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Abstract

Reinforcement learning from human feedback (RLHF) has become a powerful post-
training paradigm for aligning large language models with human preferences. A
core challenge in RLHF is constructing accurate reward signals, where the conven-
tional Bradley-Terry reward models (BT RMs) often suffer from sensitivity to data
size and coverage, as well as vulnerability to reward hacking. Generative reward
models (GenRMs) offer a more robust alternative by generating chain-of-thought
(CoT) rationales followed by a final verdict. However, existing GenRMs rely on
shallow, vertically scaled reasoning, limiting their capacity to handle nuanced or
complex tasks. Moreover, their pairwise preference outputs are incompatible with
standard RLHF algorithms that require pointwise reward signals. In this work, we
introduce Think-RM, a training framework that enables long-horizon reasoning in
GenRMs by modeling an internal thinking process. Rather than producing struc-
tured, externally provided rationales, Think-RM generates flexible, self-guided
reasoning traces that support advanced capabilities such as self-reflection, hypothet-
ical reasoning, and divergent reasoning. To elicit these reasoning abilities, we first
warm-up the models by supervised fine-tuning (SFT) over long CoT data. We then
further improve the model’s long-horizon abilities by rule-based reinforcement
learning (RL). In addition, we propose a novel pairwise RLHF pipeline that directly
optimizes policies from pairwise comparisons, eliminating the need for pointwise
reward conversion. Experiments show that Think-RM outperforms baselines on
both in-distribution and out-of-distribution tasks, with particularly strong gains on
reasoning-heavy benchmarks: more than 10% and 5% on RewardBench’s Chat
Hard and Reasoning, and 12% on RM-Bench’s Math domain. When combined with
our pairwise RLHF pipeline, it demonstrates superior end-policy performance com-
pared to traditional approaches. This depth-oriented approach not only broadens
the GenRM design space but also establishes a new paradigm for preference-based
policy optimization in RLHF. The code, datasets, and models are publicly available
at https://github.com/IlgeeHong/Think-RM.

1 Introduction

Reinforcement learning from human feedback (RLHF) has emerged as a powerful post-training
paradigm for large language models (LLMs), enabling them to better follow instructions [1–4],
reason over multiple steps [5–8], and comply with safety constraints [9–11]. By iteratively shaping
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(a) Self-Reflection (b) Hypothetical Reasoning (c) Divergent Reasoning

Figure 1: Examples of advanced reasoning abilities enabled by Think-RM.

the model with a learned reward signal aligned to human preferences, RLHF bridges the gap between
pretraining objectives and real-world usage.

A central challenge in RLHF lies in constructing an accurate reward signal. A conventional approach
is to use a Bradley-Terry reward model (BT RM), which maps a prompt and response pair to a
single scalar score by minimizing empirical risk over preference data [12–15]. While BT RM is
straightforward to implement and easy to train, they often overfit to specific patterns in the training data
and are highly sensitive to dataset size and coverage, frequently leading to reward over-optimization
and reward hacking [16–20].

Generative reward models (GenRMs) offer a promising alternative to conventional discriminative
approaches [20–25]. By training an LLM to generate a chain-of-thought (CoT) explanation followed
by a final reward or preference, GenRM leverages the pretrained model’s existing knowledge and
shows greater robustness to data scarcity and distribution shifts, demonstrating stronger out-of-
distribution (OOD) performance [22–24]. Moreover, GenRM has been shown to further improve its
performance through vertical inference-time scaling, where multiple reasoning paths are generated and
then aggregated (e.g., by majority voting or averaging) to produce a more reliable reward or preference
estimate [21–24]. This inference-time scaling is not available to discriminative counterparts such as
BT RM, highlighting an additional advantage of the generative approach.

However, vertical inference-time scaling often fails to improve GenRM performance on nuanced
or complex RM tasks, especially those that require deep reasoning. While aggregating outputs
from multiple reasoning paths improves self-consistency, each path generated by existing GenRM is
typically shallow (limited to a few hundred tokens) making it difficult for any single path to fully
capture complex or subtle implicit context. For example, in coding or math-related conversations, such
shallow paths may not be sufficient to fully understand the user’s intent. In multi-turn conversations,
they often fail to track long-term dependencies across different turns. In addition, shallow CoT
reasoning is often insufficient to detect a single false statement embedded within an otherwise fluent
and well-structured response. Moreover, the outputs of existing GenRMs are typically expressed as
pairwise preferences, which are not directly compatible with standard RLHF algorithms that require
pointwise reward signals.

In contrast, scaling along the horizontal dimension, where the model reasons more extensively within
a single trajectory, remains largely underexplored, despite its success in improving the quality of
reasoning in other language model applications [26–28]. In this work, we introduce Think-RM, a
new training framework that transforms a non-reasoning pretrained LLM (e.g., Llama series [29, 30])
into a GenRM equipped with long-horizon reasoning capabilities by modeling an internal thinking
process. Rather than producing structured, externally provided rationales, Think-RM generates
flexible, self-guided reasoning traces that support advanced capabilities such as self-reflection,
hypothetical reasoning, and divergent reasoning, as illustrated in Figure 1. This enables the model to
solve reasoning-heavy RM tasks by extending a single CoT trajectory from hundreds to thousands of
tokens. To stimulate the reasoning abilities for the non-reasoning model, we first warm up the model
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with supervised fine-tuning (SFT). We generate multiple long CoT trajectories for each GenRM
prompt using a pretrained reasoning model and select the longest correct one, which we use to fine-
tune the model. After the SFT warm-up, we further refine the model’s overly long or noisy reasoning
process using rule-based reinforcement learning (RL). In addition, we propose a novel pairwise
RLHF pipeline that directly optimizes policies from pairwise preference comparisons, eliminating
the need for pointwise reward conversion and enabling more effective use of Think-RM’s outputs.

Extensive experiments show that Think-RM outperforms both BT RM and vertically scaled GenRM
on both in-distribution (ID) and OOD tasks, with particularly strong gains on reasoning-heavy
benchmarks. Specifically, Think-RM achieves more than 10% and 5% improvements on the Chat
Hard and Reasoning domains of RewardBench [31], respectively, and an 8% improvement on RM-
Bench [32], a challenging benchmark requiring intensive reasoning, with the largest gain of 12% on
its Math domain. This establishes state-of-the-art performance among all publicly available GenRMs
under 10B using only 6K training samples.

Furthermore, integrating Think-RM into our pairwise RLHF pipeline yields stronger end-policy
performance compared to traditional pointwise RLHF with BT RM. By shifting the modeling
paradigm from breadth to depth, Think-RM not only expands the design space of generative reward
modeling, but also establishes a new foundation for preference-based policy optimization in RLHF,
paving the way toward better alignment of LLMs with more complex objectives.

2 Related Work

Bradley-Terry (BT) Reward Modeling. The BT framework [33] is a conventional approach to
reward modeling in RLHF. This approach, pioneered in early RLHF work [2, 12, 13], continues
to be widely adopted in advanced language models like GPT-4 [34] and Qwen-2.5 [35]. In the BT
framework, reward models are trained using maximum likelihood estimation to map text inputs to
scalar scores that preserve the ordering of human preferences [12–15]. However, this discriminative
modeling paradigm faces several key limitations. It requires large amounts of high-quality preference
data for reliable training, shows high sensitivity to dataset coverage, and remains vulnerable to reward
hacking where models learn to exploit patterns in the training data rather than truly aligning with
human preferences [16–20].

Generative Reward Models. Recent work has shifted towards generative approaches to reward
modeling, where LLMs are trained to generate explanatory rationales before making preference
decisions [20–25]. Unlike discriminative BT models that directly output scalar scores, GenRMs
leverage the reasoning capabilities of LLMs through chain-of-thought generation, leading to several
key advantages. They require less training data, demonstrate stronger OOD generalization, and
provide interpretable reasoning traces for their decisions [22–24]. These works show that GenRMs
can be effectively trained using standard next-token prediction objectives and can benefit from test-
time compute through majority voting over multiple reasoning paths. However, current GenRMs
typically generate relatively shallow reasoning paths limited to a few hundred tokens, which can be
insufficient for complex tasks requiring deeper analysis or long-term dependency tracking.

LLM-as-a-Judge for Response Evaluation. A parallel line of work explores using LLMs directly
as judges to evaluate model outputs [36–38]. While sharing similar goals with reward modeling,
this approach differs by using off-the-shelf LLMs without additional training, relying instead on
careful prompt engineering to elicit evaluation capabilities. Although strong LLM judges such as
GPT-4 can achieve high agreement with human preferences in controlled evaluations, recent studies
have revealed significant limitations, including position and verbosity biases, inconsistent judgments
across different models, and, most importantly, an inherent ceiling where an LLM’s ability to judge
is fundamentally constrained by its own ability to solve the underlying tasks [22, 24, 36]. These
challenges are particularly pronounced in complex reasoning problems requiring detailed analysis or
long-term dependency tracking [36, 38]. These systematic limitations in LLM judges align with our
observations about shallow reasoning in GenRMs, further motivating the need for models specifically
trained for deep analytical evaluation.

Long Chain-of-Thought Reasoning. The development of chain-of-thought (CoT) prompting
has been crucial for improving the reasoning capabilities of LLMs [39–42]. While early CoT
approaches and their extensions, such as self-consistency [40] and tree-of-thought [41], showed
promise, they typically operated within relatively short reasoning horizons of a few hundred tokens.
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Figure 2: Overview of the Think-RM training framework.

Recent breakthroughs have demonstrated the importance of extending reasoning chains to much
longer horizons, with OpenAI’s o-series [26, 43] achieving remarkable performance on complex
mathematical and coding tasks through extended multi-step reasoning. This capability was later
replicated and publicly released in DeepSeek’s R1 model [27], which showed that long-horizon
reasoning abilities can be systematically trained using RL. Similar approaches have been adopted
by subsequent models like QwQ [44] and Grok [45], establishing long-horizon reasoning as a
key capability for solving complex tasks. This evolution directly informs our approach to reward
modeling, suggesting that extending reasoning horizons could similarly improve preference learning
and evaluation.

3 Method

In this section, we introduce Think-RM, a training framework that enables long-horizon reasoning
in GenRM. Our approach begins with a pretrained LLM that initially lacks sophisticated reasoning
capabilities for reward modeling tasks. Building upon this foundation, we stimulate the model’s
reasoning ability through a two-stage process: first warming up the LLM using SFT on a carefully
curated set of long-horizon CoT data, and then refining its reasoning process through rule-based
RL. Figure 2 presents the complete pipeline of Think-RM, illustrating the flow from initial task
specification through preference dataset creation to the final training stages.

3.1 Preliminaries

Generative Reward Modeling. GenRMs are LLMs trained to evaluate responses through natural
language reasoning. Let T denote the space of natural language task instructions that define the
behavior of a GenRM. Each task instruction τ ∈ T specifies how the model should evaluate responses
based on specific criteria. For example, a scoring task asks the model to evaluate a single response by
producing a numerical reward, while a preference task requests a comparative judgment between
two responses and outputs which one is preferred. The task instruction τ is typically provided to the
GenRM as a system message. In this paper, we focus on the preference task and use five HelpSteer
attributes [46], along with safety, as predefined evaluation criteria. Note that the proposed method
can be generalized to other τ ∈ T . Details of our task instructions are provided in Appendix A.

We consider a pairwise GenRM Gθ, which takes as input a triplet (x, ya, yb), where x is the prompt
context and ya and yb are two different responses to x. The model generates a corresponding reasoning
process R and a final preference output s for ya and yb, denoted as (R, s) ∼ Gθ(·|τ, x, ya, yb). For
the type of s, we consider two cases: (1) binary pairwise GenRM, where s ∈ {a, b} indicates
which response is preferred; and (2) multiclass pairwise GenRM, where s ∈ {−3,−2,−1, 1, 2, 3}
represents the strength and direction of preference. In the multiclass case, the magnitude of s indicates
preference strength, with negative values favoring ya and positive values favoring yb.

Reinforcement Learning from Human Feedback. RLHF is a training paradigm that aligns language
models with human preferences through reward optimization. The core RLHF objective aims to
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maximize expected rewards provided by a pointwise scalar reward model r : X × Y → R with
respect to the policy language model Pϕ, defined as:

max
ϕ

E x∼D,y∼Pϕ(·|x)
[
r(x, y)

]
. (1)

To optimize (1), we can apply the PPO algorithm [47], which iteratively maximizes the following
surrogate function:

L(ϕ) = Et

[
min

(
Pϕ(yt|x, y<t)

Pϕold
(yt|x, y<t)

Ât, clip
1+ϵ
1−ϵ

(
Pϕ(yt|x, y<t)

Pϕold
(yt|x, y<t)

)
Ât

)]
− β DKL (Pϕ ∥ Pϕref

) ,

where DKL(· ∥ ·) denotes the KL divergence, β ≥ 0 is a hyperparameter controlling the strength of
the KL regularization, and Ât represents the advantage estimates for the t-th token. These advantage
estimates can be computed using established methods such as generalized advantage estimation
(GAE) [48] or group relative policy optimization (GRPO) [27].

3.2 Warm-up Supervised Fine-Tuning

To equip reasoning capabilities in non-reasoning LLMs for reward modeling tasks, we first warm
up the model through fine-tuning on a small set of long CoT trajectories corresponding to task
τ . To prepare the warm-up CoT data from the preference dataset Dpref = {(xi, ya,i, yb,i, s

⋆
i )}ni=1,

we use an off-the-shelf pretrained reasoning model π to generate M CoT trajectories for each
instance, denoted as {(Rij , sij)}Mj=1 ∼ π(·|τ, xi, ya,i, yb,i). To equip the LLM with long-horizon
reasoning capabilities spanning thousands of tokens, we select the trajectory with the longest Rij

among those satisfying sij = s⋆i for each instance. Importantly, these longer trajectories naturally
incorporate diverse forms of self-reflection and analytical depth, providing a strong foundation for
developing sophisticated reasoning abilities tailored to reward modeling tasks. Once the long CoT
data is prepared, we optimize the following maximum likelihood objective that combines preference
prediction and reasoning generation:

LSFT(θ) = E(x,ya,yb,R,s⋆)∼DSFT
[− log Gθ(s

⋆|τ, x, ya, yb, R)− log Gθ(R|τ, x, ya, yb)].

3.3 Rule-based Reinforcement Learning

While long CoT trajectories provide rich reasoning patterns for preference evaluation, the models
used to curate such data are not specifically optimized for this task. This leads to training data that,
despite being informative, often contains redundant reasoning steps. After SFT on these trajectories,
our GenRM model G̃θ naturally inherits this verbose reasoning style. To refine the reasoning process
while preserving its effectiveness, we further fine-tune G̃θ with rule-based RL. Specifically, we adopt
GRPO from Guo et al. [27], but restrict the reward to be based solely on accuracy. For notational
simplicity, we define ρ = (τ, x, ya, yb). The GRPO loss is then given by:

LGRPO(θ) = E(x,ya,yb,s⋆)∼Dpref , {Ri,si}G
i=1∼G̃θold

(·|ρ)

1

G

G∑
i=1

min

(
G̃θ(Ri, si | ρ)
G̃θold(Ri, si | ρ)

Âi, clip
1+ϵ
1−ϵ

(
G̃θ(Ri, si | ρ)
G̃θold(Ri, si | ρ)

)
Âi

)
− β DKL

(
G̃θ ∥ G̃θref

)
,

where G denotes the number of samples per prompt and Âi = (ri − r̄)/(σ̂r + ϵ) is the advantage
estimate for the i-th sample, with the mean reward r̄ = (1/G)

∑G
j=1 rj and the standard deviation

σ̂r =
√
(1/(G− 1))

∑G
j=1(rj − r̄)2. For the binary output s ∈ {a, b}, the rule-based reward ri is

defined as:

ri =

{
1.0, si = s⋆

0.0, otherwise

For the multiclass output s ∈ {−3,−2,−1, 1, 2, 3}, the rule-based reward ri is defined as:

ri =


1.0, si = s⋆

0.5, sign(si) = sign(s⋆)

0.0, otherwise
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This reward design ensures strong learning signals by assigning a full reward for exact predictions and
a partial reward for correctly identifying preference direction. The RL training phase is an essential
step for Think-RM, as it enables the discovery of effective long-horizon reasoning paths through
systematic exploration of diverse trajectories.

3.4 Pairwise RLHF with GenRMs

Given a trained Think-RM Ĝθ, we propose a new direct preference-based approach to fine-tune a
target policy Pϕ, eliminating the need to recover pointwise rewards r for individual prompt-response
pairs (x, y). During training, each RLHF iteration processes a mini-batch of B prompts, with G
sampled responses per prompt, resulting in a total of GB responses. We present our advantage
estimation method for GRPO below, noting that similar principles apply to GAE-based approaches.

Pairwise Preference Strength Matrix. We construct a skew-symmetric matrix D ∈ R(GB)×(GB)

indexed by responses y1, . . . , yGB , where each element dij (the entry in the i-th row and j-th column)
represents the preference strength of yi relative to yj . Note that dij = dji = 0 if yi and yj correspond
to different prompts, or if i = j. For each pair (yi, yj) sharing the same prompt x with i ̸= j, we
obtain a single GenRM evaluation (R, s) ∼ Ĝθ(· | τ, x, yi, yj). For multiclass output s, we define
matrix entries as:

dij = −s, dji = −dij .

For binary preferences, we first map s ∈ {a, b} to s̃ ∈ {−1,+1} (where a 7→ −1 and b 7→ +1) and
incorporate the reasoning length |R| as a confidence measure:

dij = −s̃/|R|, dji = −dij .

This formulation ensures that longer reasoning chains, which often indicate more ambiguous compar-
isons, result in smaller preference strengths.

Advantage Estimation using Pairwise Preference Strength. We can compute the advantage
estimate Âi for the i-th response using the pairwise preference strength matrix D as follows:

Âi =

∑G
j=1 dij√

G

2(G− 1)

∑
i,j d

2
ij +Gϵ

vs. Âi =
ri − r̄

σ̂r + ϵ︸ ︷︷ ︸
Standard advantage estimation in GRPO

.

This formulation derives from the following relationships:

ri − r̄ =
1

G

G∑
j=1

(ri − rj) =
1

G

G∑
j=1

dij and σ̂r =

√√√√ 1

G− 1

G∑
i=1

(ri − r̄)2 =

√
1

2G(G− 1)

∑
i,j

d2ij .

4 Experiments

In this section, we investigate the effectiveness of long-horizon reasoning in Think-RM across diverse
tasks. We evaluate various RMs on in-distribution (ID), moderately shifted, and out-of-distribution
(OOD) benchmarks. For a strict head-to-head comparison, all RMs use the same backbone model
and the same training data. The only difference is the training method. This setup isolates the effect
of long-horizon reasoning in Think-RM. Additionally, we implement our pairwise RLHF framework,
which directly uses pairwise preference comparisons from GenRMs to train the policy. We compare
this approach against the traditional pointwise RLHF method, which relies on pointwise rewards
(e.g., from BT RM), to evaluate the relative effectiveness of the two strategies.

4.1 Experiment Setup

Training Data and Baselines. We use HelpSteer2-Preference [46] as training data for all baseline
methods and Think-RM. HelpSteer2-Preference contains 6,766 high-quality training samples, each
consisting of a single prompt with two candidate responses, covering diverse topics and difficulty
levels, including multi-turn contexts. In addition, it provides human preference annotations in the
form of preference strengths and corresponding human-written justifications. We use QwQ-32B
[44] to generate a set of long internal thinking CoT trajectories {(Rij , sij)}Mj=1 for each instance
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i in the original HelpSteer2-Preference dataset. We set M = 10 and discard any instance i if all
generated preferences disagree with the ground truth (i.e., sij ̸= s⋆i for all j). This results in 6K
training samples for binary preference and 4K for multiclass preference. Due to the heterogeneity
between the binary and multiclass training sets, our focus is not to compare binary and multiclass
GenRMs directly. Instead, we focus on comparing different types of RMs within each category. For
all head-to-head comparisons, we use the same training data across baselines within the respective
category.

For baselines, we consider a BT RM and two CoT-GenRMs [22]: one trained on ground-truth,
human-written CoT rationales from HelpSteer2-Preference, denoted as CoT-GenRM (ground truth),
and the other trained on explicit CoT rationales generated by QwQ-32B (i.e., excluding the internal
<THINK>...</THINK> reasoning), denoted as CoT-GenRM (model-generated). We emphasize that
CoT-GenRM (ground truth) is a strong GenRM baseline, as collecting human-written CoT rationales
and further postprocessing them by expert researchers is prohibitively expensive. In addition, we
evaluate these CoT-GenRMs under vertical inference-time scaling: for each sample, the model
generates m independent judgments, and the final prediction is determined by majority voting. This
serves as a point of comparison to Think-RM, which adopt a different inference time scaling approach
based on long-horizon inference scaling.

To compare pairwise RLHF with traditional pointwise RLHF, we integrate different RMs into their
respective RLHF frameworks and evaluate the end-policy performance. Specifically, we use BT RM
for pointwise RLHF and GenRMs (CoT-GenRM and Think-RM) for our pairwise RLHF. We conduct
these experiments on HH-RLHF dataset [1], using 3K randomly sampled prompts for training.

Base Models. We use Llama-3.1-8B-Instruct3 and Qwen2.5-3B-Instruct4 as backbone models for
all experiments. We choose these small-sized models because integrating larger ones into a full
pairwise RLHF pipeline is prohibitively expensive in terms of computation and memory. Due to
space constraints, we defer experiment results with Qwen2.5-3B-Instruct to Appendix B.

Evaluation Benchmarks. We use HelpSteer3-Preference [49] as a benchmark to evaluate generaliza-
tion under moderate distribution shift. Although it shares similar prompt sources and response pair
generation methods with HelpSteer2-Preference, which we use for ID evaluation via its validation set,
HelpSteer3-Preference includes more diverse and challenging examples that go beyond ID settings.
For OOD evaluation, we consider two additional benchmarks: RewardBench [31] and RM-Bench
[32]. RM-Bench is specifically designed to evaluate robustness to subtle content variations and resis-
tance to stylistic biases. It is widely regarded as one of the most challenging benchmarks for RMs,
requiring fine-grained judgment and extensive reasoning. For evaluating end-policy performance
after RLHF training, we use AlpacaEval2 [50] with GPT-4-as-a-judge.

Implementation Details. We use OpenRLHF [51] to train BT RM and all SFT models, and VeRL
[52] for all RL experiments (Think-RM’s rule-based RL stage and pairwise RLHF with GenRMs).
For warm-up SFT, we fine-tune Llama-3.1-8B-Instruct for 5 epochs with a learning rate of 1× 10−5

for binary outputs and 5× 10−6 for multiclass outputs. We fine-tune Qwen2.5-3B-Instruct for 10
epochs with a learning rate of 1 × 10−5 for binary outputs. At the rule-based RL stage, we use a
rollout batch size of 512, a KL coefficient of β = 1 × 10−4, and a group size of G = 8 for both
binary and multiclass settings. The learning rate is 2× 10−6 for Llama-3.1-8B-Instruct and 1× 10−6

for Qwen2.5-3B-Instruct. For RLHF experiments, we use the same hyperparameters as in rule-based
RL, except we reduce the group size to G = 4. Additional implementation details are provided in
Appendix C.

4.2 Main Experiments

4.2.1 Evaluation on In-Distribution and Moderately Shifted Tasks

In Table 1, we report the preference accuracy of different RMs on ID (HelpSteer2-Preference) and
moderately shifted (HelpSteer3-Preference) tasks. Since the models are trained with 6K examples for
binary cases and 4K for multiclass cases, binary models generally achieve higher accuracy across
all subdomains. Given the limited training data, BT RM underperforms compared to GenRMs
(CoT-GenRM and Think-RM), even on the ID task, highlighting the sensitivity of BT RM to data

3https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
4https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
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Table 1: Reward model evaluation on HelpSteer2-Preference (in-distribution) and HelpSteer3-
Preference (moderate distribution shift). Bolded numbers indicate the best performance within
each type, and underlined numbers indicate the second best.

Type Model HelpSteer2-Preference HelpSteer3-Preference
Validation Avg. Len Code General Multilingual Stem AVG Avg. Len

Binary

Base 67.47 354.01 67.48 64.43 66.52 62.96 65.29 353.01
BT RM 75.57 - 72.92 70.71 75.48 69.57 71.88 -
CoT-GenRM (ground truth) 80.97 97.98 75.23 69.84 75.45 69.96 72.03 100.93
CoT-GenRM (model-generated) 76.14 383.33 78.70 69.29 76.21 64.61 72.01 411.29

CoT-GenRM (ground truth)
w/ vertical inference-time scaling (m = 16) 80.11 1561.76 75.00 70.11 75.30 70.58 72.16 1596.8

CoT-GenRM (model-generated)
w/ vertical inference-time scaling (m = 16) 77.56 6181.76 78.12 69.51 76.21 66.26 72.19 6529.28

Think-RM (SFT) 74.86 1335.80 76.04 68.80 76.52 66.67 71.48 1587.74
Think-RM (SFT + RL) 81.53 1018.76 80.32 70.71 75.15 67.90 73.28 1124.98

Multiclass

Base 58.81 351.76 56.13 57.21 59.85 58.85 57.63 353.10
BT RM 75.00 - 71.76 67.21 69.1 68.75 68.75 -
CoT-GenRM (ground truth) 78.12 98.32 78.12 68.42 74.55 66.67 71.43 108.89
CoT-GenRM (model-generated) 73.30 379.16 77.20 68.52 73.94 69.14 71.48 390.16

CoT-GenRM (ground truth)
w/ vertical inference-time scaling (m = 16) 78.84 1492.64 78.59 67.76 75.00 66.05 71.22 1532.8

CoT-GenRM (model-generated)
w/ vertical inference-time scaling (m = 16) 75.43 6064.8 79.17 69.18 74.24 67.08 72.03 6280.8

Think-RM (SFT) 74.86 1573.41 72.45 65.41 72.12 63.58 67.92 1665.39
Think-RM (SFT + RL) 76.70 1184.26 78.36 67.49 75.30 68.52 71.41 1333.08

Table 2: Reward model evaluation on RewardBench. Bolded numbers indicate the best performance
within each type, and underlined numbers indicate the second best.

Type Model Reward Bench
Chat Chat Hard Reasoning Safety AVG Avg. Len

Binary

Base 89.53 45.18 68.46 77.23 70.95 381.56
BT RM 88.32 66.89 80.71 76.35 78.07 -
CoT-GenRM (ground truth) 93.85 66.01 76.29 87.97 80.79 113.10
CoT-GenRM (model-generated) 93.85 62.06 73.24 85.14 78.26 453.10

CoT-GenRM (ground truth)
w/ vertical inference-time scaling (m = 16) 93.02 65.57 79.33 87.43 81.81 1596.8

CoT-GenRM (model-generated)
w/ vertical inference-time scaling (m = 16) 95.25 63.71 74.33 84.66 79.28 6767.2

Think-RM (SFT) 94.97 75.44 85.03 84.86 85.44 2267.46
Think-RM (SFT + RL) 94.41 77.85 85.23 86.35 86.35 1422.93

Multiclass

Base 69.13 48.14 63.46 58.51 61.42 358.82
BT RM 92.25 66.01 80.83 75.14 78.56 -
CoT-GenRM (ground truth) 95.95 64.25 75.50 87.03 80.72 115.77
CoT-GenRM (model-generated) 94.69 65.02 75.34 85.95 79.55 399.88

CoT-GenRM (ground truth)
w/ vertical inference-time scaling (m = 16) 95.53 63.27 76.13 85.47 80.37 1529.12

CoT-GenRM (model-generated)
w/ vertical inference-time scaling (m = 16) 95.81 63.38 74.92 87.16 80.39 5820.64

Think-RM (SFT) 90.78 76.21 81.11 84.73 83.17 2514.14
Think-RM (SFT + RL) 94.27 75.33 82.11 86.35 84.49 1635.57

size and coverage, as well as the robustness of GenRMs in low-data regimes. CoT-GenRM (ground
truth) outperforms CoT-GenRM (model-generated) on the ID task due to the higher quality of
human-written rationales, but their performance becomes comparable under moderate distribution
shift. Vertical inference-time scaling using majority voting over 16 judgments provides minimal
improvement. Think-RM, trained with SFT followed by RL, significantly outperforms its SFT-
only counterpart and reduces the average response length, indicating a refinement of the long and
noisy reasoning trajectories introduced during SFT warm-up. This underscores the essential role
of the subsequent RL stage in improving ID performance while pruning redundant and verbose
reasoning steps. Notably, binary Think-RM outperforms all baselines on both ID and moderately
shifted settings, even surpassing vertically scaled CoT-GenRM (ground truth). For the multiclass
case, Think-RM performs slightly worse than CoT-GenRM (ground truth) but still outperforms or
matches CoT-GenRM (model-generated), even when vertical inference-time scaling is applied. In
the reasoning-heavy code domain of HelpSteer3-Preference, binary Think-RM achieves the highest
accuracy among all baselines, demonstrating its effectiveness on complex reasoning tasks.
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Table 3: Reward model evaluation on RM-Bench. Bolded numbers indicate the best performance
within each type, and underlined numbers indicate the second best.

Type Model RM-Bench
Chat Code Math Safety AVG Avg. Len

Binary

Base 49.10 51.19 57.10 82.63 63.79 344.40
BT RM 61.11 53.9 59.48 88.33 68.27 -
CoT-GenRM (ground truth) 60.90 51.88 59.30 88.21 67.79 102.39
CoT-GenRM (model-generated) 59.35 52.05 58.31 88.94 67.51 400.80

CoT-GenRM (ground truth)
w/ vertical inference-time scaling (m = 16) 60.16 53.61 59.15 88.69 68.11 1534.72

CoT-GenRM (model-generated)
w/ vertical inference-time scaling (m = 16) 59.73 53.27 60.42 88.78 68.55 6340.8

Think-RM (SFT) 67.92 56.29 71.73 91.23 75.19 3228.61
Think-RM (SFT + RL) 66.41 54.68 72.25 91.51 75.06 1798.86

Multiclass

Base 52.28 51.97 53.81 62.35 56.18 334.29
BT RM 62.05 55.58 57.93 82.92 66.28 -
CoT-GenRM (ground truth) 60.38 53.12 61.32 88.52 68.86 104.16
CoT-GenRM (model-generated) 60.98 53.31 60.01 89.70 68.82 420.19

CoT-GenRM (ground truth)
w/ vertical inference-time scaling (m = 16) 59.04 53.05 61.06 88.93 68.75 1545.92

CoT-GenRM (model-generated)
w/ vertical inference-time scaling (m = 16) 61.28 54.19 60.40 90.31 69.36 6348.48

Think-RM (SFT) 64.51 52.00 66.99 90.38 71.95 3092.62
Think-RM (SFT + RL) 64.17 51.07 67.51 91.62 72.37 1690.38

4.2.2 Evaluation on Out-of-Distribution Tasks

In Tables 2 and 3, we report the preference accuracy of different RMs on OOD tasks (RewardBench
and RM-Bench). Notably, the Chat Hard and Reasoning subcategories of RewardBench, as well
as all domains in RM-Bench, require extensive reasoning. From the tables, we observe that Think-
RM significantly outperforms all baselines on these OOD tasks for both binary and multiclass
settings, achieving average improvements of up to 5% on RewardBench and 8% on RM-Bench, even
compared to CoT-GenRM (ground truth) with vertical inference-time scaling using 16 judgments.
In particular, Think-RM achieves improvements of more than 10% and 5% in the Chat Hard and
Reasoning subcategories, respectively, and a 12% improvement in the Math domain of RM-Bench
compared to CoT-GenRMs. These results demonstrate that long-horizon reasoning through internal
thinking processes outperforms vertical inference scaling based on structured external reasoning
when solving complex, reasoning-intensive tasks. Think-RM, trained with SFT followed by RL,
generally outperforms its SFT-only counterpart and reduces the average response length, consistent
with our observations in Section 4.2.1.

4.3 Ablation Study

Figure 3 presents the preference accuracy and average response length of binary Think-RM across
all benchmarks, comparing two warm-up data selection strategies: using the longest versus the
shortest CoT per instance. As shown, training with the longest CoT data consistently achieves higher
preference accuracy across all benchmarks, demonstrating the effectiveness of length-based CoT
filtering for enhancing reasoning quality. However, this comes at the cost of increased response
length, indicating a trade-off between accuracy and inference efficiency in selecting warm-up CoT
data strategies.

4.4 Pairwise vs. Pointwise RLHF

Table 4 shows the end-policy performance of models trained using two different RLHF approaches:
traditional pointwise RLHF with BT RM and our proposed pairwise RLHF with GenRMs (CoT-
GenRM and Think-RM). Note that we reduce the number of parallel runs to m = 4 for CoT-GenRM
with vertical inference scaling so that its average response length matches that of Think-RM, since
CoT-GenRM with vertical scaling (m = 16) generates 3-4 times more tokens than Think-RM in
Tables 1, 2, and 3.
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Figure 3: Comparison of two CoT filtering strategies for warm-up data selection.

As shown, policies trained with the pairwise RLHF + GenRM pipelines outperform those trained
with pointwise RLHF + BT RM, demonstrating the effectiveness of our approach. The similar
length-controlled win rate (LC WR) between the pairwise RLHF policies using CoT-GenRM and
Think-RM can be attributed to their comparable preference accuracy on the HH-RLHF test set (64.42
for CoT-GenRM vs. 65.03 for Think-RM), likely due to the relatively easy nature of the prompts in
this dataset. Nevertheless, the policy trained with Think-RM achieves a higher overall win rate (WR)
than the one trained with CoT-GenRM.

Table 4: Comparison of pointwise and pairwise RLHF approaches using different reward models.

Model AlpacaEval2
LC WR WR Avg. Len

Base 24.54 31.11 2296
Pointwise RLHF with BT RM 27.49 33.14 2300

Pairwise RLHF with CoT-GenRM (ground truth) 31.85 40.30 2430w/ vertical inference scaling (m = 4)
Pairwise RLHF with CoT-GenRM (model-generated) 31.72 41.06 2408w/ vertical inference scaling (m = 4)
Pairwise RLHF with Binary Think-RM 31.56 47.20 2838
Pairwise RLHF with Multiclass Think-RM 31.94 42.68 2574

5 Conclusion and Future Work

We introduced Think-RM, a framework for training LLMs as GenRMs with long-horizon reasoning
capabilities. To elicit advanced reasoning skills such as self-reflection and hypothetical reasoning,
we applied SFT on long CoT data, followed by rule-based RL. We also proposed a pairwise RLHF
pipeline that directly leveraged pairwise preference comparisons, removing the need for pointwise
reward conversion. Experiments showed that Think-RM outperformed both BT RM and vertically
scaled CoT-GenRMs, and achieved superior end-policy performance when combined with our
pairwise RLHF approach. Overall, our framework provided a depth-oriented approach for GenRM
design and established a new paradigm for preference-based RLHF.

Future research could explore two potential directions beyond Think-RM. First, developing calibrated
Think-RM that produces continuous measures of preference strength, rather than discrete binary or
multiclass outputs, could enable more fine-grained supervision signals for policy optimization. Sec-
ond, investigating adaptive reasoning budgets, where Think-RM dynamically allocates its reasoning
depth based on task complexity (using shorter reasoning chains for simple tasks and deeper ones for
challenging problems), could yield reasoning-efficient Think-RM that maintains high fidelity while
substantially reducing inference latency and computational cost.
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A Task Instruction Template

Binary Think-RM

System:
You are an impartial judge, tasked with evaluating the quality of the two
AI assistants’ responses to the context displayed below. Your evaluation
should be based on the following six criteria:

- Helpfulness: Overall helpfulness of the response to the user’s question
or instruction.
- Correctness: Inclusion of all pertinent facts without errors.
- Coherence: Consistency and clarity of expression.
- Complexity: Intellectual depth required to write response (i.e., whether
the response can be written by anyone with basic language competency or
requires deep domain expertise).
- Verbosity: Amount of detail included in the response, relative to what
is asked for in the context.
- Safety: Whether the response is free of any kind of harmful, toxic, or
illegal content.

After carefully considering these criteria, determine which assistant’s
response is superior. Begin your evaluation by thinking through the
problem step by step. Then output your final verdict by strictly
following this format: <answer>A</answer> if assistant A is better, and
<answer>B</answer> if assistant B is better.

User:
[The Start of Context]
{context}
[The End of Context]

[The Start of Assistant A’s Response]
{response1}
[The End of Assistant A’s Response]

[The Start of Assistant B’s Response]
{response2}
[The End of Assistant B’s Response]
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Multiclass Think-RM

System:
You are an impartial judge, tasked with evaluating the quality of the two
AI assistants’ responses to the context displayed below. Your evaluation
should be based on the following six criteria:

- Helpfulness: Overall helpfulness of the response to the user’s question
or instruction.
- Correctness: Inclusion of all pertinent facts without errors.
- Coherence: Consistency and clarity of expression.
- Complexity: Intellectual depth required to write the response (i.e.,
whether the response can be written by anyone with basic language
competency or requires deep domain expertise).
- Verbosity: Amount of detail included in the response, relative to what
is asked for in the context.
- Safety: Whether the response is free of any kind of harmful, toxic, or
illegal content.

After carefully considering these criteria, determine which assistant’s
response is better and how much better it is using the scale below:

-3 if Assistant A’s response is much better than Assistant B’s response
-2 if Assistant A’s response is better than Assistant B’s response
-1 if Assistant A’s response is slightly better than Assistant B’s response
1 if Assistant B’s response is slightly better than Assistant A’s response
2 if Assistant B’s response is better than Assistant A’s response
3 if Assistant B’s response is much better than Assistant A’s response

Begin your evaluation by thinking through the problem step by step.
Then output your final score inside the <answer></answer> tag.

User:
[The Start of Context]
{context}
[The End of Context]

[The Start of Assistant A’s Response]
{response1}
[The End of Assistant A’s Response]

[The Start of Assistant B’s Response]
{response2}
[The End of Assistant B’s Response]
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B Additional Experiments with Qwen2.5-3B-Instruct

Table 5: Reward model evaluation on HelpSteer2-Preference (in-distribution) and HelpSteer3-
Preference (moderate distribution shift). Bolded numbers indicate the best performance within
each type, and underlined numbers indicate the second best.

Type Model HelpSteer2-Preference HelpSteer3-Preference
Validation Avg. Len Code General Multilingual Stem AVG Avg. Len

Binary

Base 53.84 262.74 62.27 53.61 54.24 53.70 55.68 365.49
BT RM 71.01 - 70.14 63.39 64.20 69.09 65.99 -
CoT-GenRM (model-generated)

w/ vertical inference-time scaling (m = 16) 74.43 6033.44 76.16 67.98 73.94 63.99 70.34 6209.28

Think-RM (SFT) 71.31 1061.05 73.15 65.74 74.70 67.49 69.17 1230.71
Think-RM (SFT + RL) 75.99 836.62 75.93 67.16 71.06 67.70 69.87 849.66

Table 6: Reward model evaluation on RewardBench. Bolded numbers indicate the best performance
within each type, and underlined numbers indicate the second best.

Type Model Reward Bench
Chat Chat Hard Reasoning Safety AVG Avg. Len

Binary

Base 73.74 48.03 60.52 69.86 63.60 321.59
BT RM 87.43 62.50 73.74 75.95 74.90 -
CoT-GenRM (model-generated)

w/ vertical inference-time scaling (m = 16) 94.27 56.47 71.16 79.53 75.18 5464.96

Think-RM (SFT) 91.76 62.28 72.06 82.64 76.28 1844.35
Think-RM (SFT + RL) 93.58 62.83 75.77 81.96 78.56 1172.42

Table 7: Reward model evaluation on RM-Bench. Bolded numbers indicate the best performance
within each type, and underlined numbers indicate the second best.

Type Model RM-Bench
Chat Code Math Safety AVG Avg. Len

Binary

Base 55.86 51.12 53.12 73.75 59.90 319.84
BT RM 54.61 54.19 58.52 70.09 61.24 -
CoT-GenRM (model-generated)

w/ vertical inference-time scaling (m = 16) 59.86 51.17 59.20 82.51 65.63 5677.28

Think-RM (SFT) 62.88 51.85 64.59 87.30 69.78 1884.25
Think-RM (SFT + RL) 60.42 52.73 66.54 87.05 70.39 1169.78

In Tables 5, 6, and 7, we report the preference accuracy of different RMs on in-distribution (ID;
HelpSteer2-Preference), moderately shifted (HelpSteer3-Preference), and out-of-distribution (OOD;
RewardBench, RM-Bench) tasks. Given the limited training data in our experimental setup, BT
RM underperforms both vertically scaled CoT-GenRM (model-generated) and Think-RM across
all benchmarks, highlighting its sensitivity to data size and coverage. Think-RM, trained with SFT
followed by RL, outperforms its SFT-only counterpart (especially on the ID task) and significantly
reduces the average response length, underscoring the essential role of RL training in improving ID
performance while pruning redundant and verbose reasoning steps. Notably, Think-RM outperforms
all baselines on both ID and OOD settings and achieves comparable performance on the moderately
shifted task. In the reasoning-heavy tasks (e.g., Chat Hard and Reasoning from RewardBench, and all
domains of RM-Bench), Think-RM achieves the highest accuracy among all baselines, showing more
than a 7% improvement in the Math domain of RM-Bench, further demonstrating its effectiveness
on complex reasoning tasks. These results are consistent with our observations in Section 4.2 using
Llama-3.1-8B-Instruct.
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C Additional Implementation Details

Training. We train Think-RM using eight A100 GPUs (1 node), each with 80GB of memory. The
warm-up SFT phase takes approximately one hour, while the rule-based RL phase takes about three
hours. For pairwise RLHF training, we use sixteen A100 GPUs (2 nodes), each with 80GB of
memory: one node is allocated for RL training and the other for GenRM inference. For warm-up
SFT, we use the Adam optimizer [53] with β1 = 0.9 and β2 = 0.95, which are the default settings in
OpenRLHF [51], and tune the learning rate from {5× 10−6, 1× 10−5}. We apply a cosine learning
rate scheduler with a warmup ratio of 0.03. The number of epochs is tuned over {1, 3, 5, 10}, and we
set the batch size to 256 and the maximum sequence length to 16,384 tokens.

For rule-based RL, we use the AdamW optimizer [54] with β1 = 0.9 and β2 = 0.999, following the
default settings in VeRL [52]. We tune the learning rate in {1× 10−6, 2× 10−6} and use a constant
learning rate scheduler with no warmup (warmup ratio 0). We tune the number of epochs over {1, 2},
the rollout batch size over {256, 512}, and set the training batch size to 128. The maximum prompt
and response lengths are both set to 4,096 tokens. We use KL coefficient of β = 1e−4 and group
size G = 8.

For baselines (BT RM and CoT-GenRM), we tune the number of epochs over {1, 2, 3, 5, 7, 10} and
the learning rate over {5× 10−6, 1× 10−5}, and set the batch size to 256. The maximum sequence
length is set to 8,192 tokens.

All selected hyperparameters are summarized in Tables 8 and 9.

Table 8: Summary of selected hyperparameters across binary and multiclass setups with Llama-3.1-
8B-Instruct.

Type Model Num Epochs LR Rollout Batch Size Training Batch Size

Binary

Think-RM (SFT) 5 1× 10−5 - 256
Think-RM (RL) 1 2× 10−6 512 128
CoT-GenRM (ground truth) 5 1× 10−5 - 256
CoT-GenRM (model-generated) 10 1× 10−5 - 256
BT RM 3 1× 10−5 - 256

Multiclass

Think-RM (SFT) 5 5× 10−6 - 256
Think-RM (RL) 2 2× 10−6 512 128
CoT-GenRM (ground truth) 5 1× 10−5 - 256
CoT-GenRM (model-generated) 10 5× 10−6 - 256
BT RM 5 1× 10−5 - 256

Table 9: Summary of selected hyperparameters for binary setup with Qwen2.5-3B-Instruct.

Type Model Num Epochs LR Rollout Batch Size Training Batch Size

Binary

Think-RM (SFT) 10 1× 10−5 - 256
Think-RM (RL) 2 1× 10−6 512 128
CoT-GenRM (model-generated) 7 1× 10−5 - 256
BT RM 2 1× 10−5 - 256

For pairwise RLHF experiments with GenRMs, we reuse all hyperparameters selected for the rule-
based RL setup, as listed in Table 8. For policy rollout, we set the temperature to 1.0, with maximum
prompt and response lengths of 1,024 and 2,048 tokens, respectively. For GenRM inference, we use
a temperature of 0.6 and generate up to 2,048 response tokens. To reduce computational cost, we set
the group size to G = 4.

Evaluation. For the inference of GenRMs in Tables 1, 2, 3, 5, 6, and 7, we use a temperature of 0.6,
top-p of 1.0, and a maximum response length of 16,384 tokens. These settings are applied to both
Think-RM and CoT-GenRM. For inference with the RLHF-trained models reported in Table 4, we
use a temperature of 0.6, top-p of 0.9, and a maximum response length of 4,096 tokens.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim in the abstract and introduction accurately reflects the paper’s
contributions, particularly in enabling long-horizon reasoning in generative reward models
for addressing nuanced and complex reward modeling tasks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: We did not identify significant limitations in our approach, and due to space
constraints, we prioritized presenting core contributions and results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper primarily introduces a training framework to develop a specific
capability, and therefore does not present any formal theoretical results requiring assumptions
or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All selected hyperparameters for both the proposed and baseline methods are
summarized in Appendix C. In addition, we detail the procedures used for hyperparameter
tuning.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will include the full codebase along with detailed reproduction instructions
in the README files, as part of the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All necessary training and evaluation details are provided in Section 4.1 and
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report statistical significance measures due to limited computational
resources, which constrained the number of experimental runs. However, we ensured
consistency by using fixed random seeds and uniform evaluation protocols across all models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The necessary information on computational resources is provided in Ap-
pendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a methodology paper focused on reward modeling for RL training of
LLMs. We do not release any models or datasets that pose a risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The used dataset/code/models are properly credited in experimental settings.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will provide thorough documentation for the new assets alongside their
release if the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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