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Abstract

Offline reinforcement learning enables agents to leverage large pre-collected1

datasets of environment transitions to learn control policies circumventing the2

need for potentially expensive or unsafe online data collection. In recent times3

there has been significant progress in offline RL, with the dominant approach be-4

coming methods which leverage a learned dynamics model. This typically involves5

constructing a probabilistic model, and using the model uncertainty to penalize6

rewards where there is insufficient data, solving for a pessimistic MDP that lower7

bounds the true MDP. Recent work, however, exhibits a breakdown between theory8

and practice, whereby pessimistic return ought to be bounded by the total variation9

distance of the model from the true dynamics, but is instead implemented through10

a penalty based on estimated model uncertainty. This has spawned a variety of11

uncertainty heuristics, with little to no comparison between differing approaches.12

In this paper, we compare these heuristics, and design novel protocols to investigate13

their interaction with other hyperparameters such as the number of models, or14

imaginary rollout horizon. Using these insights, we show that selecting these key15

hyperparameters using Bayesian Optimization produces optimal configurations that16

are vastly different to those currently used in existing hand-tuned state-of-the-art17

methods, often resulting in drastically stronger performance.18

1 Introduction19

In offline (or batch) reinforcement learning (RL) [13, 26], the goal is to learn policies that perform20

well in an environment given a fixed data set of pre-collected experiences. This could have vast21

implications for using RL in real-world settings, as agents can make use of ever increasing amounts22

of data without the need for an accurate simulator, while also avoiding expensive and potentially even23

unsafe exploration in the environment.24

Model-based reinforcement learning (MBRL) has recently shown promise in this paradigm, obtaining25

state-of-the-art performance on offline RL benchmarks [21, 48], improving upon powerful model-free26

approaches (i.e., [23]). MBRL works by training a dynamics model from the offline data, then27

optimizing a policy using imaginary rollouts from the model. This allows the agent to learn from28

on-policy experience, as the model is agnostic to the policy used to generate data. Furthermore, recent29

work has demonstrated the utility of world models beyond maximizing return, such as generalizing to30

unseen environments [4], transferring to new tasks in the same environment [49], and learning with31

safety constraints [2]. Therefore, the case for MBRL in offline RL is clear: not only does it represent32

state-of-the-art in terms of performance, but it also provides the opportunity to maximize the signal33

in the offline data to generalize onto tasks beyond those encoded by the behavior policy.34

However, a common failure mode of MBRL is when the policy can exploit the model in parts of the35

state-action space where the model is inaccurate. Thus, naïve application of MBRL to offline data can36
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result in sub-optimal performance. To prevent this, concurrent recent works [49, 21] have approached37

the problem by training a policy in a pessimistic MDP (P-MDP). The P-MDP lower bounds the true38

MDP, and discourages the policy from regions where there is large discrepancy between the true and39

learned dynamics; this often provides a theoretical guarantee of improvement over simply cloning the40

behavior policy. This is made practically possible by adding a penalty proportional to the uncertainty41

in the dynamics model. However, while these recent successes are similar in principle, in practice42

they differ in a series of design choices. First and foremost, they make use of different heuristics to43

measure model uncertainty, in some cases deviating from simpler metrics which are more consistent44

with the theory. Indeed, these decisions are justified by superior performance, given a limited amount45

of hyperparameter tuning or analysis.46

Figure 1: How penalty and true
error vary over a model rollout

In this paper we conduct a rigorous investigation into a series of47

these design choices. We begin focusing on the choice of un-48

certainty metric, comparing both recent state-of-the-art offline ap-49

proaches [21, 49, 41] with additional metrics used in the online50

setting [3, 37, 9]. We also explore the interaction with a series of51

other hyperparameters, such as the number of models and imagi-52

nary rollout length. Interestingly, the relationship between these53

variables and the model uncertainty varies significantly depending54

on the choice of metric. Furthermore, we compare these uncertainty55

heuristics under new evaluation protocols that, for the first time,56

capture the specific covariate shift induced by model-based RL. This57

allows us to assess calibration to model exploitation in MBRL, observe that some existing penalties58

are surprisingly successful at capturing the errors in predicted dynamics, as seen in Fig. 1. Finally,59

using the insights gained from this section, we test the capability of existing methods given an optimal60

choice over all variables, modeled jointly using a powerful Bayesian Optimization algorithm [46]. We61

find that a simple and intuitive uncertainty measure can provide state-of-the-art results in continuous62

control benchmarks when properly tuned, and the chosen hyperparameters align with our analysis.63

We believe this work will contain a variety of interesting insights for researchers and practitioners in64

offline RL. Below we highlight some of the main findings:65

• Longer horizon rollouts with larger penalities can improve existing methods. We see that66

conducting significantly longer rollouts inside the model, coupled with larger uncertainty penalities,67

typically improves performance.68

• Penalties that are more closely aligned with the theory achieve better correlation with OOD69

measures. The deep ensembles approach of [25] often outperforms the penalty from MOPO [49]70

and MOReL [21]. We observe that the ensemble standard deviation is statistically strikingly similar71

to the MOReL penalty, but has improved correlation and scaling behavior.72

• Uncertainty is more correlated with dynamics error than distribution shift. We find that suc-73

cessful penalties measure the discrepancy in dynamics, and can in fact assign high certainty to74

regions far away from the offline data.75

2 Related Work76

Two recent works concurrently demonstrated the effectiveness of model based reinforcement learning77

(MBRL) in the offline setting. MOPO [49] follows MBPO [19] but trains inside a conservative78

MDP which penalizes the reward based on the maximum aleatoric uncertainty over the ensemble79

members. MOReL achieves even stronger performance, penalizing the rewards by a penalty based on80

the maximum pair-wise difference in ensemble member predictions. For pixel-based tasks, LOMPO81

[41] also proposed a novel penalty, using the variance of ensemble log-likelihoods. Outside of the82

offline setting, probabilistic dynamics models leveraging uncertainty have underpinned a series of83

successes [8, 35, 24, 6, 37]. Uncertainty can also be measured in MBRL without the use of neural84

networks [10], although these methods tend to be harder to scale and thus lack widespread use.85

Effective hyperparameter selection in RL has been shown to be crucial to the success of commonly86

used algorithms [1, 12]. This becomes even more challenging in MBRL with additional hyperpa-87

rameters for the dynamics model and model architecture needing to be selected. Recent work has88

shown that carefully optimizing these hyperparameters for online MBRL can significantly improve89

performance, with the tuned agent breaking the MuJoCo simulator [50]. In contrast, we focus on the90
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offline setting, and investigate parameters specifically related to uncertainty estimation. Previous work91

studied the impact of hyperparameters in offline RL [36], finding offline RL algorithms to be brittle92

to hyperparameter choices. However, unlike our work they only consider model-free approaches,93

whereas we specifically investigate model-based offline algorithms.94

Our work also relates to the rich literature on deep ensembles [25], which train multiple deep neural95

networks with different initializations and different dataset orderings, and generally outperform96

variational Bayesian methods [27, 5]. Achieving effective uncertainty calibration with neural networks97

is notoriously difficult [16, 22, 28], and furthermore we require good calibration in the face of co-98

variate shift [34] as the policy we learn in the model will likely deviate from the behavior policy99

that generated the offline data. Indeed, recent work has highlighted this issue in offline RL [23, 48]100

and has reported superior performance despite eschewing model uncertainty entirely. However, it101

is unclear if this performance improvement is due to poor uncertainty calibration, implementation102

details, or a fundamental limitation of the pessimistic-MDP formulation.103

3 Background104

All of the methods we investigate in this paper model the environment as a Markov Decision Process105

(MDP), defined as a tuple M = (S,A, P,R, ⇢0, �), where S and A denote the state and action106

spaces respectively, P (s0|s, a) the transition dynamics, R(s, a) the reward function, ⇢0 the initial107

state distribution, and � 2 (0, 1) the discount factor. The goal is to optimize a policy ⇡(a|s) that108

maximizes the expected discounted return E⇡,P,⇢0 [
P1

t=0 �
tR(st, at)].109

In offline RL, the policy is not deployed in the environment until test time. Instead, the algorithm110

only has access to a static dataset Denv = {(s, a, r, s0)}, collected by one or more behavioral policies111

⇡b. Following the notation in [49] we refer to the distribution from which Denv was sampled as the112

behavioral distribution. The most prominent offline MBRL methods all train an ensemble of N113

probabilistic dynamics models [32]. These usually learn to predict both the next state s0 and reward r114

from a state-action pair, and are trained on Denv using supervised learning. Concretely, each of the115

N models output a Gaussian bP i
�(st+1, rt|st, at) = N (µi

�(st, at),⌃
i
�(st, at)) parameterized by �. The116

resulting learned dynamics model bP and reward model bR define a model MDP cM = (S,A, bP , bR, ⇢0, �).117

To train the policy, we use k-step rollouts inside cM to generate trajectories [43].118

To prevent policy exploitation in a model, a pessimistic MDP (P-MDP) is constructed by lower119

bounding the true-expected return using some error between the true and estimated models. For120

instance, in [49] the authors show that a lower bound on the return can be established by penalizing121

the reward by a measure that corresponds to estimated model error:122

⌘M (⇡)  E
(s,a)⇠⇢⇡

T̂

⇥
r(s, a)� �|G⇡

M̂
(s, a)|

⇤
(1)

Several potential choices for |G⇡
M̂
(s, a)| are proposed, including an upper bound based on the total123

variation distance between the learned and true dynamics. However, for their practical algorithm124

the authors elect to use an alternative, based on impressive empirical results. Concurrent to MOPO,125

MOReL [21] constructs a P-MDP by augmenting a standard MDP with a negative valued absorbing126

state that is transitioned to when total variation distance between true and learned dynamics is127

exceeded. They show that a policy learned in the P-MDP exceeds simple behavior cloning. Whilst128

dynamics-based total variation distance has desirable theoretical properties, the practical algorithm129

relies on a heuristic to approximate this quantity. Next, we investigate the penalties used in these130

works, as well as other under-used candidates, and explore their effectiveness.131

4 Uncertainty Penalty132

As we have discussed, the key idea underpinning recent success in offline MBRL is the introduction133

of a conservative MDP, penalized by some uncertainty penalty. The theory dictates this should be134

some distance measure between the true and predicted dynamics. Of course, this cannot be truly135

estimated without access to an oracle, so instead a proxy for this quantity is constructed instead. In136

this paper, we compare the following uncertainty heuristics, from recent works in both offline and137

online MBRL:138
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MOPO [49]: maxi=1,...,N ||⌃i
�(s, a)||F, which corresponds to the maximum aleatoric error, com-139

puted over the variance heads of the model ensemble.140

MOReL [21]: maxi,j ||µi
�(s, a)� µj

�(s, a)||2, which corresponds to the pairwise maximum differ-141

ence of the ensemble predictions.142

LOMPO [41]: Var({log bP i
�(s

0|s, a), i = 1, . . . , N}), where s0 is a next state sampled from a single143

ensemble member. We evaluate its log-likelihood under each ensemble member and take the variance.144

M2AC [37]: DKL[ bP�i(·|s, a)|| bP��n(·|s, a)], which corresponds to the KL divergence between the145

Gaussian parameterized by the randomly selected ensemble member we generate the next state from,146

and the aggregated Gaussian of the remaining ensemble members.147

Ensemble Standard Deviation/Variance [25]: ⌃⇤(s, a) = 1
N

PN
i ((⌃i

�(s, a))
2 + (µi

�(s, a))
2) �148

(µ⇤(s, a))2 where µ⇤ is the mean of the means (µ⇤(s, a) = 1
N

PN
i µi

�(s, a)). This corresponds149

to a combination of epistemic and aleatoric model uncertainty. This is surprisingly under-utilized150

in offline MBRL, and is arguably the most principled uncertainty penalty. We choose to evaluate151

both standard deviation and variance as this will provide intuition about the importance of penalty152

distribution shape.153

Each of these penalties can be computed using the output from an ensemble of probabilistic dynamics154

models [25, 8], thus, we are able to compare them in a controlled manner.155

4.1 How Do These Perform on Fixed Offline Datasets?156

We begin by assessing how well uncertainty penalties correlate with next state prediction error. This157

is crucial in order to correctly penalize the policy from visiting parts of the state-action space where158

the model is inaccurate, and therefore exploitable. We use the datasets from D4RL [14], train models159

on each dataset, then evaluate them on other datasets from the same environment, but collected under160

different policies. This is important as we may change the task we train on in the model (such as161

the Ant-direction experiment in [49]), so require good calibration on unseen data. As a result, we162

call these our ‘Transfer’ experiments. We compare the penalty and MSE for a variety of settings163

in the Appendix (see: Section A.2), with a snapshot in Fig. 2. We measure Spearman rank (⇢) and164

Pearson bivariate (r) correlations, and discuss this in App. A.1. Full details of all experiments and165

hyperparameters are given in App. G.166

Figure 2: Scatter Plots showing models trained on D4RL Medium being tested on data from Random. Green =
HalfCheetah, Blue = Hopper.

Before we begin analyzing these results in detail, we now introduce a novel approach to assessing167

our penalties under the OOD data induced by model exploitation by a policy.168

4.2 How Do These Perform During an Imaginary Rollout?169

We now design an experiment aimed at capturing the OOD data generated by the actual offline MBRL170

process, which we call our ‘Ground Truth’ experiments. First, we train a set of policies without a171

penalty inside the model. We then measure the difference between the return predicted by the model172

over a rollout, and the true return in the real environment. We define a policy to be ‘exploitative’ if173

the model significantly over-estimates the return compared to the true return. It is vital that we train174

exploitative policies as these precisely induce the extrapolation errors which cause MBRL methods to175

fail in the offline setting. It is therefore important that the penalty is able to accurately determine when176
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the model is being exploited in this way. We use a subset of the most exploitative policies to generate177

trajectories in the model, and record the uncertainty predicted by each penalty at each time step. To178

generate the ground truth data, we then ‘replay’ these trajectories in the true environment, loading the179

state and action taken in the model into the environment, and record the ‘true’ next state according to180

the MuJoCo simulator [44]. The ‘Ground Truth’ is therefore the MSE between the predicted next181

state and actual next state. Additional details are provided in App. D along with plots in App. A.2.182

Table 1 summarizes the results from both the ‘Transfer’ and ‘Ground Truth’ experiments.183

Table 1: Statistics of all experiments averaged over different test settings.
Transfer Ground Truth

HalfCheetah Hopper HalfCheetah Hopper
Penalty ⇢ r ⇢ r ⇢ r ⇢ r

MOPO 0.780 0.545 0.710 0.411 0.581 0.419 0.732 0.484
MOReL 0.789 0.624 0.772 0.571 0.581 0.518 0.750 0.546
Ensemble Std. 0.820 0.644 0.789 0.556 0.608 0.521 0.789 0.545
Ensemble Var. 0.821 0.671 0.786 0.589 0.604 0.493 0.767 0.545
LOMPO 0.126 0.141 0.361 0.122 0.035 0.067 0.496 0.161
M2AC 0.029 0.107 0.111 0.082 -0.019 0.062 0.220 0.095

We immediately notice that the LOMPO and M2AC penalties have very weak correlation with MSE184

for the examples in Fig. 2. We believe this is the case because LOMPO relies on likelihood statistics,185

which are notoriously sensitive, and has been designed for use in scenarios involving ‘well-behaved’186

latent dynamics that are KL-regularized to a spherical Gaussian. Regarding M2AC, we note that187

this penalty was designed for the online setting with significantly less data, and becomes quite188

uncorrelated in this larger data setting. We believe this advocates for the design of penalties that189

are less reliant on distributional information concerning the separate Gaussians in the ensemble,190

as these penalties appear sensitive to the quality of their estimated distributions. We observe that191

MOPO, MOReL and the ensemble penalties perform broadly similarly despite their analytically192

different forms. We do observe, however, the ensemble measures display noticeable improvement193

as a ranking statistic. We also observe a significant loss in performance between the Transfer and194

Ground Truth HalfCheetah settings, with the latter being relatively poor. This implies further work195

is needed to develop penalties that can successfully detect the type of dynamics discrepancies that196

actually occur in offline MBRL. Finally, we observe that despite the similar rank correlations ⇢, the197

bivariate correlations r can vary considerably, and observe from the scatter plots that MOPO exhibits198

low kurtosis, having large penalty values ‘bunched’ at its extreme; we provide 3rd and 4th order199

moment statistics to facilitate comparison in App. C.200

5 Key Hyperparameters in Offline MBRL201

In order to design an effective search space for penalty comparison experiments, we need to understand202

the impact of different hyperparameters on the uncertainty estimation process itself. Furthermore,203

this analysis will prove useful in understanding what is important when designing these penalties in204

the first place.205

5.1 How Many Models Do We Need?206

Since we may have a larger compute budget due to zero experience collection in the environment, it207

may not make sense to copy the existing approach, originally developed for the online case where208

online runtime may be an issue; for instance, we can choose to train many more ensemble members.209

Concretely, MBPO (and subsequently MOPO) trains 7 identical probabilistic dynamics models (with210

different initializations). Then, when training the policy, it generates trajectories using the top 5211

models based on validation accuracy, referred to as “Elites” in the Evolutionary community [31]. The212

reason or justification for this is not discussed in either paper, but it has seemingly been adopted213

in the wider MBRL setting [42, 33, 39]. In this section we seek to understand what the impact of214

varying this away from the default values has on the performance of the penalties discussed above.215

5.1.1 How Does Penalty Distribution Change with Model Count?216

We now vary the number of models used in the calculation of the penalties and plot their respective217

distributions; an illustrative example is shown in Fig. 3 with full results in App. B. The scaling of218
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the penalties relying on max over sets (i.e., MOPO and MOReL) is most affected as we increase the219

number of models due to admitting more extreme values, and we observe that the distribution shape220

of MOPO changes significantly as we admit more models, which we validate in App. C. This clearly221

impacts the ease by which we can tune this hyperparameter, as we have to contend with a changing222

metric distribution along with calibration quality (something we explore in the next section). Finally,223

we observe that simple ensemble deviation and variance change the least with differing numbers224

of models, highlighting their ease in tuning; this is clearly a desirable property for designing such225

metrics going forward.226

Figure 3: Box Plots showing D4RL Medium transferred to Random. We show the IQR limits and the median
value denoted by the black vertical line. Green = HalfCheetah, Blue = Hopper.

5.1.2 How does Penalty Performance Scale with Model Count?227

Empirically, there exists an optimal number of models to use in an ensemble for model-based RL228

[24, 30]. Up to now, heuristics have been used to select how many models we use for uncertainty229

estimation, despite it being possible to use a different number of models for dynamics prediction230

and uncertainty estimation. For instance, in MOPO transitions are generated with 5 Elite models,231

but all 7 models are used to calculate the penalty. In MOReL, 4 models are used for both transitions232

and penalty prediction. We therefore wish to understand if there is merit to using a larger number of233

models for uncertainty estimation compared with next state prediction.234

Figure 4: All Ground Truth tasks aggregated; Left: HalfCheetah; Right: Hopper

We provide a snapshot in Fig. 4, showing the aggregated results on the Ground Truth data, with235

full results in App. B. We see there is no clear consensus, and that the optimal number of models is236

highly dependent on environment, the behavior data, and penalty type, with some settings showing237

improving calibration with model count and vice-versa. This clearly justifies treating the number of238

models as a hyperparamter that is important to tune, especially on transfer tasks. Interestingly, we239

observe that it is possible to simultaneously improve rank (⇢) correlation, but reduce bivariate (r)240

correlation, especially with the MOPO penalty. This again suggests that the number of models not241

only affects the quality of the estimation, but also its distributional shape.242

5.2 The Weight of Uncertainty �243

To weight penalty against reward, MOPO introduces a parameter � that trades off between the244

two terms. In their paper, the authors sweep over � 2 {1, 5} for each environment. However, the245

optimal values may lie outside of this region, and furthermore, we have shown this value will need to246

drastically change to account for using a different penalty or even number of models. Clearly, this is247

a crucial hyperparameter for offline MBRL that needs to be tuned alongside other hyperparameters of248

interest.249
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5.3 The Rollout Horizon h250

The horizon h of the rollouts plays a crucial role in offline RL. Longer horizon rollouts increase the251

likelihood of errors in the transitions (we verify this intuition in App. D), but conversely can improve252

performance when errors are properly managed [19, 37]. Furthermore, as highlighted in Fig. 1, errors253

do not always accumulate during a single rollout in the model. Instead, we observe spikes, and note it254

is possible to recover from these to valid states and transitions. It is therefore imperative that a penalty255

identifies these spikes over the course of a model rollout and down-weights the reward accordingly.256

Using this observation, we propose a novel experiment that treats these spikes as ‘positive’ labels,257

and normalize each metric to [0, 1]. This converts each penalty into a probabilistic classifier, and we258

evaluate how well they classify OOD events that occur increasingly under longer h. This is precisely259

the intuition behind the MOReL and M2AC approaches, whereby the penalty acts as an ‘anomaly’260

detector, removing detrimental transitions that lie above a threshold. The analysis in this section can261

also be viewed as assessing the efficacy of penalties under these schemes, where binary detection is262

more important than correlation. Finally, we assess two ground truth errors: the dynamics discrepancy263

(as before), and also introduce the distance from the offline distribution trained on, which we measure264

as the 2-norm between a state-action tuple and its nearest point in the offline data; these are called265

‘Dynamics’ and ‘Distribution’ respectively. We provide precision-recall curves and more details on266

this experiment in App. D and E.267

Table 2: Performance of different penalties as OOD event detectors averaged over all datasets in Hopper and
HalfCheetah. AUC is ‘Area Under Curve’ and AP is ‘Average Precision’ (higher is better for both).

Percentile
90th 95th 99th

Dynamics Distribution Dynamics Distribution Dynamics Distribution
Penalty AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
MOPO 0.886 0.503 0.759 0.345 0.893 0.351 0.800 0.273 0.921 0.200 0.885 0.157
MOReL 0.897 0.537 0.774 0.343 0.905 0.403 0.814 0.279 0.931 0.260 0.886 0.148
Ensemble Std. 0.902 0.551 0.794 0.378 0.907 0.401 0.834 0.309 0.929 0.251 0.904 0.177
Ensemble Var. 0.903 0.559 0.777 0.352 0.910 0.419 0.817 0.287 0.933 0.270 0.891 0.158
LOMPO 0.662 0.328 0.735 0.326 0.673 0.211 0.760 0.250 0.731 0.088 0.805 0.111
M2AC 0.585 0.206 0.676 0.235 0.597 0.115 0.696 0.140 0.650 0.039 0.717 0.048

We observe that the penalties are powerful at identifying dynamics discrepancy, but not as accurate268

at identifying when the world-model data is out-of-domain with respect to the offline data. This is269

a well known phenomenon in deep neural networks and has been recently investigated in terms of270

feature collapse [45], where latent representations of points far away in the input space get mapped271

close together. On the other hand, this shows an important distinction between the regularization272

induced by MBRL uncertainty and explicit state-action regularization in model-free approaches, such273

as [47, 23]. In the latter approaches, policies are penalized for taking out of distribution actions w.r.t.274

the offline dataset, but this is not always the case with policies trained under MBRL and uncertainty275

penalties. The success of MBRL methods in RL may therefore lie in the generation of state-action276

samples that are OOD but represent accurate dynamics, thus facilitating dynamics generalization in277

policies; recent work has shown that specifically augmenting dynamics without taking into account278

state-action shift can improve offline RL policy generalization OOD [4]. We believe future work279

understanding the implications of this property is vitally important.280

5.4 Implementation Details281

The above discussion captures many of the key hyperparameters specific to current offline MBRL282

algorithms. However, there are significant code-level implementation details which are often critical283

for strong performance and make it hard to disambiguate between algorithmic and implementation284

improvements. Worryingly, many of these details are not mentioned in their respective papers, or are285

different between the authors’ code and paper. We detail clear examples of this in App. F. We believe286

further investigation of these code-level implementation details represents important future work,287

as has already been done for policy gradients [12, 1]. Indeed – it is unclear if the improvement of288

MOReL over MOPO is due to its P-MDP formulation or if it is successful in spite of this formulation,289

due to a superior policy optimizer or dynamics model design. We believe that this paper takes a290
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significant first step in tackling this issue by directly comparing a number of proposed penalties along291

with other important implementation factors and understanding their individual impact.292

6 Testing the Limits of Current Approaches293

In this section we seek to answer the following question: how well can existing methods perform,294

given optimal selection of the discussed hyperparameters? To answer this question, we use a state-295

of-the-art Gaussian Process-Bayesian Optimization (GP-BO) algorithm, CASMOPOLITAN [46], and296

tune the configuration for each individual environment. Each BO iteration is run for 300 epochs on a297

single seed. CASMOPOLITAN uses tailored kernels and trust regions to handle mixed categorical and298

continuous hyperparameter search spaces. The hyperparameters are listed in App. G. We define our299

search space over:300

• Penalty type (categorical): taking values over {MOPO, MOReL, LOMPO, M2AC, Ensemble301

Std, Ensemble Variance}.302

• Penalty scale � (continuous): taking values over [1, 100].303

• h (integer): taking values over {1, 2, . . . , 50}.304

• Models N (integer): taking values over {1, 2, . . . , 15}.305

Our implementation mimics MOPO in that we use the same probabilistic dynamics models (with306

unchanged hyperparameters) and policy optimizer (SAC, [17]), which differs from MOReL which307

uses Natural Policy Gradient [20]. The focus of our experiment is to explore parameters relating to308

uncertainty quantification, and we believe this is a sufficiently fair set up.309

Table 3 shows the optimal discovered hyperparameters. We note that the only penalties chosen are310

the MOPO and ensemble penalties, corroborating the findings in our analysis that these are often311

the most effective. We observe that MOReL is not chosen, likely because ensemble penalties are312

generally better correlated with true dynamics error, and are easier to tune since their scaling changes313

less with increasing model number; we also observe that MOReL has very similar shape statistics to314

Ensemble Std. (App. C).315

Table 3: Optimal discovered hyperparameters using BO

Environment Discovered Hyperparameters
N � h Penalty

HalfCheetah

random 10 6.64 12 Ensemble Std
mixed 11 0.96 37 Ensemble Variance
medium 12 5.92 6 Ensemble Variance
medium-expert 7 4.56 5 MOPO

Hopper

random 6 4.46 47 Ensemble Std
mixed 7 5.90 5 MOPO
medium 7 20.03 31 Ensemble Std
medium-expert 12 39.08 43 MOPO

The selection of MOPO is also explainable; we observe it displays significantly lower skew and316

kurtosis than all other metrics (App. C), whilst still maintaining competitive rank correlation. We317

also found that in all Hopper experiments, Ensemble Var. never achieved high performance, and its318

only major difference to Ensemble Std. lies in its distributional shape. Interestingly, in HalfCheetah,319

the opposite is true, with Ensemble Var. delivering significant performance gains. This implies that320

distributional shape may play as important a role as overall calibration, and advocates for the learning321

of meta-parameters that control for these.322

We note that values of the rollout horizon h and penalty weight � differ greatly from those chosen323

in the original MOPO paper, which chooses from {1, 5}. Notably, the Hopper environments prefer324

a much longer rollout length and higher penalty weight, even accounting for the magnitude of the325

penalty used. Again this is backed up by our analysis; along a single rollout dynamics errors do326

not necessarily accumulate, they simply become more likely to occur. As long as we penalize the327

aforementioned spikes appropriately, we can handle longer rollouts, and generate more on-policy328

data. The number of models used to compute the uncertainty estimates can also differ greatly from329

the standard 7. This again aligns with our findings that using more models for uncertainty estimation330

can be beneficial, but is dependent on environment, data, and penalty.331
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Table 4: Comparative evaluation on the D4RL benchmark suite against other model-based RL algorithms. The
raw score for Optimized (Ours) and MOPO (Ours) was taken to be the average over the last 10 iterations of
policy learning averaged over 4 seeds. Results of MOPO and COMBO were taken from the COMBO paper.
Results for MOReL were taken from its paper.

Environment Optimized (Ours) MOPO (ours) MOPO (authors) MOReL COMBO

HalfCheetah

random 31.7 32.7 35.4 25.6 38.8
mixed 58.0 52.8 53.1 40.2 55.1
medium 45.7 46.5 42.3 42.1 54.2
medium-expert 104.2 67.6 63.3 53.3 90.0

Hopper

random 12.1 4.2 11.7 53.6 17.8
mixed 90.8 66.7 67.5 93.6 73.1
medium 46.5 17.3 28.0 95.4 94.9
medium-expert 105.8 24.9 23.7 108.7 111.1

Table 4 how these unconventional hyperparameter choices fare against state-of-the-art offline model-332

based RL algorithms. We include a comparison of our implementation of MOPO v.s. the authors’333

reported performance using the same hyperparameters. We note the two are relatively similar and thus334

we are able to make a faithful comparison. Our method, which we label as “Optimized (Ours)", is335

state-of-the-art on the Halfcheetah mixed and Halfcheetah medium-expert environments by a strong336

margin. Further notable results include the hopper mixed and hopper medium-expert environments337

which show we are able to tune a MOPO-like method up to the performance of COMBO and338

MOReL. The importance of good uncertainty quantification and hyperparameter selection for MOPO339

is illustrated in Fig. 5 where we show we can improve MOPO performance by over 5x whilst obtaining340

a stable solution.341

Figure 5: Comparison of
MOPO performance on the Hop-
per medium-expert environment.

Limitations of our work include the fact that we solely performed342

BO over the hyperparameters which directly had an influence on343

uncertainty quantification. Other hyperparameters which have a sig-344

nificant general impact on MBRL performance include the number345

of Elites and the model training hyperparameters [50] (i.e., learning346

rate, weight decay). Each BO iteration evaluated a hyperparameter347

setting on a single seed which could introduce stochasticity; we do348

however expect the Gaussian Process surrogate model to account for349

this aleatoric uncertainty. We also note that individually fine-tuning350

hyperparameters for each environment is not tractable; due to this351

we only performed BO over 2 environment types in the D4RL suite.352

However, the same method could be used to find an optimal single configuration for all environments.353

We also use true environment reward as BO feedback, whereas in reality we may be forced to use354

offline/off policy evaluation (OPE) [29, 15]. However we do note that our solutions can be more355

stable over policy training iterations than previous works, and we believe that metrics useful for356

training will also be useful for direct method OPE.357

The primary goal of our work is to improve understanding of existing methods, the majority of358

which we believe will be used for good. Indeed, offline RL promises to be beneficial in a variety of359

real-world settings, such as healthcare [40] and robotics [11]. However, we note that it is of course360

possible our findings aid those looking into applying these methods for malicious use.361

7 Conclusion362

In this paper, we rigorously evaluated the impact of various key design choices on offline MBRL,363

comparing for the first time a number of different uncertainty penalties used in the literature. By364

proposing novel evaluation protocols, we have also gained key insights into the nature of uncertainty365

in offline MBRL that we believe will be of benefit to the wider RL community. We demonstrated366

the impact of this analysis by improving upon existing offline MBRL methods in performance with367

significant changes to key hyperparameters compared to prior work, obtaining significantly improved368

performance in almost all benchmarks.369

Going forward, we are particularly excited by developments in offline/off-policy evaluation [15, 7] to370

facilitate accurate assessment of agent performance without querying the environment. This would371

then open the door for population-based training methods [18, 38], which have shown great success372

in online MBRL [50]. Furthermore, throughout the paper we have highlighted potential areas of373

interest, from better understanding the role of implementation details, through to the development of374

meta-parameters controlling penalty distribution shape attributes.375
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