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Abstract
Various adaptive step sizes have been proposed recently to reduce the amount of tedious manual
tuning. A popular example is back-tracking line-search based on a stochastic Armijo condition.
But the success of this strategy relies crucially on the search direction being a descent direction.
Importantly, this condition is violated by both SGD with momentum (SGDM) and Adam, which are
common choices in deep-net training. Adaptively choosing the step size in this setting is thus non-
trivial and less explored despite its practical relevance. In this work, we propose two frameworks,
namely, momentum correction and restart, that allow the use of stochastic line-search in conjunction
with a generalized Armijo condition, and apply them to both SGDM and Adam. We empirically
verify that the proposed algorithms are robust to the choice of the momentum parameter and other
hyperparameters.

1. Introduction

Many machine learning problems can be formulated as minimizing a finite-sum objective, i.e.:

min

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

where n is the total number of data. A standard approach for solving such problems is stochastic
gradient descent (SGD):

xk+1 = xk − ηk∇fSk
(xk),

in which a random batch of samples Sk is drawn at each iteration k. The step size of SGD (i.e.
ηk) is important for achieving stable and fast convergence of the algorithm [1]. This lead to recent
research on finding a good step size policy for SGD without extensive tuning. Such approaches
commonly take inspirations from the deterministic scenario [8, 18]. For example, Loizou et al. [8]
extended the classic Polyak step size to the stochastic setting (SPS) when a lower bound f∗

Sk
on the

function value fSk
is available. Vaswani et al. [18] introduced a stochastic version of the Armijo
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Figure 1: Results of binary classification on a synthetic dataset using logistic loss (see Sec 3). (a)
Minimum train loss against the momentum parameter β. SLS+Polyak Momentum refers to (2)
where ηk is found by SLS [18] (see Sec 2 for MSL-based algorithms); (b) train loss of SGD with
Polyak momentum against epochs for different βs (see (2)) with the step size being determined by

SLS [18]; (c) similar plot as (b) with different η0s in ALG-SMAG (where ηk = min{
fSk

−f∗
Sk

c∥dk∥2
, η0})

and search initializations η̃0s in MSL-SGDM-C (see Sec 3). Note that η0 and η̃0 are in brackets
given in the legend.

line-search condition (SLS) based on the gradient ∇fSk
. These adaptive step sizes have been shown

to work well for over-parameterized models that can interpolate [8, 18].
In practice, momentum is frequently added to SGD to further improve its performance [17].

Instead of taking a step along the stochastic gradient direction ∇fSk
, SGD with momentum modifies

the update to:

xk+1 = xk − ηkdk, (1)

where dk typically includes some previous gradient information. One such variant sets dk = (1 −
β)∇fSk

(xk) + βdk−1 where β ∈ (0, 1) (known as SGDM [7, 17]). When Polyak momentum is
combined with SGD [15], the resulting update is

xk+1 = xk − ηk∇fSk
(xk) + β(xk − xk−1). (2)

The momentum parameter β in the dk of SGDM or (2) complicates the selection of a suitable step
size. Directly applying existing approaches such as the stochastic line search (SLS) of Vaswani et al.
[18] neglects β when adjusting the step size ηk. Consequently, as demonstrated in Figure 1(a) and
Figure 1(b), this approach is not robust to the choice of momentum parameter β, and a large β can
potentially lead to divergence. In another work, Wang et al. [20] proposed to use Polyak step size

of the form ηk = min{
fSk

−f∗
Sk

c∥dk∥2
, η0}. However, as we observe in Figure 1(c), this step size is highly

sensitive to the choice of η0. Thus, in the presence of momentum, the question of how to design
an adaptive step size strategy that is robust to the momentum parameter as well as other choices
of hyperparameters is not fully addressed. In this work, we propose a new line-search framework
that can be applied to both SGDM and Adam, building upon a stochastic variant of the generalized
Armijo condition. We discuss our approach in details in the next section.
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2. Summary of Contributions

In this section, we first discuss the challenges in extending the generalized Armijo condition to
the stochastic setting. To this end, we come up with a strategy that makes modifications to the
momentum direction and apply it to SGDM. Furthermore, we propose another computationally-
favorable approach that restarts the momentum for both Adam and SGDM cases.

2.1. Technical Challenge and Momentum Correction

We introduce the following generalized Armijo condition for momentum-based stochastic line-
search (MSL)

fSk
(xk − ηkdk) ≤ fSk

(xk)− cηk⟨∇fSk
(xk), dk⟩, (3)
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Figure 2: Results of binary classification on a synthetic
dataset using our algorithm MSL-SGDM-C and logistic
loss (see Sec 2.1 and 3). Left: sign(⟨∇fSk

(xk), dk⟩)
against iterations; right: damped momentum parameter β̃
and ⟨∇fSk

(xk), d̃k⟩ against iterations.

where dk is some descent direction,
i.e. ⟨∇fSk

(xk), dk⟩ > 0. In the spe-
cial case of dk = ∇fSk

(xk), (3) re-
duces to the search condition in SLS
[18], for which descent on fSk

is
guaranteed when the step size ηk sat-
isfies (3). However, this does not al-
ways hold true for other forms of dk
that involve momentum. For exam-
ple, when dk = (1 − β)∇fSk

(xk) +
βdk−1 in the case of SGDM, we no
longer have the guarantee that the in-
ner product ⟨∇fSk

(xk), dk⟩ is always
positive. This is because the inner
product ⟨∇fSk

(xk), dk−1⟩ can be negative. We also empirically observe this as shown by the points
labeled with −1 in Figure 2 (left). To resolve this challenge, we consider two situations. In the
case where ⟨∇fSk

(xk), dk⟩ > 0, we use it directly in (3); otherwise, we first damp β to β̃ (e.g.
half β each time) until the inner product ⟨∇fSk

(xk), dk⟩ with dk computed using β̃ (denoted as
d̃k) is positive, and use this inner product together with d̃k to find the step size and perform the
update. By doing such momentum corrections, we are guaranteed a descent direction dk where the
step size found by (3) leads to a decrease in fSk

. We name this algorithm as MSL-SGDM-C. As
shown in Figure 2, damped momentum parameter β̃ ensures that all inner products ⟨∇fSk

(xk), d̃k⟩
are positive.

2.2. Momentum Restart and its Extension to Adam

Besides making corrections to the search direction dk, another approach is to restart dk when
⟨∇fSk

(xk), dk⟩ < 0, i.e. set dk = (1 − β)∇fSk
(xk) + βd0 in the case of SGDM, which re-

duces to (1−β)∇fSk
(xk) given the initialization d0 is chosen to be 0. We note that a similar restart

strategy has been used in non-linear conjugate gradient methods [11, 14, 16]. Comparing to the
momentum correction approach which requires checking the condition ⟨∇fSk

(xk), d̃k⟩ > 0 when
damping the momentum parameter β, momentum restart avoids this while ensuring a descent on the
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Figure 3: Results on minimizing the 2-dimensional function f(x, y) = 1
2(x − 1)2 + κ

2 (y + 1)2.
Experiments are adapted from Wang et al. [20] with the initial point (x0, y0) = (48,−28), κ = 100,
and dk = ∇fSk

(xk)+βdk−1. The step size for ALG-MAG is ηk = f(xk)−f(x∗)
∥dk∥2

[20], and for heavy-
ball momentum (HB) optimal is ηk = (1+

√
β∗)2/L where β∗ = (

√
κ− 1)2/(

√
κ+1)2 [13]. Our

methods are labelled with MSL-R and MSL-C, for momentum restart and corrections, respectively.

function fSk
can be achieved. This is because both the search and update directions are proportional

to ∇fSk
when ⟨∇fSk

(xk), dk⟩ < 0.
Besides applying momentum restart to SGDM (MSL-SGDM-R), we can also apply it to Adam

to set its step size. The Adam update is as follows:

mk = βmk−1 + (1− β)∇fSk
(xk),

xk+1 = xk − ηkdk, dk = A−1
k mk,

where Ak = G
1/2
k , and Gk = [β2Gk−1 + (1 − β2)diag(∇fSk

(xk)∇fSk
(xk)

T )]/(1 − βk
2 ) [5, 19].

Unlike Vaswani et al. [19] that uses preconditioned gradient (which guarantees descent because
of ⟨A−1

k ∇fSk
(xk),∇fSk

(xk)⟩ > 0) to do line-search, we search along the preconditioned mo-
mentum direction, i.e. dk = A−1

k mk under the MSL framework (MSL-Adam). When encoun-
tering ⟨A−1

k mk,∇fSk
(xk)⟩ < 0, we perform the restart for Adam by setting mk = βm0 + (1 −

β)∇fSk
(xk) and Gk = [β2G0 + (1− β2)diag(∇fSk

(xk)∇fSk
(xk)

T )]/(1− βk
2 ), in which m0 = 0

and G0 = 0. Thus, a descent direction is guaranteed and can be used in (3).
We first verify the effectiveness of our proposed momentum corrections and restart strategy

in the deterministic setting for minimizing a 2-dimensional function f(x, y) [20]. All approaches
reduce the oscillation behavior of heavy ball momentum (using the optimal parameters adapted
from Polyak [13]) in the convergence of variable y to its optimum (Figure 3(c)). Moreover, the
decrease in the overall objective function of our algorithm is faster than other step sizes such as
ALG-MAG proposed by Wang et al. [20] (Figure 3(a)). We emphasize that for all our algorithms,
namely MSL-SGDM-C, MSL-SGDM-R, and MSL-Adam, the momentum parameter β di-
rectly participates in the line-search through the generalized stochastic Armijo condition (i.e.
(3)), which improves the stability of the algorithm for different values of β (Figure 1(a)). In the
next section, we present further experimental results in the stochastic setting.
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Figure 4: Results of binary classification on the synthetic dataset. (a) Train loss against epochs for
different algorithms. (b) Compare the sensitivity of MSL-SGDM-C to search initialization η̃0 and
of SGDM to its step size. (c) Similar comparison as (b) but between MSL-SGDM-R and SGDM.

3. Experiments

We perform experiments on a binary classification task using a separable-synthetic dataset and lo-
gistic loss. We follow the protocol in Loizou et al. [8] to generate the dataset of margin τ . For the
actual implementation of line-search, we use a back-tracking procedure where we start from η̃0 and
decrease it by a factor of γ every round until the condition (3) is met. To reduce the search cost,
we adapt a strategy from Vaswani et al. [18] such that the search starting point at current iteration
(denoted as η̃k) is η̃k = γb/nηk−1, where b and n are the batch size and the total number of data
points, respectively. For line-search experiments, we choose γ = 2.0, b = 128, and c = 0.5 in (3).
For constant-step algorithms, we do a grid search on the step size in the values [1.0, 0.1, 0.05, 0.01],
and choose the one that minimizes the train loss. For the momentum parameter β, we set it to be
0.9 for all experiments in this section. For each experiment setting, we perform 5 parallel runs and
compute the means and standard deviations. The standard deviations are shown as shaded regions
in the graphs. We first compare MSL-SGDM-R and MSL-SGDM-C against other baselines, includ-
ing constant step-size SGDM [7], SLS [18], ALG-SMAG [20], and SLS-SGDM. For SLS-SGDM,
the search via (3) is based on ∇fSk

(xk), which does not involve the momentum parameter β. We
highlight that our algorithm is faster than this approach as shown in Figure 4(a), which suggests the
importance of using the actual update direction to perform line-search when momentum is present.
Compared to constant step-size SGDM, which is highly sensitive to the choice of step size, either
momentum corrections (MSL-SGDM-C) or the restart approach (MSL-SGDM-R) are robust to the
search initialization, i.e. η̃0, as demonstrated in Figure 4(b) and Figure 4(c). Finally, the extension
of the restart framework to Adam, i.e. MSL-Adam, converges faster than the baselines Adagrad [2],
Adam [5], AdaBound [10], SLS-Adagrad [19], SLS-Amsgrad [19], and SLS-Adam. We highlight
that MSL-Adam uses the full Adam update direction (i.e. dk = A−1

k mk) in line-search, whereas
SLS-Adam only uses the preconditioned gradient. Similar to MSL-SGDM-C/R, MSL-Adam has
fast convergence and is robust to different search initialization η̃0s. We also notice that the decrease
in training loss of our algorithms is less monotone compared to others. This is potentially caused
by momentum corrections or restart making the update directions less correlated with each other.
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Figure 5: Results of binary classification on the synthetic dataset. (a) Train loss against epochs for
different algorithms. (b) Compare the sensitivity of Adam to its step size and of MSL-Adam to its
search initialization θ̃0. (c) Similar comparison as (b) but between SLS-Adam and MSL-Adam.

4. Related Works

Besides stochastic Polyak step size (SPS) and stochastic line search (SLS) [8, 18], which have strong
theoretical guarantees in the interpolating settings, some recent work has studied their extensions
under non-interpolation. For example, Orvieto et al. [12] proposed a monotonically-decreasing
variant of SPS for non-interpolating convex problems (DecSPS). Fan et al. [3] unified SLS and SPS
under an Envelope-type step size (SLSB and SPSB), and relaxed the monotonicity requirement in
the step size. Jiang and Stich [4] introduced Adagrad-type modifications to SPS (AdaSPS) and
SLS (AdaSLS), and showed that the resulting step size can achieve optimal convergence rates in
both interpolating and non-interpolating settings. When momentum is present, Wang et al. [20]
proposed two step size variants that are based on heavy-ball momentum (ALG-HB) and moving
average gradient (ALG-MAG), respectively, and extended them to the stochastic setting. Besides
these adaptive step sizes for SGD or SGD with momentum, coordinate-wise adaptive step sizes
such as Adam and its variants are popular for training large models such as transformers [5, 6, 9,
10]. Vaswani et al. [19] proposed using the preconditioned gradient line-search for Amsgrad and
Adagrad. To the best of our knowledge, existing line-search methods in the stochastic setting rely on
the search direction being a descent direction, and the incorporation of momentum into line-search
is not fully explored.

5. Conclusion

In summary, we have utilized the generalized Armijo condition in the stochastic setting for momentum-
based updates. For a non-descent direction, we propose using either momentum corrections or
restart to fix the direction so that it guarantees descent. This leads to two new algorithms for SGD
with momentum, namely MSL-SGDM-R and MSL-SGDM-C. Finally, we extend the restart ap-
proach to Adam which gives rises to the MSL-Adam algorithm. We empirically verify that our
algorithms are robust to the choice of momentum parameter and other hyperparameters. For future
directions, we are interested in analyzing the convergence rates of our proposed algorithms.
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03669.
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