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Abstract

Many important problems in medical imaging require analysing the causal effect of genetic,
environmental, or lifestyle factors on the normal and pathological variation of anatomical
phenotypes. There is, however, a lack of computational tooling to enable causal reasoning
about morphological variations of 3D surface meshes. To tackle this problem, we present the
framework of deep structural causal shape models (CSMs) using a database of subcortical
brain meshes. CSMs enable subject-specific prognoses through counterfactual mesh gener-
ation, by utilising high-quality mesh generation techniques, from geometric deep learning,
within the expressive framework of deep structural causal models (DSCM).
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1. Introduction

The causal modelling of non-Euclidean structures is a problem which machine learning
research has yet to tackle1. Thus far, state-of-the-art deep causal structure learning frame-
works have been employed to model the data generation process of 2D images (Pawlowski
et al., 2020; Vlontzos et al., 2022; Sauer and Geiger, 2021). To the best of our knowledge,
none have been applied to non-Euclidean data such as 3D surface meshes, an important
data structure for medical imaging applications. In this work, we present the first causally
grounded 3D shape model, called a deep structural causal shape model (CSM), utilising
geometric deep learning components (Bronstein et al., 2017). We use our CSM to model
the causal data generation process for 3D brain stem meshes assumed in Fig. 1. Namely, we
illustrate the CSM’s ability to robustly answer subject-specific, retrospective, hypothetical
questions, also known as counterfactuals i.e. “How would this patient’s brain structure
change if they had been ten years older or from the opposite (biological) sex?” (Fig. 2), by
the process of deep counterfactual mesh inference.

2. Deep Structural Causal Shape Models

Applying DSCM framework. Our deep structural causal shape model (CSM) utilises
the DSCM framework (Pawlowski et al., 2020) to implement the data generating func-
tions in Fig. 1 using approximately invertible neural networks. Due to the correspon-
dence between data generating functions and probabilistic graphical models (Pearl, 2009),

1. Refer to Rasal et al. (2022) for more results and details.
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v := fV (ϵV ; a, b)

x := fX(ϵX ; v, b), ϵX = Concat(uX , zX)

Figure 1: Computational graph of our CSM (left), graphical model of the joint p(x, v, b, a, s) (bottom-left)
and its corresponding functional form (right). Variables are brain stem mesh (x), age (a), sex (s), and total
brain (b) and brain stem (v) volumes, and all exogenous variable ϵ ∼ N (0, I). zX and uX encode a mesh’s
shape and scale. Reproduced with permission from Pawlowski et al. (2020).

generating medical data from our CSM amounts to sampling an estimator of the joint
p(x, v, b, a, s). This is clear when considering the conditional factorisation p(x, v, b, a, s) =
p(x|v, b) · p(v|a, b) · p(b|s, a) · p(a) · p(s), in which each distribution clearly corresponds to a
function in our data generating process, e.g. x = fX(ϵX ; v, b) is equivalent to x ∼ p(x|v, b),
v = fV (ϵV ; a, b) is equivalent to v ∼ p(v|a, b), and so on. This can be rewritten using the
chain rule of probability as p(x, v, b, a, s) = p(x|v, b) · p(v, b, a, s).
Objective. We then derive a lower bound on log p(x, v, b, a, s), in Appendix A, as

log p(x, v, b, a, s) ≥ α+ Eq(zX |x,v,b)[log p(x|zX , v, b)]−DKL[q(zX |x, v, b)∥p(zX)]︸ ︷︷ ︸
β

, (1)

which, when maximised, jointly learns all data generating functions in the CSM. Here, α =
log p(v, b, a, s), q(zX |x, v, b) is a variational posterior and p(zX) = N (0, I). β learns a mesh
conditional variational autoencoder (Sohn et al., 2015) within the CSM structure, whose
encoder q(zX |x, v, b) and decoder p(x|zX , v, b) are parametrised by the neural networks
(Appendix B). These are implemented using sequences of spectral graph convolutions with
quadric subsampling, akin to Ranjan et al. (2018).

Deep Counterfactual Mesh Inference. For an individual m, a counterfactual mesh
xm,cf can be generated from the observation (xm, vm, bm, am, sm) as follows:

1. Abduction: Calculate subject-specific mesh features ϵX,m by roughly performing the
inversion ϵX,m = (uX,m, zX,m) = f−1

m (xm; vm, bm); first sample zX,m ∼ q(zX,m|xm, vm, bm),
then find uX,m by inverting the function uX → x in the computational graph. We
also calculate ϵV,m = f−1

V (vm; am, bm) and ϵB,m = f−1
B (bm; am, sm).

2. Action: Simulate an action by fixing the value of a data generating function. For
example, the counterfactual question “what if the person m, aged am, had been 10
years older” involves fixing fA(·) to am+10. This intervention is denoted do(am+10).

3. Prediction: Generate a 3D surface mesh xm,cf as the answer to the counterfactual
question. We input values calculated in the abduction and action steps into the data
generating functions, e.g. 1) bm,cf = fB(ϵB,m; am + 10, sm); 2) vm,cf = fV (ϵV,m; am +
10, bm,cf); 3) xm,cf = fX(um, zm; vm,cf , bm,cf), thereby sampling the counterfactual
distribution xm,cf ∼ p(xm,cf |vm,cf , bm,cf), and generating the counterfactual mesh.
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Figure 2: Counterfactual meshes for an individual under do(a) and do(s) – “What would this person’s brain
stem look like if they were older/younger or male?”. Colours show the vertex Euclidean distance between
observed and counterfactual meshes – = +5mm to = -5mm.

3. Experiments & Results

In Fig. 2, subject-specific traits, encoded by ϵX , are successfully preserved in counterfactual
meshes under the full range of interventions, whilst trends from the training data are also
present. Namely, volume decreases as age increases, a male brain stem is larger than its
female counterpart by the same scale factor for each age, and counterfactuals under do(s =
0.5) are half way between the male and female meshes. Further, the CSM generates realistic
meshes under the out-of-sample interventions do(s = 0.5), do(a > 70y) and do(a < 40y).

In Fig. 3, subject-specific traits for both persons are preserved under the interventions
also. Trends in the true distribution, seen in the background contours, are visible in the
counterfactual trajectories with some subject-specific variations. For example, do(s = 0)
shifts the observed v and b values to the female region of the distribution for person A,
resulting in a non-uniform shrinkage of the brain stem from a complex, non-linear transfor-
mation learned by fX(·).

4. Conclusion & Discussion

We have successfully applied the DSCM framework to perform counterfactual inference
of 3D meshes in a biomedical scenario. Our CSM generates novel counterfactual meshes
under out-of-sample interventions and preserves subject-specific traits. The modularity of
our approach enables the integration of SOTA 3D morphable models to improve our results.
Alternative CSMs could also be built to model disease prognosis or treatment outcomes.
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do(a 15)

do(s = 0)

do(s = 0.4)

do(a 5)

do(s = 1)
do(a + 15, s = 1)

Original
Intervention
do(a)
do(a, s)
do(s)

s = Female
s = Male

Original A (a = 59, s = 1.0) do(a = 44) do(s = 0.4) do(s = 0.0)

Original B (a = 50, s = 0.0) do(a = 44) do(a = 65, s = 1.0) do(s = 1.0)

Figure 3: Counterfactual trajectories of bcf and vcf under interventions do(a ± T ), do(s = S), and do(a ±
T, s = S′), where T ∈ {5, 10, 15, 20}, S ∈ {0, 0.2, 0.4, 0.6, 1} and S′ is the opposite of the observed sex.
Counterfactual meshes, corresponding to points marked (×) on the trajectories, are visualised on the right.
Contour plots depict the true density p(v, b|s). Colours show the vertex Euclidean distance between the
observed and counterfactual meshes – = +5mm to = -5mm.
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Appendix A. Proof of Objective

From the causal, graphical model in Fig. 1, we can write down the factorisation

p(x, v, b, a, s) = p(x|v, b) · p(v|a, b) · p(b|s, a) · p(a) · p(s) = p(x|v, b) · p(v, b, a, s). (2)

The joint including the independent exogenous variable zX can be factorised as p(x, zX , v, b, a, s) =
p(x|zX , v, b) · p(zX) · p(v, b, a, s) where zX can be marginalised as

p(x, v, b, a, s) =

∫
p(x|zX , v, b) · p(zX) · p(v, b, a, s) dzX (3)

⇐⇒ log p(x, v, b, a, s) = log

∫
p(x|zX , v, b) · p(zX) · p(v, b, a, s) dzX (4)

= α+ log

∫
p(x|zX , v, b) · p(zX) dzX , (5)

where α = log p(v, b, a, s). Since the marginalisation over zX is intractable, we introduce
the variational distribution q(zX |x, v, b) ≈ p(zX |x, v, b),

= α+ log

∫
p(x|zX , v, b) · p(zX) · q(zX |x, v, b)

q(zX |x, v, b) dzX , (6)

then, by Jensen’s inequality, arrive at a formulation for the evidence lower bound (ELBO),

log p(x, v, b, a, s) ≥ α+ Eq(zX |x,v,b)

[
log

(
p(x|zX , v, b) · p(zX)

q(zX |x, v, b)

)]
. (7)

This can be written using the Kullback–Leibler (DKL(·)) divergence,

RHS Eq. (7) = α+ Eq(zX |x,v,b)[log p(x|zX , v, b)]− Eq(zX |x,v,b)

[
log

q(zX |x, v, b)
p(zX)

]
(8)

= α+ Eq(zX |x,v,b)[log p(x|zX , v, b)]−DKL[q(zX |x, v, b)∥p(zX)]︸ ︷︷ ︸
β

, (9)

which clearly demonstrates that β learns a mesh CVAE within the CSM structure.
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Appendix B. Mesh CVAE Architecture
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Figure 4: Network architectures for CondEncX(·) and CondDecX(·) to implement fX(·), utilising Chebyshev
polynomial based spectral graph convolutions Defferrard et al. (2016). Reshape(t) reshapes the input to the
shape given by tuple t. Linearθ(M) is a fully connected layer with M output features. ReLU(·) refers to a
rectified linear unit. ELU(·) refers to an exponential linear unit. |V̂ | are the number of vertices output after
ChebBlock↓

θ(128, 10, 2).

Appendix C. Preliminary Results on Hippocampus Meshes

We present preliminary results for a CSM of hippocampus meshes for the same set of individ-
uals as the brain stem experiments. We assume the causal, graphical model in Fig. 1, where
v is now the volume of the hippocampus and x is the hippocampus mesh. The architecture
in Fig. 4 is reconfigured to account for the topological difference between hippocampus and
brain stem meshes, whilst all other hyperparameters are kept the same. Results are seen in
Fig. 5; subject-specific traits are preserved over the range of interventions, and the expected
shape and volumetric trends are also present. Since hippocampus meshes are more topolog-
ically unsmooth than brain stem meshes, counterfactual meshes display surface deformities.
This could be overcome by topology-specific hyperparamter tuning, utilising spatial graph
convolutions or introducing mesh smoothing constraints to the objective.
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Figure 5: Counterfactual meshes for an individual under do(a) and do(s) – “What would this person’s
hippocampus look like if they were older/younger or male?”. Colours show the vertex Euclidean distance
between observed and counterfactual meshes – = +5mm to = -5mm.
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