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Abstract
To address the variety of tasks involved in online shopping, ranging
from browsing to making a purchase, there is a necessity for multi-
task learningmodels capable of leveraging shared knowledge across
different tasks. Large Language Models (LLMs) have the potential to
revolutionize the approach to handling multiple tasks by processing
them within a single model and adapting to different prompts.
Consequently, Amazon has launched the KDD Cup 2024 Multi-Task
Online Shopping Challenge for LLMs competition. In this paper, we
present a comprehensive solution that encompasses data processing,
model training, in-context learning, acceleration of model inference,
and post-processing.Due to the requirements of the competition, we
chose the open-source Qwen2-72B as the base model. Our solution
has demonstrated remarkable effectiveness in the realm of online
shopping. Finally, our team secured 3rd place in the KDD CUP 2024
Task 5 and 4th place in KDD CUP 2024 Task 1 and Task 3.

CCS Concepts
• Information systems→ Information retrieval.
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1 Introduction
1.1 Background
Online shopping is a complex process that covers a series of behav-
iors from navigating through a web of products, reviews, and prices
to clicking and purchasing products. This not only requires the
model to fully understand product information, but also to insight
into customer intentions and preferences. And try to make the best
decision based on the explicit or implicit feedback behaviors of the
user. However, many current models are task-specific, making it
difficult to meet all of these requirements simultaneously.

Large Language Models (LLMs) possess the capabilities of multi-
task and few-shot learning, which allows them to handle multi-
ple tasks through a single model with minor prompt adjustments.
Therefore, LLMs have the potential to master such complexities of
online shopping, and they can also enhance customer experience
by providing interactive and timely recommendations.

We proposed a solution that utilizes the capabilities of LLMs
to optimize the user’s online shopping experience. Utilizing this
solution, we participated in the KDDCup 2024 onMulti-Task Online
Shopping Challenge for LLMs hosted by Amazon [6], and achieved
commendable results on ShopBench.

1.2 Datasets And Tasks Description
The ShopBench dataset [6] is a multi-task dataset sampled from
real-world Amazon shopping data with 57 tasks and approximately
20,000 questions, which can be used as a comprehensive benchmark
to simulate the complexities of real-world online shopping. To better
mimic real-world scenarios, where you never know the customer’s
questions beforehand, the organizer only made a small portion of
the ShopBench dataset public as the development set, which we
use as an offline validation set.

In addition, we also used the publicly available ECInstruct dataset
[9], which is an instruction tuning dataset based on Amazon’s raw
data. It includes 10 e-commerce tasks, which fall within four cate-
gories: product understanding, user understanding, query product
matching and product Q&A. Each task involves 6 high-quality and
diverse instructions, one of which is a clear and concise seed in-
struction written by humans, and the other five are instructions gen-
erated by GPT-4 that are synonymous with the seed instruction but
have a different writing style (e.g., wording). Each data sample com-
prises an instruction, an input, and an output. We calculate that the
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ECInstruct dataset has a total of about 264,000 samples(including
train and test).

Four different tasks were introduced with the ShopBench dataset:
(1) Shopping Concept Understanding: Emphasizes the ability

of LLMs to understand and answer questions related to
specific concepts in the field of online shopping, such as
brands, product lines, etc.

(2) Shopping Knowledge Reasoning: Focuses on evaluating the
model’s reasoning ability on products or product attributes
with domain-specific implicit knowledge.

(3) User Behavior Alignment: The main goal is to align with
heterogeneous and implicit shopping behaviors including
browsing, purchasing, query-then-clicking, etc.

(4) Multilingual Abilities: Emphasize the performance of a sin-
gle model in different shopping locales without re-training,
including multi-lingual concept understanding and user
behavior alignment.

Besides the above four tasks, the organizer has also set up an
all-around task 5, which includes the previous four tasks, aiming to
encourage more versatile and comprehensive solutions. We mainly
focus on task 1, task 3, and task 5.

2 Methodology
The proposed methodology is segmented into several stages. Ini-
tially, we select the Qwen2-72B model as foundational model. Sub-
sequently, we employ the ecinstruct dataset to conduct efficient
parameter fine-tuning based on the LoRA technique. Following a
comprehensive suite of offline evaluations and model validations,
we select the model that performs optimally under the offline eval-
uation metrics. In the context of the inference submission process,
constrained by the computational resources of the competition en-
vironment, we proceed to quantize the trained model to ensure
operation within the resource constraints of 4*16G T4 GPUs. After
quantization, we further enhance the model’s efficacy by employing
the few-shot approach during inference. An increase in input length
leads to an extended response time for the initial character, hence,
to ensure completion within the allotted time, we utilize the prefix
caching method to augment the inference speed, thereby guaran-
teeing that reasoning is completed within the required timeframe.
Upon the completion of model inference, we apply post-processing
techniques to refine the model’s output results, thereby enhancing
the accuracy of the output format.

2.1 Base Model
With the emergence of ChatGPT[8], the popularity of LLMs has
gradually increased worldwide. A growing number of LLMs are
pursuing advancements similar to those made by the OpenAI GPT
family. With a free and open attitude, many models with supe-
rior performance, including Llama[11], Qwen[1], etc., have been
released in the open-source community.

The Qwen2[15] series models, as excellent models in the open
source community, are at the forefront of the major evaluation
lists. Compared to previous qwen series models, qwen2 has been
continuously pre-trained on a high-quality corpus of more than
7 trillion tokens. Both the quality and quantity of the code and
math sections have been improved, which not only enhances the

Table 1: Performance of 70B+ instruction-tuned models

Datasets Llama-3-70B Qwen1.5-110B Qwen2-72B
MT-Bench 8.95 8.88 9.12
Arena-Hard 41.1 39.8 48.1

LiveCodeBench 29.3 25.3 35.7

code and math capabilities, but also its reasoning capabilities. In the
alignment stage, all models underwent supervised fine-tuning and
direct preference optimization, and have good ability to follow hu-
man instructions. Specifically, Qwen2-72B-Instruct[15] showcases
remarkable performance: 9.1 on MT-Bench, 48.1 on Arena-Hard,
and 35.7 on LiveCodeBench. The comparison with other models
is shown in table1. In addition, Qwen2 demonstrates powerful
multilingual capabilities and performs substantially better than
GPT-3.5-Turbo.

Nevertheless, it is noted that inference under BF16 format for
Qwen2-72B-Instruct demands approximately 144GB of gpumemory.
This amount exceeds the competition limit of 16GB * 4 = 64G. There-
fore, we contemplate employing model compression techniques to
lower the resource consumption during inference. We adopted the
GPTQ[4] quantification method, which decreased the gpu memory
to 48G. Thus, we were able to select Qwen2-72B-Instruct as the
base model.

2.2 Datasets
Our solution leverages the ECInstruct dataset [9] for supervised
fine-tuning. ECInstruct is a comprehensive e-commerce instruc-
tion dataset containing more than 260,000 samples. It encompasses
10 diverse tasks, each with 6 different instructions, ensuring rich
instruction and task variety.

To tailor the ECInstruct dataset to our specific needs, we applied
a series of preprocessing steps including filtering, downsampling,
and reformatting. Firstly, we categorized the tasks in ECInstruct
based on the taxonomy defined in this challenge, as depicted in
Table 2. While the majority of tasks share a similar format with our
challenge, we noticed that binary classification tasks, which require
the model to make a binary judgment and output either yes or no,
deviate a lot from the format of the tasks in our challenge. Conse-
quently, we excluded these three binary classification tasks from
ECInstruct. Subsequently, we randomly selected 200,000 samples
from the filtered dataset for fine-tuning purposes.

Moreover, in order to fully leverage the power of SFT, we made
adjustments to the format of samples in ECInstruct to align with
those in this challenge. For instance, we’ve replaced the letter op-
tions in multiple-choice questions (A, B, C, ...) with numerical op-
tions (0, 1, 2, ...). Additionally, if a task in ECInstruct shares a similar
semantic with a task in the development set, we would swap the
instructions with those from the development task. For example,
we replaced the instructions for Sentiment Analysis with those for
task 15 in development set, which is also a sentiment analysis task.
Multiclass Product Classification and task 11 both use ECSI labels,
so we also replaced instructions for Multiclass Product Classifica-
tion with those for task 11. We then combine the reformatted data
with the original data to construct our final sft dataset.
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Table 2: Task Types in ECInstruct

Task Type Task Name
named entity generation Attribute Value Extraction

multiple choice
Multiclass Product Classification
Product Relation Prediction
Sentiment Analysis

retrieval Sequential Recommendation
ranking Query Product Rank

generation Answer Generation

binary classification
Answerability Prediction
Product Substitute Identification
Product Matching

2.3 Supervised Fine-Tuning
Open source LLMs possess excellent generic capabilities and in-
struction compliance capabilities. However, they frequently fail to
achieve the state-of-the-art (SOTA) effect on specific downstream
tasks. Hence, it is necessary to fine-tune the general LLMs based on
the specific task. As a result, choosing the appropriate framework
and fine-tuning method is of crucial importance.

Fine-Tuning Framework For efficient fine-tuning of LLMs,
we chose LLAMAFACTORY[17], a framework that promotes the
democratization of the fine-tuning of LLMs. It integrates various
efficient fine-tuning methods through scalable modules, allowing
the fine-tuning of hundreds of LLMs with the least resources and
high throughput. Additionally, it simplifies commonly used train-
ing approaches, such as generative pre-training, supervised fine-
tuning (SFT), reinforcement learning from human feedback (RLHF),
and direct preference optimization (DPO). We are able to utilize
command-line or web interfaces to customize and fine-tune LLMs
with little or no coding at all.

• Efficient Training: the framework supports state-of-the-
art efficient fine-tuningmethods, including LoRA[5], QLoRA[3]
and GaLore[16]. It also applys the trainers of Transform-
ers for pre-training and SFT, while utilizing the trainers of
TRL[12] for RLHF and DPO.

• DistributedTraining: the framework supports DeepSpeed[10]
for distributed training, the memory consumption can be
further reduced.

Parameter-Efficient Fine-Tuning In order to fine-tune the
model more effectively for downstream tasks without losing most
of the power of the LLMs, we chose a efficient fine-tuning method:
LoRA[5]. Instead of directly training some dense layers in a neural
network, it can indirectly train them by optimizing the rank de-
composition matrices of the changes in these dense layers during
adaptation, while keeping the pre-trained weights unchanged.

Model Quantization In order to compress our base model, we
choose the GPTQ-Int4[4] quantization method, which can signifi-
cantly reduce the gpu memory requirements for model inference.
GPTQ is capable of quantizing GPT models having 175 billion pa-
rameters within approximately four GPU hours. It can reduce the
bitwidth to 3 or 4 bits per weight, while the accuracy degradation
is negligible compared to the uncompressed baseline.

2.4 In-Context Learning
To further enhance the performance of our model during the in-
ference stage, we employ the paradigm of In-Context Learning
(ICL) [2]. By providing a few relevant demonstrations as context,
ICL can stimulate LLM’s domain-specific abilities without further
parameter updates.

ICL Strategy and Implementation Our ICL strategy involves
meticulous selection and utilization of few-shot examples to guide
the model’s behavior. We utilize the development set for offline
validation, employing the results to guide our selection for few-shot
examples.

The key aspect of our approach is the dynamic selection of few-
shot examples based on the task type. We discern between multiple-
choice tasks and other task types to tailor our ICL demonstrations
accordingly.

• Multiple-Choice Tasks: For multiple-choice tasks, we
identify one relevant example from the development set
and use it as a one-shot demonstration. This focused ap-
proach ensures that the model learns the special pattern
and semantics of multiple-choice tasks effectively.

• Other Task Types: For tasks beyond the multiple-choice
category, we adopt a more comprehensive approach. We
select one representative example from each task, ensuring
a diverse range of demonstrations. These examples are then
combined to form our few-shot examples, providing the
model with a broader understanding of various tasks.

This task-specific selection of few-shot examples empowers our
model to adapt and generalize effectively across different task types,
resulting in improved performance during the inference stage.

Finally, our final prompt is constrcucted using the chat tem-
plate of Qwen2, where the few-shot examples are added as history
dialogue.

Inference Acceleration Given the time constraints of the chal-
lenge, we leveraged vLLM [7] to accelerate inference. vLLM is an
open-source library designed for rapid LLM inference and serving,
offering significant performance improvements. To further accel-
erate the generation, we employed fixed demonstrations for each
task type, eliminating the need for dynamically choosing demon-
strations during inference. Additionally, this approach allows us
to utilized the prefix-caching technique to expedite the computa-
tion for the demonstration part. Prefix-caching would store the KV
cache for previously executed queries. Consequently, when a fresh
query has a matching prefix with any of the stored queries, it can
immediately utilize the existing KV cache and avoid recalculating
the common part. As a result, the overhead introduced by ICL is
minimal and can be largely ignored.

2.5 Post-process
During the evaluation of our solution on the development set, we
encountered several instances of failures stemming from the gen-
eration of responses with invalid formats. To rectify this issue, we
implemented a post-processing step to refine our outputs.

One prevalent issue we observed was the generation of duplicate
indices in ranking tasks. To mitigate this, we analyzed the output
patterns across the five task types and identified the distinctive
patterns associated with ranking tasks. Subsequently, we separated
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Table 3: Overall Performance

Track Score Rank
track1 0.823 4th
track3 0.722 4th
track5 0.773 3rd

the ranking tasks from other types of tasks based on these patterns.
We then proceeded to deduplicate the generated lists for ranking
tasks and appended any missing indices to the end of the sequence.
Another challenge we encountered was the tendency of LLM to
engage in reasoning prior to generating the final choice. To circum-
vent this, we leveraged the LLM’s instruction following capabilities
and introduced additional instructions to guide it towards directly
generating the desired output without engaging in reasoning.

In addition to our primary solution, we conducted experiments
to explore the potential of employing the Chain of Thought (CoT)
strategy [13] to enhance the accuracy of our solution for multiple-
choice tasks. Our CoT strategy involves instructing the LLM to
provide a brief analysis or reasoning before generating the final
answer. However, this approach also increased the risk of parsing
failures. To address this challenge, we utilized outlines [14], an
open-source tool that offers methods for controlling the generation
of language models, making their outputs more predictable. We
employed outlines to guide the generation of responses for multiple-
choice tasks to conform to the following regex pattern:
r"[A-Za-z][^\|]{10,100}\|\d"

This pattern specifies that the response should begin with a brief
analysis or reasoning (with a length between 10 and 100 characters
and starts with a letter), and conclude with a delimiter ("|") and the
corresponding option number. By applying this pattern, we were
able to reliably extract the final answer by splitting the output with
the delimiter, while maintaining the benefits of the CoT strategy.

3 Experiments
The performance of our models is listed in Table3. The model of
track1, having been trained on the ECInstruct-20w dataset with a
lora rank of 64 and applying track1-fewshot for inference, got a
score of 0.823 and was ranked 4th. The model of track3, having not
been trained and applying mix-fewshot for inference, got a score of
0.722 and was ranked 4th. The model of track5, having been trained
on the ECInstruct-20w dataset with a lora rank of 64 and applying
fewshot for inference, got a score of 0.773 and was ranked 3rd.

4 Conclusion
In this paper, we elaborate on the comprehensive solutions across
the entire pipeline, including data processing, model training, in-
context learning, acceleration ofmodel inference, and post-processing.
In our approach to model data processing, we enhance model effi-
cacy by refining the ecinstruct dataset and employing techniques
such as efficient parameter fine-tuning and few-shot learning. The
evaluation results validate the effectiveness of the methods, se-
curing 3rd place in KDD CUP 2024 Task 5 and 4th in KDD CUP
2024 Task 1 and Task 3. Moving forward, this methodology has the
potential to be applied to large-scale online shopping platforms,

further enhancing the user experience on such websites, much like
a knowledgeable shopping assistant in real life.
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