 2

1.1 0.38 0.40 0.50 0.50 0.45 0.48 0.78 0.69 0.67
2 0.36 0.41 0.52 0.49 0.46 0.50 0.80 0.73 0.72
3 0.36 0.41 0.52 0.48 0.46 0.50 0.76 0.73 0.74

Table 1: Convergence rates of the over-parameterized gradient descent (8) under different settings of
the truth parameter p, q and the eigenvalue decay rate γ, where r∗ is the ideal convergence rate. The
convergence rate is estimated by the logarithmic least-squares fitting of the generalization error with
n ranging from 2000, 2200, . . . , 4000, where the generalization error is the mean of 256 repetitions.

p = 0.6 (r∗ = 0.37) p = 1 (r∗ = 0.5) p = 3 (r∗ = 0.75)
γ q = 1 q = 1.5 q = 2 q = 1 q = 1.5 q = 2 q = 1 q = 1.5 q = 2

D = 1
1.1 0.36 0.40 0.52 0.49 0.46 0.49 0.79 0.73 0.72
2 0.36 0.40 0.52 0.48 0.46 0.50 0.76 0.73 0.73
3 0.30 0.32 0.38 0.45 0.41 0.44 0.75 0.73 0.74

D = 2
1.1 0.34 0.39 0.49 0.46 0.44 0.48 0.76 0.74 0.75
2 0.35 0.40 0.51 0.47 0.45 0.49 0.74 0.73 0.73
3 0.36 0.40 0.51 0.48 0.46 0.50 0.74 0.73 0.73

Table 2: Convergence rates of the over-parameterized gradient descent (14) with D = 1 and D = 2.
The settings are the same as in Table C on page 22.

there are some fluctuations due to the finite sample size. Comparing the results for γ = 1.1 across
depth D = 0, D = 1 and D = 2, we see that the method with D = 0 has the slowest convergence rate,
while the method with D = 2 has the fastest convergence rate, justifying that deeper parameterization
can improve the generalization performance. In summary, the numerical experiments validate our
theoretical results.

Additionally, we investigate the evolution of the eigenvalue terms aj(t)bDj (t) over time t as discussed
in Proposition 3.4. The results are shown in Figure 4 on page 23. We find that the eigenvalue terms
can indeed adapt to the underlying structure of the signal: for large signals, the eigenvalue terms
approach the signals as the training progresses, while for small signals, the eigenvalue terms do not
increase significantly. Moreover, we find that deeper over-parameterization reduces the fluctuations
of the eigenvalue terms for the noise components, and thus improves the generalization performance
of the model.

C.1 Experiments beyond the sequence model

We also explore the adaptivity of the over-parameterized gradient descent beyond the sequence
model. Let us consider the diagonal adaptive kernel method by parameterizing the feature map
with Φ(x;a) = (ajej(x))j≥1 introduced in Section 5. We use the setting in Example 2.2 where
the eigenfunctions are the trigonometric functions. In particular, we consider the truth function
f∗(x) = sin(7.5πx1) with x = (x1, x2) ∈ R2. We present the generalization error curve of a single
trial and also the generalization error rates with respect to the sample size n in Figure 5 on page 24.
The result also shows the benefit of over-parameterization in adapting to the underlying structure of
the signal.

C.2 Testing eigenvalue misalignment on real-world data

In this section, we provide additional experiments to test the eigenvalue misalignment phenomenon
on real-world data. Recalling Example 2.2 and Example 2.3, we know that the misalignment happens
when the order of the eigenvalues of the kernel mismatches the order of coefficients of the truth
function. Therefore, to test the misalignment, we compute the coefficients of the regression function
over the eigen-basis of the kernel and examine whether the coefficients decay in the order given by the
kernel. For the eigen-basis, we use the multidimensional Fourier basis (the trigonometric functions)
considered in Example 2.2, where the order is given by the descending order of λm = (1+∥m∥2)−r.
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Figure 4: The generalization error as well as the evolution of the eigenvalue terms aj(t)b
D
j (t)

over the time t. The first row shows the generalization error of three parameterizations D = 0, 1, 3
with respect to the training time t. The rest of the rows show the evolution of the eigenvalue terms
aj(t)b

D
j (t) over the time t. For presentation, we select the index j = 100 to 200. The blue line

shows the eigenvalue terms and the black marks show the non-zero signals scaled according to
Proposition 3.4. For the settings, we set p = 1, q = 2 and γ = 2.
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Figure 5: Comparison of the generalization error between the fixed kernel gradient method and the
diagonal adaptive kernel method. The left figure shows the generalization error curve of a single trial.
The right figure shows the generalization error rates with respect to the sample size n.

We consider the two real-world datasets: “California Housing” and “Concrete Compressive Strength”.
We compute the empirical inner product of the regression function with the Fourier basis functions
up to a certain order. Then, we plot the coefficients in the order given by the kernel. The results are
shown in Figure 6 on page 25. The figures show that the empirical coefficients exhibit significant
spikes. Also, among the coefficients, only very few components have large magnitudes, indicating
the sparse structure of the regression function. Together, these results suggest that the eigenvalues of
the kernel are misaligned with the truth function in these datasets.
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Figure 6: The empirical coefficients of the regression function over the Fourier basis for the "California
Housing" dataset (upper) and "Concrete Compressive Strength" dataset (lower). Note that we take
different numbers of Fourier basis functions for the two datasets for better visualization.
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D Analysis of the gradient flow

D.1 The two-layer parameterization

Let us consider the gradient flow considered in (8), where we remove the subscript j for notational
simplicity. Let L = 1

2 (θ − z)2 and θ = aβ. We are interested in the gradient flow:

ȧ = −∇aL = β(z − θ),

β̇ = −∇βL = a(z − θ),

a(0) = λ
1
2 > 0, β(0) = 0.

(22)

Symmetry of the solution We can find that the solution of the equation for z < 0 can be obtained
by simply a(t),−β(t) for the positive signal case of −z > 0. Therefore, we only need to consider the
case of z > 0. In this case, it is obvious that a(t), β(t) and θ(t) are all non-negative and increasing.

Gradient flow of θ Now we notice that
1

2

d

dt
a2 =

1

2

d

dt
β2 = aβ(z − θ),

so

a2(t)− β2(t) ≡ a2(0)− β2(0) = λ. (23)

Using this conservation quantity, we can prove the following estimations:

θ = aβ =
√
λ+ β2 · β ≥ β2,

θ = aβ = a
√

a2 − λ ≤ a2.
(24)

Moreover, the derivative of θ writes

θ̇ = aβ̇ + ȧβ = (a2 + β2)(z − θ).

Using a2 + β2 =
√
(a2 − β2)2 + 4a2β2 =

√
λ2 + 4θ2, we conclude the follow explicit equation

for θ:

θ̇ =
√
λ2 + 4θ2(z − θ). (25)

Then, we have the following approximation of the solution.
Lemma D.1. Let us consider the gradient flow (25) and

d

dt
θ̃ = (λ+ 2|θ̃|)(z − θ̃), θ̃(0) = 0. (26)

Then we have

0 ≤ θ̃(t/
√
2) ≤ θ(t) ≤ θ̃(t) ≤ z if z ≥ 0;

0 ≥ θ̃(t/
√
2) ≥ θ(t) ≥ θ̃(t) ≥ z if z ≤ 0.

(27)

Moreover, (26) is solved by

θ̃(t) =
λ(E − 1)

2|z|+ λE
z, E = exp((2|z|+ λ)t). (28)

Proof. It suffices to consider the case z ≥ 0. It is easy to see from the gradient flow (22) that both
a(t), β(t) are non-negative. Then, using the elementary inequality

1√
2
(λ+ 2x) ≤

√
λ2 + 4x2 ≤ λ+ 2x,

we have
1√
2
(λ+ 2x)(z − x) ≤

√
λ2 + 4x2(z − x) ≤ (λ+ 2x)(z − x).

Then, the comparison principal in ordinary differential equation yields (27). The verification of (28)
is straightforward.
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D.2 Deeper parameterization

Now let us consider the deeper parameterization of the form

θ = abDβ, (29)

where a, b, β are all trainable parameters, and the gradient flow

ȧ = −∇aL = bDβ(z − θ),

ḃ = −∇bL = DabD−1β(z − θ),

β̇ = −∇βL = abD(z − θ),

a(0) = λ
1
2 > 0, b(0) = b0 > 0, β(0) = 0.

(30)

Main idea We provide the main idea of analyzing the gradient flow (30) here. Using the conser-
vation quantities, we can first focus on the equation of β. For the initial stage when t is relatively
small, β(t) only grows linearly in t. Next, when β(t) exceeds a certain threshold depending on the
initialization (and also the interplay between λj and b0), β(t) grows exponentially in t, provided that
θ(t) ≤ z/2. Thus, we can upper bound the hitting time of θ(t) to z/2. Finally, when θ(t) ≥ z/2, we
consider directly the equation of θ and show that θ(t) converges to z exponentially fast.

Symmetry of the solution Similar to the two-layer case, we can find that the solution of the
equation for z < 0 can be obtained by negating the sign of β(t) for the positive signal case. Therefore,
we will focus on the case of z ≥ 0 where a(t), b(t), β(t) and thus θ(t) are all non-negative and
non-decreasing.

Conservation quantities Similarly, we have

1

2

d

dt
a2 =

1

2D

d

dt
b2 =

1

2

d

dt
β2 = θ(z − θ). (31)

so

a =
(
λ+ β2

) 1
2 , b =

(
b20 +Dβ2

) 1
2 . (32)

Using these conservation quantities, we can prove the following estimations in terms of β:

min(λ
1
2 , β) ≤ a ≤

√
2max(λ

1
2 , β),

min(b0,
√
Dβ) ≤ b ≤

√
2max(b0,

√
Dβ).

(33)

The evolution of θ It is direct to compute that

θ̇ = ȧbDβ + aDbD−1ḃβ + abDβ̇

=
[
(bDβ)2 + (DabD−1β)2 + (abD)2

]
(z − θ)

= θ2(a−2 +Db−2 + β−2)(z − θ).

(34)

Auxiliary notations Let us introduce

T (1) = inf
{
t ≥ 0 : β(t) ≥ λ

1
2

}
, T (2) = inf

{
t ≥ 0 : β(t) ≥ b0/

√
D
}
,

T esc = min(T (1), T (2)), T sig = inf {t ≥ 0 : θ(t) ≥ z/2} .
(35)

Lemma D.2 (Noise case). For the gradient flow (30), we have the initial estimation

|β(t)| ≤ 2
D+1

2 λ
1
2 bD0 |z|t,

|θ(t)| ≤ 2D+1λb2D0 |z|t,
for t ≤ min(T (1), T (2)), (36)

where

T (1) =
(
2

D+1
2 bD0 |z|

)−1

, T (2) =
(
2

D+1
2

√
Dλ

1
2 bD−1

0 |z|
)−1

. (37)
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Moreover, if λ
1
2 ≤ b0/

√
D, then

|β(t)| ≤ λ
1
2 exp

(
2

D+1
2 bD0 |z|(t− T (1))+

)
,

|θ(t)| ≤ 2
D+1

2 λbD0 exp
(
2

D+3
2 bD0 |z|(t− T (1))+

)
,

for t ≤ T (1,2), (38)

where

T (1,2) =

(
1 + ln

b0√
Dλ

1
2

)
T (1). (39)

Proof. It suffices to consider the case z > 0. Recalling (30) and θ ≥ 0, we have

β̇ ≤ abDz.

Using the upper bound in (33), when t ≤ T esc, namely when β(t) ≤ λ
1
2 and

√
Dβ(t) ≤ b0, we have

β̇ ≤ (
√
2λ

1
2 )(

√
2b0)

Dz = 2
D+1

2 λ
1
2 bD0 z,

implying that

β(t) ≤ 2
D+1

2 λ
1
2 bD0 zt, for t ≤ T esc.

Therefore, we get the lower bound

T esc ≥ min(T (1), T (2)),

where T (1) and T (2) are defined by (37) in the lemma. Combining this again with the upper bound
that θ = abDβ ≤ 2

D+1
2 a0b

D
0 β when t ≤ T esc, we prove (36).

For the second part, we consider the case λ
1
2 ≤ b0/

√
D. In this case, we have T (1) ≤ T (2) and

thus T (1) ≥ T (1) from the above argument. Now, when t ∈ [T (1), T (2)], we turn to the following
equation:

β̇ ≤ (
√
2β)(

√
2b0)

Dz = 2
D+1

2 bD0 zβ, for t ∈ [T (1), T (2)],

which yields

β(s+ T (1)) ≤ β(T (1)) exp
(
2

D+1
2 bD0 zs

)
= λ

1
2 exp

(
2

D+1
2 bD0 zs

)
, for s ∈ [0, T (2) − T (1)].

Comparing β(s+ T (1)) with b0/
√
D gives

T (2) − T (1) ≥
[
2

D+1
2 bD0 z

]−1

ln
b0√
Dλ

1
2

= T (1) ln
b0√
Dλ

1
2

,

so

T (2) ≥ T (1) + T (1) ln
b0√
Dλ

1
2

≥ T (1)

(
1 + ln

b0√
Dλ

1
2

)
= T (1,2).

Therefore, the comparison principal yields

β(t) ≤ λ
1
2 exp

(
2

D+1
2 bD0 |z|(t− T (1))+

)
for t ≤ T (1,2),

where we notice that the bound also holds for t ≤ T (1) ≤ T (1) since at that time β(t) ≤ λ
1
2 . Finally,

(38) is obtained by using θ = abDβ ≤ 2
D+1

2 bD0 β2 when t ∈ [T (1), T (2)], while the bound also holds
for t ≤ T (1).

Lemma D.3 (Signal case). For the gradient flow (30), we have:

• If λ
1
2 ≤ b0/

√
D, then

T sig ≤ 2(bD0 |z|)−1

1 +(ln (D−D/2z/2)
1

D+2

λ
1
2

)+
 , (40)
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• If λ
1
2 ≥ b0/

√
D, then

T sig ≤ 2
(√

Dλ
1
2 bD−1

0 |z|
)−1 (

1 +R+
)
, (41)

where

R =

{
ln (D|z|/2)

1
D+2

b0
, D = 1,

1
D−1 , D > 1.

Moreover, we have

|z − θ(t)| ≤ 1

2
|z| exp

(
−1

4
D

D
D+2 |z|

2D+2
D+2 (t− T sig)

)
, for t ≥ T sig. (42)

Proof. It suffices to consider the case z > 0. To provide an upper bound of the signal time T sig, we
observe that the lower bound in (33) implies a sufficient condition for θ ≥ z/2 that

β ≥
(
D−D/2z/2

) 1
D+2

=⇒ θ ≥ 1

2
z. (43)

We first consider case that λ
1
2 ≤ b0/

√
D. Let us define T

(1)
:= 2(bD0 z)−1 and suppose that

T sig ≥ 2(bD0 z)−1, otherwise the statement (40) already holds. Then, we first have

β̇ = abD(z − θ) ≥ 1

2
λ

1
2 bD0 z, for t ≤ T sig. (44)

This implies that

β(t) ≥ 1

2
λ

1
2 bD0 zt, for t ≤ T sig,

and thus

T (1) ≤ T
(1) ≤ T sig.

Now, for t ∈ [T (1), T sig], we use the alternative bound a ≥ β to obtain

β̇ ≥ 1

2
βbD0 z, for t ∈ [T (1), T sig],

giving that

β(s+ T (1)) ≥ λ
1
2 exp

(
1

2
bD0 zs

)
, for s ∈ [0, T sig − T (1)].

Comparing it with (43), we obtain

T sig − T (1) ≤ 2(bD0 z)−1 ln
(D−D/2z/2)

1
D+2

λ
1
2

= T
(1)

ln
(D−D/2z/2)

1
D+2

λ
1
2

,

which, together with the upper bound of T (1), proves (40).

The case that λ
1
2 ≥ b0/

√
D is very similar. We define T

(2)
:= 2(

√
Dλ

1
2 bD−1

0 z)−1 and suppose that

T sig ≥ T
(2)

. Using the estimation (44) again, we get

T (2) ≤ T
(2) ≤ T sig.

Now, when t ∈ [T (2), T sig], we use b ≥
√
Dβ to obtain

β̇ ≥ 1

2
λ

1
2D

D
2 βDz, for t ∈ [T (2), T sig].

This implies that for s ≤ T sig − T (2),

β(s+ T (2)) ≥ b0√
D

exp

(
1

2
λ

1
2D

D
2 zs

)
, if D = 1,
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β(s+ T (2)) ≥
[
(D−1/2b0)

−(D−1) − D − 1

2
λ

1
2D

D
2 zs

]− 1
D−1

, if D > 1.

Consequently, comparing it with (43) gives

T sig − T (2) ≤ 2
(
λ

1
2D

D
2 z
)−1

ln
(Dz/2)

1
D+2

b0
= T

(2)
ln

(Dz/2)
1

D+2

b0
, if D = 1,

T sig − T (2) ≤ 2

D − 1

(√
Dλ

1
2 bD−1

0 z
)−1

=
1

D − 1
T

(2)
, if D > 1.

Finally, let us consider the convergence stage when t ≥ T sig. Since it is always true that θ ≤ z, using
the lower bounds in (32), we have

z ≥ θ = abDβ ≥ β ·DD
2 βD · β = D

D
2 βD+2,

implying that β ≤ D− D
2(D+2) z

1
D+2 . Now, plugging this into (34) and noticing that θ ≥ z/2 when

t ≥ T sig, we derive

θ̇ = θ2(a−2 +Db−2 + β−2)(z − θ)

≥ θ2β−2(z − θ)

≥ 1

4
z2D

D
D+2 z−

2
D+2 (z − θ)

=
1

4
D

D
D+2 z

2D+2
D+2 (z − θ).

Therefore, we have

z − θ(s+ T sig) ≤ (z − θ(T sig)) exp

(
−1

4
D

D
D+2 z

2D+2
D+2 s

)
=

1

2
exp

(
−1

4
D

D
D+2 z

2D+2
D+2 s

)
,
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E Main proofs

Notations For notation simplicity, we will use C, c to denote generic positive constants that may
change from line to line.

E.1 Proof of Theorem 3.1

We recall that

ER(θ̂;θ∗) = E
∞∑
j=1

(θ̂j − θ∗j )
2.

Let us define the signal event

Sj =

{
ω : |ξj | <

1

2

∣∣θ∗j ∣∣} , S∁
j =

{
ω : |ξj | ≥

1

2

∣∣θ∗j ∣∣} . (45)

Then, on Sj we have 1
2

∣∣θ∗j ∣∣ ≤ |zj | ≤ 3
2

∣∣θ∗j ∣∣, while on S∁
j we have |zj | ≤ 3|ξj |. Then, we decompose

(θ̂j − θ∗j )
2 = (θ̂j − θ∗j )

21Sj
+ (θ̂j − θ∗j )

21S∁
j
.

Moreover, when the signal is significant, we use

(θ̂j − θ∗j )
21Sj

≤ 2(θ̂j − zj)
21Sj

+ 2(zj − θ∗j )
21Sj

= 2(θ̂j − zj)
21Sj

+ 2ξ2j1Sj
.

On the other hand, when the noise is dominating, we apply

(θ̂j − θ∗j )
21S∁

j
≤ 2θ̂2j1S∁

j
+ 2(θ∗j )

21S∁
j
.

Summing over j and taking the expectation, we have

R(θ̂Op;θ∗) = E
∞∑
j=1

(θ̂j − θ∗j )
2 = E

∞∑
j=1

(θ̂j − θ∗j )
21Sj

+ E
∞∑
j=1

(θ̂j − θ∗j )
21S∁

j

≤ 2E
∞∑
j=1

(θ̂j − zj)
21Sj + 2E

∞∑
j=1

ξ2j1S∁
j
+ 2E

∞∑
j=1

θ̂2j1S∁
j
+ 2E

∞∑
j=1

(θ∗j )
21S∁

j

= 2E
∞∑
j=1

[
ξ2j1Sj + (θ∗j )

21S∁
j

]
(46)

+ 2E
∞∑
j=1

θ̂2j1S∁
j

(47)

+ 2E
∞∑
j=1

(θ̂j − zj)
21Sj

. (48)

Now, the first term (46), representing the absolute error, is controlled by Proposition E.1 that

E
∞∑
j=1

[
ξ2j1Sj

+ (θ∗j )
21S∁

j

]
≤ 4

[
ϵ2Φ(ϵ) + Ψ(ϵ)

]
.

Therefore, we focus on the remaining two terms and obtain the estimations (49) and (51) in the
following.

The noise term The term (47) represents the extra error caused by the estimator when the noise
dominates. Applying Lemma D.1, we obtain∣∣∣θ̂j∣∣∣ = |θj(t)| ≤

∣∣∣θ̃(t)∣∣∣ = λj(Ej − 1)

2|zj |+ λjEj
|zj | ≤

1

2
λj exp ((6|ξj |+ λj) t) on S∁

j .
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Let us choose J = min {j ≥ 1 : λj ≤ ϵ} ≍ ϵ−1/γ . Then, since t ≤ B2ϵ
−1, we have (|ξj |+ λj)t ≤

B2(|ξj |/ϵ+ 1) and thus

E
∑
j≥J

θ̂2j1S∁
j
≤ C

∑
j≥J

λ2
jE exp(C(|ξj |/ϵ) + C) ≤ C

∑
j≥J

λ2
j ≤ CJ−(2γ−1) ≤ Cϵ2−1/γ ,

where we notice that E exp(C(|ξj |/ϵ) + C) is uniformly bounded by some constant for all j since

each |ξj |/ϵ is 1-sub-Gaussian. On the other hand, using the obvious bound
∣∣∣θ̂j∣∣∣ ≤ 3|ξj | on S∁

j , we
obtain

E
∑
j<J

θ̂2j1S∁
j
≤ C

∑
j<J

Eξ2j ≤ Cϵ2J ≤ Cϵ2−1/γ .

Combining two terms, we conclude that

E
∞∑
j=1

θ̂2j1S∁
j
≤ Cϵ2−1/γ . (49)

The signal term The term (47) represents the approximation error when the signal is significant.
We apply Lemma D.1 again to derive∣∣∣θ̂j − zj

∣∣∣ ≤ ∣∣∣θ̃(t/√2)− zj

∣∣∣ = 2|zj |+ λj

2|zj |+ λj exp
(
(2|zj |+ λj)t/

√
2
) |zj |.

Using the fact that 1
2

∣∣θ∗j ∣∣ ≤ |zj | ≤ 3
2

∣∣θ∗j ∣∣ on Sj , we derive that

(θ̂j − zj)
21Sj

≤ C
(
∣∣θ∗j ∣∣+ λj)

2θ2j

λ2
j exp

(
(2
∣∣θ∗j ∣∣+ λj)t/

√
2
) . (50)

Let us define ν = ϵ ln(1/ϵ) ≥ ϵ. Recalling (9) and using Assumption 1, we have

j ≤ max Jsig(ϵ) ≤ Cϵ−κ, for j ∈ Jsig(ν) ⊆ Jsig(ϵ).

Now, if we take t ≥ B1ϵ
−1 for some constant B1, since

∣∣θ∗j ∣∣ ≥ ν for j ∈ Jsig(ν), we also have

1√
2

∣∣θ∗j ∣∣t ≥ 1√
2
tϵ ln(1/ϵ) ≥ cB1 ln(1/ϵ),

and thus when j ∈ Jsig(ν),

ln
[
λ2
j exp

(∣∣θ∗j ∣∣t/√2
)]

= 2 lnλj +
1√
2

∣∣θ∗j ∣∣t ≥ cB1 ln(1/ϵ)− C ln j ≥ (cB1 − C) ln(1/ϵ).

Consequently, as long as B1 is large enough, we have

λ2
j exp

(∣∣θ∗j ∣∣t/√2
)
≥ 1 when j ∈ Jsig(ν).

Therefore, plugging this into (50), we get

(θ̂j − zj)
21Sj

≤ C
(
∣∣θ∗j ∣∣+ λj)

2θ2j

λ2
j exp

(
(2
∣∣θ∗j ∣∣+ λj)t/

√
2
) ≤ C exp

(
−(
∣∣θ∗j ∣∣+ λj)t/(

√
2)
)
(
∣∣θ∗j ∣∣+ λj)

2θ2j ,

and hence ∑
j∈Jsig(ν)

E(θ̂j − zj)
21Sj

≤
∑

j∈Jsig(ν)

exp
(
−(
∣∣θ∗j ∣∣+ λj)t/(

√
2)
)
(
∣∣θ∗j ∣∣+ λj)

2θ2j

≤ C

∞∑
j=1

[
(
∣∣θ∗j ∣∣+ λj)t

]−2
(
∣∣θ∗j ∣∣+ λj)

2θ2j

= Ct−2
∞∑
j=1

θ2j ≤ Cϵ2.
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On the other hand, with the trivial bound
∣∣∣θ̂j − zj

∣∣∣ ≤ |zj |, the remaining terms are bounded by∑
j /∈Jsig(ν)

E(θ̂j − zj)
21Sj

≤
∑

j /∈Jsig(ν)

(θ∗j )
2 = Ψ(ν).

Therefore, we conclude that

E
∞∑
j=1

(θ̂j − zj)
21Sj

≤ Cϵ2 +Ψ(ϵ ln(1/ϵ)) . (51)

E.2 Proof of Theorem 3.2

Following the same argument as the proof in the previous section, we introduce the events Sj and S∁
j

in (45) and decompose the error as in (46), (47) and (48). Then, we will focus on the last two terms
and derive the estimations (53) and (54) in the following. We recall that b0 ≍ ϵ

1
D+2 and we choose t

such that B1ϵ
−1 ≤ bD0 t ≤ B2ϵ

−1 for some constants B1, B2 > 0 that will be determined later.

Here, we also note that the in correspondence to the component-wise gradient flow considered in
Subsection D.2, the initializations are given by λ = λj and b0,j = b0 in (30). Now, since λj ≍ j−γ ,
the index

J = min
{
j ≥ 1 : λ

1/2
j ≤ b0,j/

√
D
}
≍ b

−2/γ
0 . (52)

The noise term To apply the bounds in Lemma D.2, let us denote the event

Aj =

ω : 3 · 2
D+1

2 bD0 |ξj |t ≤ ln
b0

λ
1
2
j

√
D

 .

Then, since |zj | ≤ 3|ξj | on S∁
j , we have t ≤ T

(1,2)
j on Aj , where T (1,2)

j is defined via (39). Then, for
j > J , applying (38) yields

θ̂2j1S∁
j ∩Aj

≤ 2D+1b2D0 λ2
j exp

(
2

D+5
2 bD0 |zj |t

)
1S∁

j ∩Aj

≤ 2D+1b2D0 λ2
j exp

(
2

D+5
2 B2|zj |/ϵ

)
1S∁

j ∩Aj

≤ Cb2D0 λ2
j exp(C|ξj |/ϵ)1S∁

j ∩Aj

where we use bD0 t ≤ B2ϵ
−1 in the last inequality. Consequently,

E
∑
j>J

θ̂2j1S∁
j ∩Aj

≤ Cb2D0
∑
j>J

λ2
jE exp(C|ξj |/ϵ) ≤ Cb2D0

∑
j>J

λ2
j

≤ Cb2D0 J−(2γ−1) ≤ Cb
2(D+2−1/γ)
0 ,

where in the second inequality we notice that E exp(C|ξj |/ϵ) is uniformly bounded since each |ξj |/ϵ
is 1-sub-Gaussian.

On the other hand, noticing bD0 t ≤ B2ϵ
−1 again, we have

j ∈ A∁
j =⇒ CbD0 t|ξj | ≥ ln

b0

λ
1
2
j

√
D

=⇒ |ξj |/ϵ ≥ cB−1
2 ln

b0

λ
1
2
j

√
D

= cB−1
2 ln

(
b20λ

−1
j /D

)
.

Hence, using Lemma F.1 with the sub-Gaussian property of ξj and noticing that b20λ
−1
j /D ≥ 1 when

j > J , we obtain

E
∑
j>J

θ̂2j1S∁
j ∩A∁

j
≤ C

∑
j>J

E
[
ξ2j1

{
|ξj |/ϵ ≥ cB−1

2 ln
(
b20λ

−1
j /D

)}]
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≤ Cϵ2
∑
j>J

exp
(
−c
[
cB−1

2 ln
(
b20λ

−1
j /D

)]2)
≤ Cϵ2

∑
j>J

exp
(
−c
[
ln
(
b20j

γ
)]2)

≤ Cϵ2
∫ ∞

J

exp
(
−c
[
ln
(
b20x

γ
)]2)

dx

≤ Cϵ2b
−2/γ
0

∫ ∞

c

exp
(
−c [ln(yγ)]

2
)
dy, y = b

2/γ
0 x

≤ Cϵ2b
−2/γ
0 ≤ Cϵ2ϵ−

2
D+2

1
γ .

Finally, using the bound
∣∣∣θ̂j∣∣∣ ≤ 3|ξj | again, the remaining terms are bounded by

E
∑
j≤J

θ̂2j1S∁
j
≤ ϵ2J ≤ Cϵ2b

−2/γ
0 ≤ Cϵ2ϵ−

2
D+2

1
γ .

In summary, we conclude that

E
∞∑
j=1

θ̂2j1S∁
j
≤ Cϵ2ϵ−

2
D+2

1
γ . (53)

The signal term We will apply the bound in Lemma D.3. Let us denote

Jrec =
{
j : t ≥ 2T sig

j

}
∩ Jsig(ϵ).

Then, when j ∈ Jrec and Sj holds, (42) and the fact 1
2

∣∣θ∗j ∣∣ ≤ |zj | ≤ 3
2

∣∣θ∗j ∣∣ imply

|θj − zj | ≤
1

2
|zj | exp

(
−1

4
D

D
D+2 z

2D+2
D+2 (t− T sig

j )

)
≤ C

∣∣θ∗j ∣∣ exp(−c
∣∣θ∗j ∣∣ 2D+2

D+2 t

)
.

Consequently,

E
∑

j∈Jrec

(θ̂j − zj)
21Sj

≤ C
∑

j∈Jrec

(θ∗j )
2 exp

(
−c
∣∣θ∗j ∣∣ 2D+2

D+2 t

)
≤ C

∑
j∈Jrec

(θ∗j )
2

(∣∣θ∗j ∣∣ 2D+2
D+2 t

)−D+2
D+1

= C
∑

j∈Jrec

t−
D+2
D+1 ≤ Ct−

D+2
D+1 |Jsig(ϵ)| ≤ Cϵ2Φ(ϵ),

where we use exp(−cx) ≤ Cx−D+2
D+1 in the second inequality.

Let us define ν = ϵ ln(1/ϵ) ≥ ϵ. We claim that J∁
rec ⊆ Jsig(ν)

∁ on Sj as long as bD0 t ≥ B1ϵ
−1 for

some large constant B1. Then, using the obvious bound
∣∣∣θ̂j − zj

∣∣∣ ≤ |zj | ≤ 3
2

∣∣θ∗j ∣∣ on Sj , we have

E
∑

j∈J∁
rec

(θ̂j − zj)
21Sj

≤
∑

j∈Jsig(ν)∁

(θ∗j )
2 = Ψ(ν). (54)

To prove the claim, we show that Jsig(ν) ⊆ Jrec on Sj as long as B1 is large enough. Recalling (9)
and using Assumption 1, for j ∈ Jsig(ν) ⊆ Jsig(ϵ), we have

j ≤ max Jsig(ϵ) ≤ Cϵ−κ.

Now, we show that t ≥ 2T sig
j for j ∈ Jsig(ν) on Sj for different cases in Lemma D.3.

• If λ1/2
j ≤ b0/

√
D, we have (40) and thus

t ≥ 2T sig
j ⇐= bD0 |zj |t ≥ 1 +

(
ln

(D−D/2z/2)
1

D+2

λ
1/2
j

)+
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⇐=
B1

2
|θj |ϵ−1 ≥ C ln

(∣∣θ∗j ∣∣λ−1
j

)
+ C

⇐= B1ϵ ln(1/ϵ)ϵ
−1 ≥ Cγ ln j + C

⇐= B1 ln(1/ϵ) ≥ Cκ ln(1/ϵ) + C.

• If λ1/2
j ≥ b0/

√
D, (41) gives

t ≥ 2T sig
j ⇐=

√
Dλ

1/2
j bD−1

0 |zj |t ≥ 1 +R+
j ,

where

Rj =

{
ln

(D|zj |/2)
1

D+2

b0
, D = 1,

1
D−1 , D > 1.

So for both D = 1 and D > 1, we have similarly

t ≥ 2T sig
j ⇐=

1

2

√
Dλ

1/2
j bD−1

0

∣∣θ∗j ∣∣t ≥ C ln
(
b−1
0

)
+ C

⇐=
1

2
|θj |bD0 t ≥ C ln(1/ϵ) + C

⇐= B1 ln(1/ϵ) ≥ C ln(1/ϵ) + C.

Therefore, for both cases, we have t ≥ 2T sig
j as long as B1 is large enough. This finishes the proof of

the claim.

E.3 The absolute error term

The following proposition connect the absolute error term with the ideal risk in Johnstone [2017].
Proposition E.1. For the sequence model (5), recalling the signal events (45) and the quantities (9),
we have

E
∞∑
j=1

[
ξ2j1Sj

+ θ2j1S∁
j

]
≤ 4

∞∑
j=1

min(ϵ2, θ2j ) = 4
[
ϵ2Φ(ϵ) + Ψ(ϵ)

]
. (55)

Proof. It is straightforward to see that

ξ2j1Sj
+ θ2j1S∁

j
= ξ2j1{2|ξj |<|θj |} + θ2j1{2|ξj |≥|θj |} ≤ min(4ξ2j , θ

2
j ),

so

E
[
ξ2j1Sj

+ θ2j1S∁
j

]
≤ Emin(4ξ2j , θ

2
j ) ≤ 4Emin(ξ2j , θ

2
j ) ≤ 4min(ϵ2, θ2j ).

Summing over j yields the inequality. The last equality follows from the definition of Φ(ϵ) and
Ψ(ϵ).

E.4 Proof of Proposition 3.4

The fact that aj(t)b
D
j (t) is non-decreasing follows from the analysis of the gradient flow in

Subsection D.1 and Subsection D.2. For δ ∈ (0, 1), let us choose C large enough such that
P {|ξj | ≤ Cϵ} ≥ 1− δ for any fixed j.

The case D = 0 For the signal component where
∣∣θ∗j ∣∣ ≥ 2Cϵ ln(1/ϵ), we have |zj | ≥ 1

2

∣∣θ∗j ∣∣ with
high probability. Then, we follow the analysis of the signal term in Subsection E.1 and obtain that

|θj(t)− zj |2 ≤ C(θ∗j )
2t−2 ≤ 1

4
(θ∗j )

2,

provided that ϵ is small enough. This implies that

|θj(t)| ≥
1

4

∣∣θ∗j ∣∣.
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Now, the second inequality in (24) implies that |θj(t)| ≤ a2j (t). Consequently, we conclude that

aj(t) ≥ 1
2

∣∣θ∗j ∣∣1/2.

For the noise component where
∣∣θ∗j ∣∣ ≤ ϵ, we have |zj | ≤ (C + 1)ϵ with high probability. Moreover,

since λj ≍ j−γ , we have J = min {j ≥ 1 : λj ≤ ϵ} ≍ ϵ−1/γ . Following the similar analysis of the
noise term in Subsection E.1, when j ≥ Cϵ−1/γ for some C > 0, we have

|θj(t)| ≤ λj exp(C(|zj |+ λj)t) ≤ λj exp(Cϵt) ≤ Cλj .

Then, the first inequality in (24) gives |θj(t)| ≥ β2
j (t), so we have |βj(t)| ≤ Cλ

1/2
j . Finally,

aj(t) =
√

λj + β2
j (t) ≤

√
λj + Cλj ≤ Cλ

1/2
j .

The case D ≥ 1 For the signal component where
∣∣θ∗j ∣∣ ≥ 2Cϵ ln(1/ϵ), we still have we have

|zj | ≥ 1
2

∣∣θ∗j ∣∣ with high probability. Now, from the analysis of the signal term in Subsection E.2,
we have t ≥ 2T sig

j . Moreover, investigating the proof of Lemma D.3, we see that the analysis in
Subsection E.2 actually shows that

|βj(t)| ≥ c|zj |
1

D+2 ≥ c
∣∣θ∗j ∣∣ 1

D+2 .

Consequently, (32) implies that

aj(t)b
D
j (t) ≥ |βj(t)|D+1 ≥ c

∣∣θ∗j ∣∣D+1
D+2 .

For the noise component where
∣∣θ∗j ∣∣ ≤ ϵ, we also have |zj | ≤ (C + 1)ϵ with high probability. Now,

we have

|zj |bD0 t ≤ (C + 1)ϵbD0 t ≤ C0,

for some constant C0. Following the similar analysis of the noise term in Subsection E.2, we can
choose j ≥ Cϵ−

2
D+2

1
γ such that

1 + ln
b0

λ
1/2
j

√
D

≥ C0.

Now, this condition guarantees that t ≤ T (1,2) defined in Lemma D.2, so Lemma D.2 gives

|β(t)| ≤ λ
1
2
j exp

(
CbD0 |zj |(t− T (1))+

)
≤ λ

1
2
j exp

(
CbD0 |zj |t

)
≤ Cλ

1
2
j .

Combining it with the upper bound in (32) and noticing t ≤ T (1,2) yield

aj(t)b
D
j (t) ≤ 2

D+1
2 |βj(t)|bD0 ≤ Cϵ

D
D+2λ

1
2
j .
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F Auxiliary results

Lemma F.1. Suppose X is σ2-sub-Gaussian, namely, P {|X| ≥ t} ≤ 2 exp
(
− 1

2σ2 t
)

for t ≥ 0. Then
for M ≥ 0, we have the tail bound

EX21 {|X| ≥ M} ≤ 4σ2 exp

(
− 1

4σ2
M2

)
. (56)

Proof. Using integration by parts, we have

EX21 {X ≥ M} = 2

∫ ∞

0

rP {|X| ≥ max(M, r)} dr

≤ 4

∫ ∞

0

r exp

(
− 1

2σ2
max(M2, r2)

)
dr

=
(
M2 + 2σ2

)
exp

(
−M2

2σ2

)
≤ 4σ2 exp

(
− 1

4σ2
M2

)
.

Lemma F.2. Suppose that (θj)j≥1 satisfies
∣∣θl(j)∣∣ ≍ j−(p+1)/2 for some p > 0 and |θj | = 0

otherwise, where l(j) is a sequence of indices. Defining Φ(δ) and Ψ(δ) as in (9), we have

Φ(δ) ≍ δ−
2

p+1 , Ψ(δ) ≍ δ
2p

p+1 .

Proof. First, from the definition of Φ(δ) and Ψ(δ), we see that they do not depend on ordering of
the indices and zero values of θj . Therefore, we can assume that l(j) = j. Then, assuming that
c1j

−(p+1)/2 ≤ |θj | ≤ C1j
−(p+1)/2, we have

Φ(δ) = |{j : |θj | ≥ δ}| ≤
∣∣∣{j : C1j

−(p+1)/2 ≥ δ
}∣∣∣ ≤ (δ/C1)

− 2
p+1 .

Moreover,

Ψ(δ) =

∞∑
j=1

|θj |21 {|θj | < δ}

=
∑

j>Φ(δ)

|θj |2 ≤ C2
1

∑
j>Φ(δ)

j−(p+1)

≤ C2
1CΦ(δ)−p ≤ C ′δ

2p
p+1

for some constant C ′ > 0. The lower bound of them can be obtained similarly.
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Answer: [Yes]
Justification: The main claims are supported by our main theorems as well as the numerical
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
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will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
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Answer: [Yes]

Justification: The proofs are provided in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The related codes are provided in the supplementary material.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The related codes are provided in the supplementary material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The related codes are provided in the supplementary material.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are reported in Figure 3 on page 21.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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one day.
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
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didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?
Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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11. Safeguards
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Answer: [NA]

Justification: It is mainly a theory paper.
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• The answer NA means that the paper does not use existing assets.
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