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Abstract. Hand pose represents key information for action recogni-
tion in the egocentric perspective, where the user is interacting with
objects. We propose to improve egocentric 3D hand pose estimation
based on RGB frames only by using pseudo-depth images. Incorporat-
ing state-of-the-art single RGB image depth estimation techniques, we
generate pseudo-depth representations of the frames and use distance
knowledge to segment irrelevant parts of the scene. The resulting depth
maps are then used as segmentation masks for the RGB frames. Ex-
perimental results on H2O Dataset confirm the high accuracy of the
estimated pose with our method in an action recognition task. The 3D
hand pose, together with information from object detection, is processed
by a transformer-based action recognition network, resulting in an accu-
racy of 91.73%, outperforming all state-of-the-art methods. Estimations
of 3D hand pose result in competitive performance with existing meth-
ods with a mean pose error of 28.66 mm. This method opens up new
possibilities for employing distance information in egocentric 3D hand
pose estimation without relying on depth sensors. The code is available
under https://github.com/wiktormucha/SHARP

Keywords: Egocentric · 3D hand pose · Action recognition.

1 Introduction

In recent years, one of the growing research areas in computer vision has been
egocentric vision, as evidenced by the increasing number and size of published
datasets EPIC-KITCHENS [6], Ego4D [14], H2O [16] and release of devices
like Ray-Ban Stories, Apple Vision Pro or HoloLens. One of the challenges in
egocentric vision is understanding human-object interaction based on hand pose
estimation and action recognition [11,16]. The hand pose estimation task is de-
scribed as the challenge of estimating the position of key points representing the
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Fig. 1. Overview of our method. In the sequence of input frames f1, f2, f3 . . . fn repre-
senting the action, SHARP improves the estimation of the 3D hand pose Ph3D

L,R,n. The
bounding box of the manipulated objects Po2Dn with their labels Pol are retrieved using
YOLOv7 [27]. Pose information is embedded in a vector describing each frame. The
sequence of vectors is processed by the transformer-based network to predict action.

joints of a human hand in two or three-dimensional space. Estimated positions
are a valuable source of information for recognising the actions performed by a
camera wearer, linking these two tasks. Egocentric action recognition research is
of great importance in various domains, including augmented and virtual reality,
nutritional behaviour analysis, and Active Assisted Living (AAL) technologies
for lifestyle analysis [21] or assistance [17]. As AAL technologies mainly target
Activities of Daily Living (ADLs) such as drinking, eating and food preparation,
which are inherently manual and involve object manipulation, there’s a growing
interest in research focused on hand-based action recognition.

Current work on egocentric hand-based action recognition focuses on 3D
hand pose [26,7,16] using a single RGB camera. As a result, these studies regress
z coordinate from RGB frames, which introduces complexity and results in pose
prediction errors of around 40 mm [26,15,16] (equivalent to a 20.5% error con-
sidering an average human hand size of 18 cm), which is far from the desired
performance, especially considering that publicly available datasets for egocen-
tric hand pose are captured in a laboratory environment. Accurate pose predic-
tion is essential for hand-based action recognition [18]. The improvement in 3D
prediction could be further enhanced by the use of a depth sensor, but there’s
currently no portable depth sensor on the market. Despite market availability,
an additional sensor would add undesired costs due to power and processing
requirements. Data growth for training and research is another constraint, as
labelling key points in 3D space is difficult and requires, for example, a labo-
ratory multi-view camera setup [16,22]. All these circumstances create a need
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and motivate our research to explore new techniques and solutions to improve
egocentric 3D pose estimation based on RGB images only.

Our study proposes the use of pseudo-depth images, depth images generated
from a single RGB image using state-of-the-art depth estimation methods. The
resulting distance representation of the scene does not contain real depth values,
but it allows for the removal of non-relevant information in the scene depend-
ing on the distance. In an egocentric perspective, human arms have a constant
maximum distance from the camera because the camera is mounted in a fixed
position on the human body. This characteristic allows for the removal of the
values representing the parts of the scene beyond this distance, leaving the in-
put image of a hand pose estimation network with only hands and manipulated
objects visible. We call this process Segmentation of Hands and Arms by Range
using Pseudo-depth (SHARP). This solution requires no additional sensors; it
can be applied to any RGB input data; no additional training of the depth es-
timation model is required; and compared to background subtraction based on
image sequences, only a single RGB image is required. These advantages are
confirmed by a performance improvement of 7 mm, reducing the mean pose er-
ror from 35.48 mm to 28.66 mm from the baseline. The overview of the method
is presented in Fig. 1. Our contribution can be listed as follows:

– Inspired by superior egocentric hand pose estimation in 2D over other meth-
ods, we extend the state-of-the-art EffHandEgoNet [18] to 3D pose estima-
tion, resulting in a new architecture called EffHandEgoNet3D.

– On the top of EffHandEgoNet3D we propose SHARP module, a novel idea
for egocentric scene segmentation to improve hand-object interaction un-
derstanding. A state-of-the-art depth estimation model is used to generate
a pseudo-depth scene representation. Furthermore, the generated distance
knowledge is used to remove irrelevant information in the scene with a fixed
distance over the range of the human arms, resulting in the preservation of
the human arms and the interacting object. SHARP requires no additional
training and can be applied to any egocentric RGB data. The proposed archi-
tecture outperforms several state-of-the-art studies, achieving a mean error
of 28.66 mm on the H2O Dataset.

– We implement an action recognition network based on a transformer archi-
tecture. It uses previously estimated 3D hand pose and 2D object detection
information as input. The network outperforms the state-of-the-art on the
H2O Dataset, including methods that use more information e.g. 6D object
pose, reaching 91.73% action recognition accuracy.

– We present extensive experiments and ablations performed on H2O Dataset,
showing the influence of the proposed scene segmentation method on the
performance of 3D hand pose estimation in the egocentric perspective.

The structure of the paper is as follows: In section 2, we review related
research on egocentric 3D hand keypoint estimation, hand-based action recogni-
tion, and depth estimation using a single RGB image, and identify opportunities
for improvement. Section 3 details our approach and its implementation. Our
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evaluation and experimental results are presented in section 4. Finally, section
5 concludes the study, summarising its main findings and limitations.

2 Related Work

Egocentric Hand Pose Estimation Hand pose estimation in egocentric vi-
sion faces challenges such as self-occlusion, limited field of view, and diverse
perspectives, which hinder effective generalisation. Some approaches overcome
these obstacles by using RGB-D sensors [19,31,11]. However, the adoption of
depth sensors is hampered by limited market availability, directing towards self-
made solutions and increasing computing and power costs. Due to device limi-
tations, several studies estimate 3D keypoints from RGB images only by using
neural networks that estimate the z coordinate representing depth along x and y,
followed by a conversion from 2D to 3D space using intrinsic camera parameters
[26,16]. For example, Tekin et al. [26] compute the 3D pose of a hand directly
from a single RGB image using a convolutional neural network (CNN) that out-
puts a 3D grid with the probability of target pose values in each cell. Similarly,
Kwon et al. [16] extend this approach to estimate poses for both hands. However,
these methods report a mean end-point error (EPE) of 37 mm for hand pose
estimation in the H2O dataset, suggesting room for improvement given the aver-
age human hand size of 18 cm. Cho et al. [5] use CNNs with transformer-based
networks for 3D pose reconstruction on a frame-by-frame basis, while Wen et al.
[30] propose a sequence-based approach for depth reconstruction that addresses
occlusion challenges.

Egocentric Action Recognition A common strategy for action recognition
involves the joint processing of hand and object information. Cartas et al. [3]
proposes CNN-based object detectors to estimate the positions of primary re-
gions (hands) and secondary regions (objects). Temporal information from these
regions is then processed by a Long Short-Term Memory (LSTM) network.
Nguyen et al. [20] Transition from bounding box information to 2D skeletons of a
single hand estimated by CNN from RGB and depth images. The joints of these
skeletons are aggregated using spatial and temporal Gaussian aggregation, and
action recognition is performed using a learnable Symmetric Positive Definite
(SPD) matrix. With the rise of 3D-based hand pose estimation algorithms, the
scientific community has increasingly focused on egocentric action understand-
ing using 3D information [26,7,16]. Tekin et al. [26] estimate 3D hand and object
poses from a single RGB frame using a CNN, embedding temporal information
to predict action classes using an LSTM. Other techniques use graph networks,
such as Das et al. [7], who present a spatio-temporal graph CNN architecture
that describes finger motion using separate subgraphs. Kwon et al. [16] construct
sub-graphs for each hand and object, which are merged into a multigraph model,
allowing learning of interactions between these components. Wen et al. [30] use
a transformer-based model with estimated 3D hand pose and object label input.
Cho et al. [5] enrich the transformer inputs with object pose and hand-object
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contact information. However, these studies do not make use of depth data.
Instead, they estimate points in 3D space using neural networks and intrinsic
camera parameters [26,16,30,5].

Depth Estimation from Single RGB Image Recent advances in depth es-
timation have relied on CNNs for direct regression of scene depth from input
images [9]. These methods often struggle to generalise to unconstrained scenes
due to the limited diversity and size of the training data. Garg et al. [12] pro-
posed the use of calibrated stereo cameras for self-supervision, which simplifies
data acquisition but maintains constraints on specific data regimes. Despite sub-
sequent self-supervised approaches [13], challenges remain, particularly for dy-
namic scenes. Efforts to overcome these limitations include crowd-sourced anno-
tation of ordinal relationships [4], but existing datasets are often biased or lack
dynamic objects, making it difficult to generalise to less constrained environ-
ments. In response, Ranftl et al. [24] propose tools for mixing multiple datasets,
even with incompatible annotations. Their approach incorporates a robust train-
ing objective, principled multi-objective learning, and emphasises pre-training of
encoders on ancillary tasks. By training on five different sources, including a rich
dataset of 3D movies, they outperform state-of-the-art depth estimation models
in zero-shot cross-dataset performance. As an extension of this work, Ranftl et
al. [23] present DPT-Hybrid and DPT-Large architectures enhanced with dense
prediction transformers, which use vision transformers instead of CNNs, further
improving the performance of depth estimation.

What distinguishes our work from other studies of egocentric 3D hand pose
is the use of a depth estimation that we incorporate into SHARP module. Using
state-of-the-art single RGB image depth estimation techniques, we generate a
pseudo-depth representation of the image without any additional equipment.
Knowing that the distance of the human arms from the camera in an egocentric
view is constant, we then use this generated depth image to segment irrelevant
information from the scene using a fixed distance threshold, thereby unifying
the dataset for hand pose estimation. This methodology ensures that the hand
pose estimation model only considers hands and manipulated objects, thereby
increasing accuracy and efficiency, and can be applied to any RGB dataset.

3 Egocentric 3D Hand Pose Estimation and Action
Recognition Enforced With Pseudo Depth

The study considers the tasks of egocentric 3D hand pose estimation and action
recognition. These two tasks are correlated but significantly different, so the
methodology is described separately for each.

3.1 Egocentric 3D Hand Pose with Pseudo-Depth Segmentation

In the first stage, each RGB frame fn undergoes processing with SHARP mod-
ule which consists of a depth estimation model DPT-Hybrid [23], yielding a
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Fig. 2. Overview of the proposed egocentric 3D hand pose estimation method. First,
the RGB image is processed with the SHARP module. Within SHARP, the pseudo-
depth image is generated using the DPT-Hybrid. This distance representation is used to
remove irrelevant scene information using a fixed threshold of the human arm range t.
Secondly, the SHARP output is passed through a 3D hand pose estimation network.

pseudo-depth representation IDn of the frame fn. This pseudo-depth map is then
normalised with its maximum value max(IDn ). As human arms have a constant
maximum range we utilise this characteristic. Subsequently, a fixed threshold t
is applied to the pseudo depth map IDn to remove the non-relevant scene part.
The resultant depth map, devoid of background interference, serves as a segmen-
tation mask for the fn. Segmentation of fn with IDn results in ISEG

n where the
RGB image contains only human arms and a manipulated object.

The processed ISEG
n ∈ R3×w×h, w, h = 512 is then inputted into a 3D hand

pose estimation network, named EffHandEgoNet3D, which is an extension of the
state-of-the-art 2D egocentric hand pose network, EffHandEgoNet [18], tailored
for 3D estimation. EffHandEgoNet3D comprises an EfficientNetV2-S [25] back-
bone which extract feature map representation of ISEG

n FM ∈ R1280×16×16. Ex-
tracted feature map FM is handed to two independent upsamplers for each of the
hands and MLPZ

L,R estimating keypoints’ depth. Despite pose estimation, the
handness modules responsible for predicting each hand’s presence hL, hR ∈ R2

are built from another MLPH
L,R. The upsamplers consist of three transposed con-

volutions with batch normalisation and ReLU activation except the last layer fol-
lowed by a pointwise convolution. Output results are heatmaps HL,R ∈ RJ×w×h

where each cell represents the probability of joint J occurrence for each hand. In
the next step they are transformed into P2D

L,R and concatenated with estimated
corresponding z values resulting in P2.5D

L,R . The final step utilises camera intrinsic
parameters to transform P2.5D

L,R using the pinhole camera model to camera space
resulting in P3D

L,R. The overview of the complete method is visible in Figure 2.
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Fig. 3. Our action recognition procedure. From the sequence of frames f1, f2, f3...fn
the hand pose Ph3D

L,R is estimated with SHARP and EffHandEgoNet3D model and
the object pose Po2D, Pol is extracted with YOLOv7 [27]. Each sequence frame fn
is linearised and positional embedding and classification tokens are added. Next, this
sequence is passed to a transformer encoder [8] repeated ×2 times, which embeds the
temporal information. Finally, the MLP predicts one of the 36 action labels.

3.2 Egocentric Action Recognition based on 3D Hand Pose

We perform egocentric action recognition from image sequences using estimated
3D hand pose and 2D information about interacting object. The actions consid-
ered in this study are those in which humans manipulate objects with one or
both hands, such as pouring milk or opening a bottle. An overview of the pipeline
is shown in Fig. 3. It consists of three distinct components: object detection, 3D
hand pose estimation, and finally action recognition using a transformer encoder
and a classification MLP. The architecture improves egocentric action recogni-
tion based on the 2D hand pose introduced in EffHandEgoNet study [18]. The
first step in the pipeline is object detection, which is carried out employing the
pre-trained YOLOv7 network [27]. In each frame, denoted as fn, the interacting
object is represented by Po2D(x, y) ∈ R4×2, where each point corresponds to the
corners of its bounding box. Additionally, Pol ∈ R1 represents object’s label.

The representation of each action sequence consists of frames [f1, f2, f3, ..., fn],
where n ∈ [1..N ] and N = 20 following [18]. These frames embed flattened poses
of hands Ph3D

L,R and object Po2D, Pol. If fewer than N frames represent an
action, zero padding is applied, while actions longer than N frames are sub-
sampled. The input vector Vseq is a concatenation of frames fn ∈ R135.

fn = [Ph3D
L , Ph3D

R , Po2D, Pol] (1)

Vseq = [f1, f2..fn], n ∈ [1..N ] (2)

The sequence vector representing an action Vseq is processed to embed tem-
poral information with a transformer encoder block following [18]. First, Vseq is
linearised using a fully connected layer to xlin. The resulting xlin is combined
with a classification token and a positional embedding. The embedded sequence
is passed to MLP for classifying the action.
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4 Experiments

4.1 Datasets

In this evaluation, we focus exclusively on the H2O Dataset [16] due to its suit-
ability for our research objectives. This dataset captures human actions from
an egocentric perspective, providing labels for action recognition and 3D hand
pose of both hands. At the time of this study, there are only two other publicly
available datasets with similar characteristics required for our study, such as As-
semblyHands [22] and HoloAssist [29]. While HoloAssist is potentially valuable,
the hand pose labels have not yet been released. AssemblyHands is excluded
due to images captured by infrared cameras, which are incompatible with the
DPT-Hybrid depth estimation model designed for RGB input.

H2O Dataset is a comprehensive resource for analysing hand-based actions
and object interactions involving two hands. It includes multi-view RGB-D im-
ages annotated with action labels covering 36 different classes derived from verb
and object labels. It also includes 3D poses for both hands, resulting in j = 2×21
points, and 6D poses and meshes for the manipulated objects. Ground truth cam-
era poses and scene point clouds further enrich the dataset. The actions captured
in the dataset were performed by four people. For both the action recognition
and hand pose estimation tasks, the dataset provides training, validation and
test subsets. The action recognition subset contains 569 clips for training, 122
for validation and 242 for testing.

4.2 Metrics

To evaluate the hand pose estimation and compare our work with the state of the
art, we calculate the Mean Per Joint Position Error (MPJPE) in millimetres over
21 keypoints J representing the human hand. This error metric quantifies the
Euclidean distance between the predicted and ground truth values. For action
recognition, we use the top-1 accuracy measure, where the model’s prediction
must exactly match the expected ground truth to be considered accurate.

4.3 Experiment setup

For both learning processes, each run is repeated three times to reduce the
effect of random initialisation of the network, and mean results with standard
deviations are reported.

3D Hand Pose Estimation is trained and evaluated on H2O Dataset. The
optimisation is done using Stochastic Gradient Descent (SGD) over the sum-
marised loss function including Intersection over Union (IoU) for each upsam-
pler and L1 loss for predicted corresponding depth values. The process starts
with a learning rate lr = 0.1 and momentum equal to m = 0.9. Over time lr is
reduced by α = 0.5 every 10th epoch starting from the 50th epoch. the data is
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augmented with random cropping, horizontal flipping, vertical flipping, resizing,
rotating and blurring. The batch size is equal to bs = 32. Model weights are
saved for the smallest MPJPE in the validation subset.

Action Recognition module requires object detection. For this, we fine-tune
YOLOv7 on the H2O Dataset using the open-source strategy reported by the
authors. The training of the action recognition includes the augmentation of
the sequence vectors with keypoints using random rotation and an additional
strategy with random masking of either the hand, the object positions or the
label. This is done by setting the corresponding values of the hand or object in
the frame fn to zero. We follow [16,26,32] and use given poses in training. Input
sequence frames are randomly sub-sampled during training and uniformly sub-
sampled for validation and testing. Models are trained with a batch size bs = 64,
AdamW optimiser, cross-entropy loss function, and a learning rate lr = 0.001 re-
duced by a factor of 0.5 every 200 epochs after 500 epochs. Hyperparameters and
augmentations are selected based on the best-performing set in the validation
subset. Weights are stored for best validation accuracy.

4.4 Comparison with State of the Art

Our architecture with SHARP gives an average MPJPE in hand pose of 29.61±
0.71 mm in three consecutive runs with the best run MPJPE equal to 28.66 mm.
The qualitative results shown in Fig. 4 confirm the improvement in 3D hand
pose estimation when using SHARP, but also show that SHARP can lead to a
degradation in performance if too much information is reduced from the scene.
Further, we employ the estimated 3D hand pose using SHARP in the proposed
action recognition architecture. It yields an average of 90.90%±0.67 over three
runs, with the best model yielding an accuracy of 91.73%. Comparison with state
of the art for egocentric 3D hand pose estimation is presented in Table 1. Table
2 presents a comparison of state-of-the-art action recognition methods and their
results on the H2O Dataset reported by the authors. To ensure a fair comparison,
the table provides details regarding the inputs of the action recognition modules.
For both tasks, we follow other studies [26,1,30,5,18] and report our best results.

Table 1. Results of 3D hand pose estimation provided in mm in camera space.

Method: Year MPJPE Left ↓ MPJPE Right ↓ MPJPE Both ↓

LPC [15] 2020 39.56 41.87 40.72
H+O [26] 2019 41.42 38.86 40.14
H2O [16] 2021 41.45 37.21 39.33
HTT [30] 2023 35.02 35.63 35.33
H2OTR [5] 2023 24.40 25.80 25.10
THOR-Net [1] 2023 36.80 36.50 36.65
Ours Now 30.31 27.02 28.66
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Fig. 4. Qualitative results of our method in 2D and 3D space. Green skeletons represent
the ground truth hand pose, red estimations without SHARP and blue estimations
with SHARP . Images are annotated with a predicted action label for the represented
sequences. Two examples from the left show that SHARP improves 3D pose estimation.
On the right, the 3D error increases as SHARP partially loses the right hand.

We measure the inference times of our methods for the hand pose estimation
task for a single frame and for a complete action recognition pipeline for a single
action. The evaluation is performed by averaging the inference times over 1000
trials on the NVIDIA GeForce RTX3090 GPU for reliability. The results are
shown in Fig. 5, where the upper part shows the hand pose performance and the
lower part shows the action recognition. Our methods are compared with HTT
[30] and H2OTR [5] as they are the only open-source implementations that allow
such a comparison on the H2O Dataset at the time of this study.

SHARP estimates the egocentric 3D hand pose with the second best result,
being faster ≈ ×2.4 than the best H2OTR [5] with 13M fewer parameters and
only a 3mm performance penalty. Our action recognition outperforms all state-
of-the-art methods and infers ≈ ×2.6 faster with 12M fewer parameters than
the second best H2OTR [5].

4.5 Ablation Studies

To further evaluate our approach, we conduct extensive ablation studies. All
experiments are performed with a fixed number of seeds to ensure reproducibility
by eliminating the effect of random initialisation.

The range of human arms in training The most important part of our
architecture is the pseudo-depth-based distance segmentation, which aims to
remove irrelevant information from the processed scene, except for the human
hands and the manipulated object. It raises the key question of what value of
distance should be used as the threshold t. In the case of pseudo depth obtained
with DPT-Hybrid, the depth values are normalised, where t ∈< 0, 1 >. To se-
lect t, we first observe the dataset samples and choose values that lead to the
preservation of hands and objects only. However, as it is based on estimation,
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Fig. 5. Inference time for 3D hand pose estimation per single frame and action recog-
nition accuracy per single action of state-of-the-art methods on H2O Dataset. Each
method is visualised as a circle whose size represents the number of trainable parame-
ters. SHARP inference is ≈ ×2.5 faster than H2OTR [5] with better action recognition.

the behaviour is not the same for all samples for the same t and none of these
values can be considered good without being proven with performance. In the
second step, we search for the best performance by retraining the architecture
for each of these t ∈ {0.35, 0.39, 0.43, 0.47, 0.51}. The results highlight t = 0.47
as the highest performance value and we observe the performance decrease above
and below this value, proving the usability of the proposed method. All results
are presented in the left sub-figure of Fig. 6.

The range of human arms in inference Following the choice of t in training,
we examine the choice of t in testing for the best-performing model with t = 0.47
in training. We run tests for t ∈ {0.35, 0.39, 0.43, 0.47, 0.51}. All results are shown
in the right subplot of Fig. 6. The effect of t is significantly lower than in training
and does not affect performance much.

Pseudo-depth-based SHARP module We evaluate SHARP ’s impact on the
egocentric 3D hand pose estimation performance. The proposed architecture
is retrained according to the previously described process without the SHARP
module, using only unsegmented RGB images representing the full scene. The
network reduced by the SHARP module in a fixed seed run achieves an MPJPE
of 35.48 mm compared to 28.66 mm obtained with SHARP. The result is refer-
enced in Table 3 as Ablation I. The process is repeated three times to reduce the
random effect of network initialisation and to strengthen the justification of the
idea. The average of the three runs without the SHARP module is 35.34± 0.17,
while with SHARP, the performance improves to 29.61±0.71 mm, demonstrating
the high importance of the proposed architecture.
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Table 2. Results in accuracy of action recognition methods on H2O Dataset. Inputs
of methods are: Img stands for semantic features extracted from an image using CNN
network, Hand Pose and Obj Ppose stand for pose information type for hands and
objects, and Obj Label stands for object label. Results origin from referenced studies.

Method: Year Img Hand Pose Obj Pose Obj Label Acc. ↑

C2D [28] 2018 ✓ ✗ ✗ ✗ 70.66
I3D [2] 2017 ✓ ✗ ✗ ✗ 75.21
SlowFast [10] 2019 ✓ ✗ ✗ ✗ 77.69
H+O [26] 2019 ✗ 3D 6D ✓ 68.88
ST-GCN [32] 2018 ✗ 3D 6D ✓ 73.86
TA-GCN [16] 2021 ✗ 3D 6D ✓ 79.25
HTT [30] 2023 ✓ 3D ✗ ✓ 86.36
H2OTR [5] 2023 ✗ 3D 6D ✓ 90.90
EffHandEgoNet [18] 2024 ✗ 2D 2D ✓ 91.32
Ours Now ✗ 3D 2D ✓ 91.73

Fig. 6. Figures showing the results of the 3D hand pose estimation error in MPJPE
as a function of the segmentation threshold t. The left figure shows the performance
with different thresholds used for training and the right figure shows the performance
for the best trained model with t = 0.47 and different t during inference.

Oracle depth-based SHARP module SHARP uses the state-of-the-art depth
estimation network DPT-Hybrid. Like any deep learning architecture, this model
is prone to errors. On the other hand, with progress in architecture development,
depth estimation networks will improve in the future, leading to an improvement
in the performance of our method. To highlight this potential, we retrain the
network with an oracle ground truth depth image provided in the H2O Dataset.
The depth image represents the distance in mm from a camera. For this reason,
we choose t = 700 mm. The results are superior, achieving an MPJPE of 25.09
mm, better than any state-of-the-art method at the time of this study. The
experiment is referred as Ablation II in Table 3. This performance demonstrates
the potential of our approach when fed with less noisy pseudo-depth data.

De-sharpening of segmentation mask The segmentation mask, derived
from a pseudo-depth scene representation, consists of sharp edges surround-
ing the human arms and the manipulated object, based on a distance. Depth
estimation is prone to error, and in some scenes, this sharp-edge segmentation
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(a) (b)

Fig. 7. On the left, frame processed with SHARP and different values of t. On the
right, the same frame processed with SHARP, t = 0.47 and with de-sharpening applied.

Table 3. Results of ablations studies with different depth image types used in SHARP.
All results provided in mm in camera space for left, right and both hands.

Depth MPJPE Left ↓ MPJPE Right ↓ MPJPE Both ↓

Ours Estimated 30.31 27.02 28.66
Ablation I ✗ 32.95 38.01 35.48
Ablation II Ground Truth 21.31 28.86 25.09
Ablation III Est.+De-sharpen 39.49 35.01 37.25

leads to the loss of parts of the image that represent relevant information, e.g.
human hand. This negative effect can be reduced in two ways, by changing the
segmentation threshold as shown in Fig. 7(a) or by de-sharpening the edges. The
effect of the de-sharpening process is presented in Fig. 7(b). In this ablation, we
observe the effect of edge de-sharpening by blurring the mask derived from the
pseudo-depth scene representation. Performance drops to 37.25 mm, highlighting
the usefulness of the SHARP module only with accurate masking.

5 Conclusion

In this study, a 3D hand pose estimation model has been developed for the
egocentric perspective. The novelty of the proposed architecture lies in the
SHARP module, which uses pseudo-depth scene representation obtained through
a monocular depth estimation model. Thanks to the characteristic of a fixed cam-
era to a user in the egocentric perspective and a constant range of human arms,
the distance information is used to remove irrelevant information from the scene.
Experiments with our network showed an improvement in performance of 7 mm
in the MPJPE metric when using SHARP, with the best result of MPJPE equal
to 28.66 mm placing as the second best result on the H2O Dataset. The further
potential of the SHARP module was confirmed with the use of the ground truth
depth image, resulting in the best result of all state-of-the-art methods equal to
25.09 mm. Furthermore, estimated 3D hand poses were used alongside object de-
tection as input for the action recognition model, where each frame is described
by a vector containing the 3D hand pose and the object bounding box, and their
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sequence is embedded using a transformer-based network. The results obtained
on H2O Dataset, which includes actions where one hand or two hands interact
with objects, resulted in 91.73% accuracy, outperforming the state-of-the-art.

Our study shows that using pseudo depth to remove irrelevant information
in the egocentric scene with current state-of-the-art monocular depth estima-
tion methods improves 3D hand pose performance. The quality of pseudo depth
correlates with pose estimation error and requires a sharp and accurate repre-
sentation of human hands in the scene. In the future, with the advancement of
depth estimation networks, this approach has a chance to improve hand pose
estimation tasks further, leading to more accurate action recognition.
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