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ABSTRACT

While knowledge distillation has become a mature field for compressing large language models
(LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of
LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored.
Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step
teacher tool usage, but they often struggle to train student agents to dynamically plan and act in
novel environments. We propose AgentDistill, a novel, training-free agent distillation framework
that enables efficient and scalable knowledge transfer via direct reusage of Model–Context–Protocols
(MCPs)—structured and reusable task-solving modules autonomously generated by teacher agents.
The reuse of these distilled MCPs enables student agents to generalize their capabilities across
domains and solve new problems with minimal supervision or human intervention. Experiments on
biomedical and mathematical benchmarks demonstrate that our distilled student agents with small
language models can achieve performance comparable to advanced systems with strong LLMs such
as OctoTools (GPT-4o). The distilled agents achieve 58.9% average accuracy on biomedical VQA
benchmarks (vs. 58.5% with OctoTools) and 75.5% on the mathematical Game of 24 benchmark (vs.
45% with OctoTools). These results highlight the effectiveness of our framework in building scalable,
cost-efficient, and generalizable LLM-based agents.

LLM
Distillation

Agent
Distillation

(AgentDistill)

CoT PromptingBig LLM Small LLM

IntegrationMCP BoxTeacher Agent Student Agent

Costly Training

Training Free

FinetuningRationale + Label
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Figure 1: Comparison between traditional LLM distillation (top) and our proposed training-free agent distillation
framework (bottom). Traditional LLM distillation relies on chain-of-thought prompting followed by costly fine-tuning
on rationale–label pairs, whereas our method eliminates training entirely. Instead, a teacher agent autonomously
generates modular and reusable Model–Context–Protocols (MCPs), which are directly integrated into student agents.
This enables sLM-based agents to inherit task-solving capabilities without gradient updates or trajectory replay.

1 INTRODUCTION

Large language model (LLM) distillation has become a widely used technique to reduce inference cost while retaining
most teacher performance. Early knowledge distillation (KD) methods align student and teacher output logits (Hinton
et al., 2015; Sanh et al., 2019). Later work shows that matching hidden features (Sun et al., 2019; Jiao et al., 2019),
attention patterns (Wang et al., 2020), and using architecture-aware objectives (Sun et al., 2020; Tan et al., 2023) can
further close the performance gap between the student and teacher model. Chain-of-thought distillation (CoTD) teaches
students to follow step-by-step rationales generated by teachers (Ho et al., 2022; Shridhar et al., 2023), sometimes using
sampled or structured traces to highlight the critical steps (Li et al., 2023; 2022; Feng et al., 2024).
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Beyond language models, recent efforts have begun to explore how distillation techniques can be extended to LLM-
based agents that integrate reasoning with tool use and environment interaction. These efforts vary widely in how
they conceptualize agent behavior and what aspect of the teacher they aim to transfer. One type of work trains student
agents to imitate reasoning-action trajectories from teacher agents, such as Structured Agent Distillation (SAD) (Liu
et al., 2025) and retrieval-augmented distillation methods (Kang et al., 2025). These methods treat agent behavior as
interleaved thoughts and tool calls, supervising the student to mimic each step. While effective in capturing execution
details, they incur high computational cost and generalize poorly, as teachers require constructing and processing long,
complex sequences, and students passively replicate fixed trajectories without learning to adapt. For works in structure
distillation, like MAGDi (Chen et al., 2024a) and Sub-goal Distillation (Hashemzadeh et al., 2024), although they are
more efficient than trajectory distillation, guiding students with abstracted teacher strategies like subgoal sequences
or interaction graphs, these methods overlook differences in model capability, knowledge boundaries, or tool usage
between different models.

To address the limitations of trajectory imitation and structured plan distillation—namely high computational cost and
limited adaptability—we propose a lightweight, training-free framework: AgentDistill. Rather than replicating full
trajectories or assuming students can execute teacher-defined plans, our approach leverages the inherent strengths of
teacher agents in coding and task-solving by utilizing teacher-generated Model–Context–Protocols (MCPs) 1. MCP
is an open protocol designed to standardize how context is provided to LLMs. Our framework capitalizes on the
teacher agent’s capacity to create self-contained, reusable, and generalizable MCPs tailored to specific task domains.
These MCPs encapsulate the problem-solving capabilities of the teacher agent and enable student agents equipped with
substantially smaller LLMs (e.g., llama-3.1-8B, Qwen3-8B) to inherit sophisticated, transferable problem-solving skills
without additional training. By directly integrating these distilled MCP boxes, student agents significantly enhance their
performance and adaptability, effectively bridging the capability gap between teacher and student agents. Consequently,
our method offers a scalable, efficient, and low-cost solution for agent distillation, enabling student agents to robustly
handle diverse real-world scenarios.

We conduct comprehensive experiments on several benchmarks, including biomedical and mathematical tasks, to
evaluate the effectiveness of our proposed AgentDistill framework across different domains. These results demonstrate
that our approach substantially enhances the adaptability and generalization performance of student agents across
diverse settings covered by teacher-generated MCPs, while also reducing inference and training costs. To summarize,
our key contributions can be highlighted as follows:

• We propose AgentDistill, a novel agent distillation framework that enables student agents to inherit the more modular,
transferable, and interpretable components—Model–Context–Protocols (MCPs)—generated by teacher agents. Unlike
prior methods that rely on replaying long sequences of actions generated by the teacher, this approach allows student
agents to directly inherit task-solving capabilities from teachers.

• AgentDistill is entirely a training-free framework. It requires no fine-tuning of either the teacher or the student agent.
MCPs are automatically extracted, abstracted, and reused without additional gradient updates or handcrafted tool
usage. This yields a highly cost-efficient and deployable distillation pipeline with strong generalization performance
of the student to unseen tasks that can be solved with the distilled MCPs.

• We demonstrate that AgentDistill significantly enhances the problem-solving and generalization performance of
student agents on biomedical and mathematical reasoning tasks, effectively narrowing the gap between teacher
and student agents with minimal computational overhead. The comprehensive experiments are conducted across
biomedical (PathVQA, SLAKE) and mathematical (Game of 24) benchmarks. Our proposed MCP distillation
improves performance across all student models—GPT-3.5-turbo, Qwen3-8B, and LLaMA3.1-8B—with
detailed gains shown in Table 2.

2 RELATED WORKS

2.1 DISTILLATION OF LARGE LANGUAGE MODEL

Knowledge Distillation. Knowledge distillation (KD) transfers knowledge from a large teacher model to a smaller
student model by using teacher-provided soft targets and/or hidden representations. Early methods focus on aligning
output probability distributions (Hinton et al., 2015; Sanh et al., 2019). Intermediate-layer feature alignment is used
in patient distillation and two-stage distillation frameworks (Sun et al., 2019; Jiao et al., 2019). Self-attention matrix
distillation captures internal Transformer relationships (Wang et al., 2020). Architecturally aware techniques modify
network structures and perform joint distillation, as in MobileBERT and GKD (Sun et al., 2020; Tan et al., 2023).

1https://www.anthropic.com/news/model-context-protocol
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Recent cross-model capability distillation uses large LLM–generated instruction–response pairs to teach smaller open
models reasoning skills (Taori et al., 2023; Mukherjee et al., 2023).

Reasoning Distillation. Chain-of-thought distillation (CoTD) methods train a smaller student model to reproduce a
teacher’s step-by-step reasoning via teacher-generated rationales and answers. Some approaches fine-tune students on
full reasoning chains (Ho et al., 2022; Shridhar et al., 2023; Yang et al., 2025b) or on structured/sampled rationales
(Li et al., 2023; 2022), ensuring students learn key reasoning patterns even with limited data. Other techniques focus
training on critical steps or enforce faithfulness by sampling/weighting important tokens (Feng et al., 2024), maximizing
mutual information (Chen et al., 2024b), or using contrastive decoding (Wang et al., 2023). To preserve core reasoning
signals, long chains can be split into shorter chunks (Chen et al., 2025; Yang et al., 2025a), or aligned to alternative
formats like trees or graphs (Zhuang et al., 2025). Finally, counterfactual distillation improves causal robustness (Chen
et al., 2022), and domain-specialized distillation concentrates on task-specific CoT paths to boost performance on
targeted benchmarks (Fu et al., 2023).

In-Context Learning Distillation. In-context learning distillation (ICLD) (Snell et al., 2022; Upadhayayaya et al.,
2024; Huang et al., 2022; Duan et al., 2024) trains a smaller student model to internalize a teacher’s few-shot reasoning
without requiring full prompts at inference. This has proven effective on benchmarks like NLI and SQL and is now
standard in post-training. To enhance robustness, recent work integrates token-level language-modeling objectives
(Huang et al., 2022) or treats few-shot matching as the sole training target (Duan et al., 2024), guiding students to
internalize reasoning patterns.

2.2 DISTILLATION OF LLM AGENT

Trajectory Distillation. Trajectory-level agent distillation trains small models to imitate complete reasoning-action
trajectories from large LLM-based agents. Structured Agent Distillation (SAD) (Liu et al., 2025) segments trajectories
into interleaved thought and action spans, training students to reproduce agent-style execution patterns. Distilling LLM
Agents into Small Models (Kang et al., 2025) extends this by including retrieved evidence and code execution results,
enabling small models to emulate tool-augmented reasoning. These methods extend CoT distillation to agent settings
by preserving not only intermediate reasoning but also tool usage and task decomposition behaviors.

Structure Distillation. Structure-level agent distillation compresses reasoning trajectories into abstract representa-
tions such as graphs or subgoal sequences, enabling student models to preserve key task structures without imitating
every token. MAGDi (Chen et al., 2024a) encodes multi-agent chats as interaction graphs, allowing students language
model to reason over graph structure instead of raw text. Sub-goal Distillation (Hashemzadeh et al., 2024) extracts
high-level goals from teacher agent trajectories and trains a student agent to predict and carry out the task plan. These
methods reduce sequence length while preserving key reasoning patterns.

Action Policy Distillation. Action policy distillation transfers language-based reasoning from LLM agents to
lightweight, non-linguistic controllers. The teacher generates chain-of-thought trajectories in natural language, while
the student executes actions directly without text generation. In Language-Oriented to Emergent Communication (Kim
et al., 2024), a language agent trains an emergent-signal policy that communicates via short learned symbols. DeDer
(Choi et al., 2024) converts reasoning traces into state-action pairs to train a small embodied agent for language-free
execution.

Other training-free agent distillation methods, such as Agents Help Agents(Li et al.), distill by storing solved examples
into a memory for retrieval-based in-context learning, which limits transfer to specific exemplars and does not endow
the student with reusable task-solving procedures.

3 METHODOLOGY

To bridge the capability gap between a teacher agent leveraging large language models (LLMs), such as Claude-sonnet-4
or GPT-4o, and a student agent employing significantly smaller models (e.g., llama-3.1-8B, Qwen3-8B), we introduce a
novel agent distillation framework called AgentDistill. The core concept behind AgentDistill is straightforward yet
powerful: the teacher agent generates self-contained MCPs during task execution. These MCPs subsequently undergo
a process of MCP box construction with abstraction, clustering, and consolidation, resulting in a MCP box that are
then integrated into the student agents. This structured distillation process facilitates the transfer and internalization of
sophisticated problem-solving skills initially demonstrated by the teacher agent, thereby substantially enhancing the
capabilities of the student agent.
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Figure 2: Overview of AgentDistill, a training-free agent distillation framework via Model–Context–Protocols (MCPs).
The teacher agent with large language model solves tasks by decomposing them through a Manager Agent and
generating task-specific MCPs via open-source search, script generation, and virtual execution. Valid MCPs are
abstracted, clustered, and consolidated into a reusable MCP Box. At inference, the student agent with a small language
model leverages this MCP Box to perform tool-based reasoning without any fine-tuning or trajectory replay. This
enables lightweight agents to inherit task-solving capabilities from stronger models efficiently.

3.1 PROBLEM FORMULATION

Given supervision pairs D = {(xi, yi)}Ni=1 and a teacher agent πT , we aim to distill teacher-agent-generated MCPs to a
self-contained MCP Box, thus to improve a student agent πS with small language model performance by supplying the
MCP Box. No further gradient update is applied to student agent π : ∇θπS = 0. Formally, we define the optimization
problem as: maxB⊂L E(x,y)∼D [I {πS(x; B) = y}] , where L denotes the space of all teacher-agent-generated MCPs,
B is the MCP Box distilled from L, and πS(x; B) represents the behavior of the student agent when given input x
augmented with guidance from the MCP Box. The indicator function I{·} evaluates to 1 if the student’s output matches
the ground truth.

3.2 AGENTDISTILL PIPELINE

3.2.1 MCP CREATION

When solving an input xi ∈ D, the teacher agent πT interacts with an environment E , producing a full reasoning
trajectory: τi = (r1, a1, o1, . . . , rLi , aLi , oLi), where rt ∈ R are reasoning tokens, at ∈ A are action tokens (e.g., tool
calls, MCP generation), and ot ∈ O are observations from the environment.

To better distinguish MCP scripts from the reasoning, we prompt the teacher agent to generate and separate structured,
self-contained MCPs during its reasoning process. Within the trajectory τi, the teacher may produce one or more MCPs
corresponding to distinct subtasks. For each input example xi ∈ D, if the teacher agent generates a MCP at the j-th step
of its trajectory, we denote this MCP as MCPi,j ∈ L. where L is the space of all extracted MCPs across the specific
dataset. Each trajectory may yield multiple MCPs depending on the number of tool-related planning steps.

Only trajectories where πT (xi) = yi (i.e., successful completions) are considered for distillation. We collect MCPi,j

into a temporary pool if the MCP snippet is syntactically correct and executable. The result is a large pool L =
{MCPi,j}, which captures a rich but noisy set of tool-use strategies emitted by the teacher agent. These MCPs will then
be processed into a compact and organized set B, termed the MCP Box, via abstraction, clustering, and consolidation,
as detailed in the next section 3.2.2.

3.2.2 MCP BOX CONSTRUCTION

After collecting all MCPs generated from successful teacher trajectories, we pass them to a high-capacity instruction-
tuned LLM (e.g., Claude-Sonnet-4) to form a compact and structured repository called the MCP Box. This process
proceeds in three steps.

(1) Abstraction. For each tool-related MCP segment extracted from correct teacher trajectories, we extract the relevant
Python code and prompt the LLM to rewrite it into a reusable and parameterized format, i.e. each raw MCP MCPi,j is
rewritten into a concise, task-agnostic form using prompt-based transformation:

ˆMCPi,j = LLMabstract(MCPi,j). (1)

4
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Analyze brain MRI image for abnormalities and 
diseases.

@mcp.tool()
def analyze_brain_mri(image_path: str, region: str = "left", analysis_mode: str = 
"detailed") -> str:
    """Analyze brain MRI image to identify disease in specified region."""

@mcp.tool()
def analyze_brain_mri(image_path: str) -> str:
    """Analyze brain MRI image for disease detection on left side."""

Brain_mri_analyzer

Analyze brain MRI image to identify disease in 
specified region.

Analyze brain MRI image for abnormalities 
focusing on bright areas

Brain_mri_analyzer Brain_mri_analysis

@mcp.tool()
def analyze_brain_mri(image_path: str, region: str = "left", analysis_mode: str = 
"detailed") -> str:
    """Analyze brain MRI image to identify disease in specified region."""

@mcp.tool()
def analyze_brain_mri(image_path: str, bright_threshold_multiplier: float = 2.5, 
…) -> str:
   """Analyze brain MRI image for abnormalities focusing on bright areas. """ @mcp.tool()

def analyze_brain_mri(image_path: str, region: str = "full", 
analysis_mode: str = "detailed", 
                     bright_threshold_multiplier: float = 2.5, …) -> str:
    """Analyze brain MRI image for abnormalities and diseases.
analysis_mode: Analysis type - "detailed" (specific diagnoses), "basic" 
(abnormal/normal), or "simple" (bright area analysis)

Brain_mri_analyzer

Detect_brain_abnormality

Detect_brain_abnormality

Brain_mri_analysis
Consolidation

Clustering

Abstraction

Figure 3: Illustrative example of the MCP Box construction process. Starting from two raw MCP drafts (blue) addressing
related subtasks with overlapping functionality but differing parameters, we apply (1) abstraction to rewrite them into
parameterized and reusable forms, (2) clustering to group functionally similar MCPs, and (3) consolidation to merge
them into a single, general-purpose MCP (green) with configurable parameters. The resulting tool integrates multiple
behaviors and is compatible with FastMCP execution.

The goal is to remove example-specific phrases while preserving generalizable tool-use strategies. Meanwhile, this
process makes up to three critical parameters configurable, while preserving the tool’s core logic.

(2) Clustering. All abstracted ˆMCPi,j are grouped by functionality via a code-level clustering prompt. The LLM
returns cluster assignments based on shared application semantics:

C = LLMcluster

({
ˆMCPi,j

})
, (2)

where each cluster Ck corresponds to a functional group like "image utils" or "numeric analysis".

(3) Consolidation. Within each cluster Ck, we instruct the LLM to consolidate all tool implementations into a single
general-purpose version. The result is

MCPfinal
k = LLMconsolidate(

(
{ ˆMCPi,j | ˆMCPi,j ∈ Ck}

)
), (3)

which includes parameter unification, proper validation, and documentation. Each output is a production-ready,
FastMCP-compatible Python file. The complete MCP Box is then defined as B =

{
(MCPfinal

k , cluster_namek)
}K

k=1
,

where each item contains a consolidated tool protocol and its functional label.

3.2.3 STUDENT INFERENCE WITH THE MCP BOX

Based on the SmolAgents framework (Roucher et al., 2025), we mount the entire MCP-Box B into the student agent’s
tool interface at inference time—without retrieval, reranking, or parameter selection. Each MCPfinal

k ∈ B is implemented
as a callable tool with a standardized input/output interface (e.g., using @mcp.tool() within the FastMCP runtime).
The student agent πS operates under a frozen policy and receives no gradient updates: ∇θπS = 0.

When facing a new problem x, the student generates intermediate reasoning steps and tool calls as usual. At each step,
the runtime environment exposes all tools in B as callable modules. The agent decides which tool to invoke (if any), fills
in the input arguments (either through text generation or function call templates), and receives a return value ot, which
updates the context for the next reasoning step. No external scoring, selection, or retrieval is required. All tool-use
competence is embedded in the preconstructed MCP-Box, allowing the student agent to benefit from distilled teacher
knowledge with zero additional training. This design keeps the student agent lightweight and inference-time-efficient,
while transferring all tool-related task-solving capability into the tool library itself.

5
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3.3 AGENT STRUCTURE

Teacher Agent The teacher agent employs powerful large-scale language models (LLMs), renowned for their strong
capabilities in coding and complex task-solving. To maintain simplicity and maximize efficiency, the teacher agent is
designed with only three primary modules: a Manager Agent, a Basic Image Captioner, and an MCP Creation Module.

(1) Manager Agent. The Manager Agent serves as the central coordinator. Upon receiving a task prompt, the Manager
Agent decomposes the task into manageable subtasks and evaluates whether external tools are required for their
resolution. If external tools are necessary, it delegates the creation of Model–Context–Protocols (MCPs) to the
MCP Creation Module. Following the execution of subtasks, the Manager Agent aggregates all intermediate results,
synthesizing them into a coherent final response.

(2) Basic Image Captioner. This provides a textual summary of visual content when the input includes images. This
component is especially important because many text-only models used do not support direct image input. The captioner
converts images into textual descriptions, allowing the rest of the system, including the Manager and MCP Creation
Module, to process visual information through a uniform text-based interface.

(3) MCP Creation Module. This module consists of four distinct sections: the MCP Brainstorming Section, the
Open-Source Searching Section, the Script Generation Section, and the Virtual Environment Execution Section. The
MCP Brainstorming Section generates initial conceptual plans for task-specific MCPs. Subsequently, the Open-Source
Searching Section identifies relevant open-source resources to support MCP development. The Script Generation
Section then synthesizes these ideas and resources into executable scripts. Finally, the Virtual Environment Execution
Section validates and executes these scripts within a controlled environment, ensuring their practical applicability and
robustness.

Student Agent The student agent utilizes compact, cost-effective language models (e.g., llama-3.1-8B, Qwen3-8B)
to significantly reduce inference expenses. Its structure closely mirrors that of the teacher agent but with a more
streamlined composition, comprising only the Manager Agent and the Basic Image Captioner. The Manager Agent
coordinates task decomposition, tool utilization, and result aggregation, benefiting directly from the distilled MCP box
provided by the teacher agent, enabling it to efficiently handle complex tasks despite its smaller model scale.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Tasks and Datasets. We evaluate the effectiveness of AgentDistill in enhancing small language models (sLMs) on
visual question answering (VQA) and mathematical tasks benchmarks. Specifically, we use Game of 24 (Lile, 2025) for
mathematical tasks and two real-world VQA datasets, PathVQA (He et al., 2020) and SLAKE(Liu et al., 2021). These
datasets represent complex multi-hop reasoning over image-text pairs and require factual, visual inference capabilities,
and precise symbolic arithmetic under strict constraints, enabling a comprehensive evaluation of agents’ multi-modal
and mathematical capabilities.

(1) Game of 24. The Game of 24 dataset is a mathematical benchmark with 1,362 puzzles. Each puzzle consists of
four numbers to be combined using basic arithmetic operations to reach 24. Problems are ranked by human solving
difficulty and include at least one valid solution.

(2) PathVQA. PathVQA is a pathology-focused visual question answering dataset containing 32,000 questions over
4,998 medical images. It emphasizes fine-grained visual reasoning in histopathology, such as identifying cell types or
diagnostic markers.

(3)SLAKE. SLAKE is a multimodal medical VQA dataset with 642 radiology images and over 14,000 expert-annotated
QA pairs. It tests both visual understanding and medical knowledge retrieval in a bilingual setting.

For each dataset, we sample 100 examples from validation set for MCP Box generation, same as benchmark dataset
construction introduced in Octotools(Lu et al., 2025), and evaluate the student agent before distillation (without
MCP box integration), after distillation (with MCP box integration), Student Agent with pre-defined tools (Octotools
Framework), and the teacher agent on the same dataset. The results are summarized in Table 2.

Models. Our experiments involve three small instruction-tuned language models (sLMs)—GPT-3.5-turbo,
Qwen-8B, and LLaMA3.1-8B—which serve as the base of student agents in our study. We also use a teacher
agent in which the Manager Agent is powered by Claude-Sonnet-4 and the MCP Creation Module is handled by

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPT-4o, representing an upper-bound reference. All models operate in a frozen configuration, without any task-specific
fine-tuning or gradient updates.

Settings. We compare four settings: (1) student agents before distillation (without MCP Box); (2) agents with pre-
defined tools (using Octotools Framework (Lu et al., 2025) and corresponding tools for each task) (3) student agents
after distillation (with access to the distilled MCP Box); (4) the teacher agent; and (5) agents built upon OctoTools
Framework engined by GPT-4o. This enables a comprehensive analysis of whether MCP narrows the gap between
student agents and high-performance systems (either teacher agent or tool-augmented methods). See Figure 4 for
cross-agent comparisons.

Metrics. We use task accuracy as the main evaluation metric, defined as the percentage of correctly answered dataset
questions. To evaluate the benefit of MCP, we report the absolute improvement over the baseline sLMs before distillation.
We also compare each student agent’s performance with the teacher agent to assess whether distillation allows student
agents to approach teacher agent performance.

4.2 RESULTS

We evaluate our approach across three datasets—PathVQA, SLAKE, and Game of 24—using multiple small language
model (sLM) agents under the SmolAgent framework. All agents operate under a frozen policy and are equipped with
the distilled MCP Box described in Section 3.

Dataset Student Agent # MCPs Call Rate (%)

PathVQA
GPT-3.5-turbo 38.0
Qwen3-8B 9 58.3
LLaMA3.1-8B 24.3

SLAKE
GPT-3.5-turbo 57.3
Qwen3-8B 13 94.7
LLaMA3.1-8B 57.0

Game of 24
GPT-3.5-turbo 100
Qwen3-8B 1 100
LLaMA3.1-8B 100

Table 1: Generalizability and usage frequency of distilled MCPs
across benchmarks. “# MCPs” denotes the number of distilled
MCPs stored in the MCP Box, while “Calling Rate” indicates how
frequently student agents invoke these MCPs.

Generalizability and Usage Frequency of Dis-
tilled MCPs. Table 1 presents the number of
unique MCPs generated by the teacher agent and
the frequency with which student agents invoke
them during inference. A high MCP Box call-
ing rate indicates that distilled MCPs are broadly
applicable across diverse inputs and consistently
reused by student agents. These results confirm
that our framework produces reusable and transfer-
able MCPs that generalize well without requiring
any additional training.

MCP Box consistently improves student agents
across datasets. Table 2 shows that applying
MCP leads to substantial improvements across
all student agents and datasets. On PathVQA,
GPT-3.5-turbo improves from 45.7% to 52.7%,
Qwen-8B improves from 53% to 55.3%, and
LLaMA3.1-8B improves from 46.7% to 50.0%,
indicating that MCP helps models improve their
capabilities. On SLAKE, the gains are even more
pronounced—LLaMA3.1-8B by +10 points, GPT-3.5-turbo by +7.3 points and Qwen-8B improves by +6.7 points.
On the arithmetic-focused Game of 24, GPT-3.5-turbo improves by 48.4 percentage points (34.3% to 82.7%), and
LLaMA3.1-8B gains +42.3 points (21.7% to 64%). These consistent improvements across models and datasets
demonstrate that MCP is effective in enhancing the task-solving ability of small language models (sLMs).

Effectiveness across datasets. AgentDistill yields consistent performance improvements across all datasets and
base models. On SLAKE, all student models show notable gains, up to +10.0% for LLaMA3.1-8B, suggesting that
semantically rich visual questions benefit from the compositional structure of distilled MCPs. Game of 24 exhibits
especially large improvements for weaker models (e.g., +48.4% for GPT-3.5-turbo and +42.3% for LLaMA3.1-8B),
indicating that MCPs effectively scaffold symbolic reasoning tasks such as arithmetic operations. In contrast, models
that already perform well (e.g., Qwen3-8B on Game of 24) show smaller gains, likely due to ceiling effects(i.e., the
strong baseline performance leaves limited room for improvement). Improvements on PathVQA are moderate but
consistent, demonstrating the broad applicability of distilled MCPs.

MCP Box narrows the gap between student agents and teacher agents. To assess whether distilled MCPs help
small language models (sLMs) approach the performance of much stronger agents, we compare MCP-equipped student
agents with a reference teacher agent (Claude 4 + GPT-4o) and two retrieval-based systems: Octotools powered
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Dataset Base Model Before Distillation (%) After Distillation (%) Improvement (%)

PathVQA
GPT-3.5-turbo 45.7 ± 3.5 52.7 ± 3.1 +7.0 ↑

Qwen3-8B 53.0 ± 1.7 55.3 ± 1.5 +2.3 ↑
LLaMA3.1-8B 46.7 ± 1.2 50.0 ± 1.7 +3.3 ↑

SLAKE
GPT-3.5-turbo 61.0 ± 2.0 68.3 ± 0.5 +7.3 ↑

Qwen3-8B 61.0 ± 3.6 67.7 ± 2.1 +6.7 ↑
LLaMA3.1-8B 49.3 ± 2.9 59.3 ± 2.1 +10.0 ↑

Game of 24
GPT-3.5-turbo 34.3 ± 3.2 82.7 ± 0.6 +48.4 ↑

Qwen3-8B 72.7 ± 5.4 79.7 ± 6.1 +7.0 ↑
LLaMA3.1-8B 21.7 ± 4.7 64.0 ± 6.6 +42.3 ↑

Table 2: Performance of student agents before and after distillation using AgentDistill. Accuracy improvements are
observed across all datasets and models without any additional training.

Figure 4: Comparison between the teacher agent (Claude 4 + GPT-4o) and the average performance of student
agents (GPT-3.5-turbo, Qwen-8B, LLaMA3.1-8B) after distillations. The Octotools (GPT-4o) reports the
performance of an open-source toolset baseline and the Agent with Pre-defined Tools (GPT-3.5-turbo, Qwen-8B,
LLaMA3.1-8B) represents the average performance of sLM in Octotools with optimal toolsets. All agents operate
without fine-tuning and student agents are evaluated with distilled MCPs.

by GPT-4o, and Agents with pre-defined tools upon Octotools Framework paired with sLMs, both equipped with
optimal toolset (Figure 4). On PathVQA, average student agents after distillation (with the MCP Box) achieve 52.7%
accuracy—matching the teacher agent (52%) and outperforming both retrieval-based variants. On SLAKE, MCP-
equipped students reach 65.1%, slightly below the teacher (66%) but above both Octotools baselines. On Game of 24,
while the teacher asignificantly outperforming Octotools with GPT-4o (45%) and also slightly surpassing Octotools
with sLMs (48%). The latter is partly due to strong base performance of Qwen-8B on arithmetic tasks, which dominates
the average within sLM-based Octotools. These results show that a well-curated, self-contained MCP Box enables
small models to close the gap with much stronger agents, outperforming retrieval-based pipelines—even those backed
by more powerful LLMs. This suggests that distilled MCP Box provides not only task transferability but also efficiency
advantages over dynamic retrieval and tool orchestration.

4.3 ANALYSIS

Why MCP Distillation works. The MCP Box serves as an external library of executable protocols, distilled from
teacher trajectories and abstracted for reuse. Each protocol encapsulates tool-level logic in a parameterized format,
allowing the student agent to bypass low-level code generation. However, the student remains responsible for high-level
planning: it must decide whether to invoke a tool, which MCP to select, and how to fill in the arguments. No policy
gradients or planning heuristics are transferred; instead, the benefit arises from constraining the tool-calling space
to a set of functional, verified options. This reduces generation complexity without interfering with the agent’s core
reasoning process.
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@mcp.tool()
def analyze_brain_mri(image_path: str, region: str = "full", analysis_mode: str = "detailed", 
                     bright_threshold_multiplier: float = 2.5, 
                     very_bright_threshold_multiplier: float = 3.0,
                     abnormality_bright_percentage_threshold: float = 3.0) -> str:
    """Analyze brain MRI image for abnormalities and diseases.
    
    Args:
        region: Brain region to analyze - "left", "right", or "full"

analysis_mode: Analysis type - "detailed" (specific diagnoses), "basic"   
(abnormal/normal), or "simple" (bright area analysis)
bright_threshold_multiplier: Multiplier for standard deviation to define bright areas 
threshold
very_bright_threshold_multiplier: Multiplier for standard deviation to define very 
bright areas threshold
abnormality_bright_percentage_threshold: Percentage threshold for bright pixels 
to indicate abnormality

    """

@mcp.tool()
def analyze_brain_mri(image_path: str) 
-> str:
    """Analyze brain MRI image for 
abnormalities focusing on bright areas."""

@mcp.tool()
def analyze_brain_mri(image_path: str) 
-> str:
    """Analyze brain MRI image for disease 
detection on left side."""

Customized Coefficients

Generalization 

MCP-Box Construction

Figure 5: AgentDistill constructs a generalizable MCP from teacher-generated subtasks. MCPs on the left of this figure
target specific goals (e.g., bright spot detection, left-side analysis), which are consolidated into a reusable parameterized
MCP. The distilled MCP enables flexible reuse by adjusting arguments like region and analysis_mode, making
it adaptable to different tasks without retraining.

Case Study: Brain MRI Analysis Fig. 5 highlights the core advantage of our AgentDistill framework: enabling
student agents to acquire generalizable and reusable tools from teacher-generated protocols. In this example, the teacher
produces two MCPs focused on narrow subtasks—detecting bright areas and analyzing the left hemisphere. AgentDistill
then consolidates these into a parameterized MCP template that supports broader functionality. By exposing arguments
like region, analysis_mode, and threshold multipliers, the distilled tool supports diverse configurations across
brain regions, diagnostic modes, and image characteristics.

This design decouples task semantics from implementation logic, allowing the same MCP to be reused across new
clinical scenarios (e.g., switching from MRI to CT, left-side to full-brain, simple detection to detailed diagnosis) without
requiring additional code modifications. Such generalization is central to our training-free distillation pipeline, which
converts ad-hoc language traces into structured, modular, and composable tools, ready to support student agents in
dynamic or unfamiliar environments.

Qualitative Ablation Discussion. While our main results focus on demonstrating the overall effectiveness of the
distilled MCP Box, we also analyze the necessity of each step in the construction pipeline. Without abstraction,
MCPs remain tied to case-specific trajectories (e.g., an MRI MCP hard-coded for “left hemisphere” only) and cannot
generalize to other inputs of the same property. Without clustering and consolidation, the MCP pool becomes bloated
with near-duplicate tools that share similar functionality (e.g., multiple versions of MRI analysis with overlapping
names and similar descriptions, as shown in Figure 5). Such redundancy potentially complicates tool invocation by
increasing search space, token usage, and interface inconsistency.

5 CONCLUSION

We propose AgentDistill, a novel and training-free agent distillation framework that transfers task-solving capabilities
from large teacher agents to small student agents through distilled Model–Context–Protocols (MCPs). Instead of relying
on trajectory replay or gradient updates, the proposed method abstracts, clusters, and consolidates reusable tool-use
strategies into an executable MCP Box, which is directly mounted into student agents at inference time. Experimental
results on biomedical and mathematical benchmarks confirm that MCP-equipped student agents not only close the
performance gap with teacher agents but also outperform retrieval-based systems like OctoTools(GPT-4o) even when
using a strong LLM as the base model. The results highlight the potential of structured protocol distillation for enabling
efficient, modular, and generalizable agent behavior without additional training or model modifications.
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REPRODUCIBILITY STATEMENT

All datasets used in this work (PathVQA, SLAKE, and Game of 24) are publicly available. The design of the MCP
Box, including the abstraction, clustering, and consolidation steps, is described in Section 3. Details of the teacher and
student agents, as well as baseline comparisons, are reported in Section 4.1 and Section 4.2. While we have not included
full prompt templates in this submission, we plan to release them to ensure that all results can be faithfully reproduced.
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USE OF LLMS

LLMs were used solely to improve the clarity and readability of the manuscript.
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