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Abstract

In this work, we propose a novel method for mod-
eling numerous speakers, which enables express-
ing the overall characteristics of speakers in detail
like a trained multi-speaker model without ad-
ditional training on the target speaker’s dataset.
Although various works with similar purposes
have been actively studied, their performance
has not yet reached that of trained multi-speaker
models due to their fundamental limitations. To
overcome previous limitations, we propose effec-
tive methods for feature learning and represent-
ing target speakers’ speech characteristics by dis-
cretizing the features and conditioning them to a
speech synthesis model. Our method obtained
a significantly higher similarity mean opinion
score (SMOS) in subjective similarity evaluation
than seen speakers of a high-performance multi-
speaker model, even with unseen speakers. The
proposed method also outperforms a zero-shot
method by significant margins. Furthermore, our
method shows remarkable performance in gen-
erating new artificial speakers. In addition, we
demonstrate that the encoded latent features are
sufficiently informative to reconstruct an original
speaker’s speech completely. It implies that our
method can be used as a general methodology to
encode and reconstruct speakers’ characteristics
in various tasks.

1. Introduction

Recently, research on modeling numerous speakers in the
real world has been actively studied. Previous works (Gib-
iansky et al., 2017; Ping et al., 2018; Chen et al., 2020;
Kim et al., 2020; 2021) used a trainable speaker embedding
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matrix to learn the speech characteristics of each speaker
in one model to model multiple speakers effectively; this
is commonly referred to as multi-speaker speech synthe-
sis. Because the method enables a similar expression of
each speaker’s characteristics and the sharing of common
information among speakers, it is effective in synthesiz-
ing the speech of multiple speakers in high quality with
relatively less training data than training each speaker in
one model. However, the model must be trained for all
speakers whenever a new speaker is added, and synthesiz-
ing high-quality speech may not be possible for speakers
with a relatively small dataset. Considering the above as-
pects, the modeling of a fairly large number of speakers by
extending this method is limited. A fine-tuning approach
was employed to mitigate the necessity and limitations of
the training process (Chen et al., 2019; 2021; Huang et al.,
2022). This method fine-tunes a sufficiently trained model
using a small amount of target speaker data. However, it par-
tially overcomes the problems of previous methods. It still
requires a training process, faces challenges in modeling
numerous speakers like the multi-speaker model, and neces-
sitates careful controlling the training to avoid overfitting
and underfitting.

The most actively studied method to address the limitations
of training approaches is zero-shot speech synthesis. The
method synthesizes speech that represents speech charac-
teristics similar to those of the corresponding speaker by
conditioning a speaker vector obtained from the short audio
of a target speaker. This is achieved by training a speaker en-
coder and speech synthesis model with large multi-speaker
datasets (Jia et al., 2018; Hsu et al., 2019; Cooper et al.,
2020; Casanova et al., 2022). A speaker vector is obtained
from a speaker encoder with short audio of a target speaker
as input, and the vector is conditioned to a speech synthesis
model to express the target speaker’s speech characteristics.
This method seems to enable synthesizing speech audio sim-
ilar to that of the target speaker for an infinite number of
speakers without additional training. However, it has funda-
mental limitations in expressing a speaker’s overall speech
characteristics. Since humans express different timbres and
prosody depending on given contents, modeling overall
speech characteristics according to the given content is cru-
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cial to synthesizing natural speech like humans (Hayashi
et al., 2019; Kenter et al., 2020; Xu et al., 2021; Jia et al.,
2021; Tan et al., 2022). The timbre and prosody expressed
in speech audio are aligned with its content, and only a small
portion of the speaker’s speech characteristics are revealed
in a short speech; therefore, the obtained vector from the
short reference audio represents a tiny part of a speaker’s
speech characteristics that vary depending on given con-
tents. Take the following two sentences as examples: “I'm
so happy!” and “I’'m so sad.”. The speaker’s psychological
state uttering the two sentences will be greatly different,
and it will be revealed as speech characteristics. If the sen-
tence “I’m so sad.” is synthesized with a recorded speech
audio of “I’'m so happy!” as the reference audio, the syn-
thesized speech will be unnatural and show quite different
speech characteristics from the actual speech when the tar-
get speaker utters “I’'m so sad.”. It will be synthesized with
bright timbre and prosody contrasting with typical human
speech.! As a result, depending on the given reference au-
dio, sometimes natural and similar speech characteristics
are expressed, but oppositely unnatural and clearly different
speech characteristics are often expressed. For the same
reason, it is also limited to imitating the speaker’s partic-
ular pronunciations and accents, which can be differently
expressed depending on the content; it shows quite differ-
ent results from the ground truth and trained multi-speaker
model. Previous works (Zhou et al., 2022; Yin et al., 2022;
Choi et al., 2023) used multiple features related to input
content; the methods do not condition speakers’ overall
speech characteristics in training text-to-speech models and
are still focused on following short reference audio. Thus,
the fundamental limitations remain.

Additionally, the zero-shot speech synthesis usually utilizes
a speaker encoder trained for a speaker-verification task (Jia
et al., 2018; Cooper et al., 2020; Casanova et al., 2022).
Its typical objectives are to distance speakers to distinguish
them easily. Therefore, speakers with similar timbre or
speech characteristics can be learned to be excessively fur-
ther apart than they are similar, and the learned space for
speaker vectors can be sparse and discontinuous. (This is
discussed in detail in Appendix A.1.) These features can
make obtaining appropriate speaker vectors for speech syn-
thesis from the learned space limited, and synthesis models
tend to learn each vector as an independent condition rather
than a space. It often yields a definite failure to express
speech characteristics similar to the target speaker and to
synthesize accurate speeches.

Recently, zero-shot speech synthesis with prompting mech-
anisms (Wang et al., 2023; Shen et al., 2023; Le et al., 2023)
has shown good results. These works demonstrated an ex-
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cellent ability to preserve the timbre and prosody of the
prompt. According to its fundamental operating principle,
this method strongly relies on a given prompt to preserve
speech characteristics. The results of the works also con-
firm that the synthesized speeches follow the prompts rather
than the context of the given content in expressing speech
characteristics such as timbre and prosody. Considering the
training principles, objectives, and evaluation methods, it is
natural results since the method that most closely follows the
given prompts will yield better performance in that manner.
Thus, as mentioned above, this method also has the same
problem of mismatch between content and speech character-
istics. The method is advantageous when a suitable prompt
for the content is given, but conversely, it is disadvantageous
when any content can be given. As an example, suppose the
model synthesizes “I’m so happy!” but is given a recorded
prompt of “I’'m so sad.” Considering that humans express
tone and prosody quite differently depending on the content,
this method differs significantly from human behavior. To
address the problem, a method to encode the overall speech
characteristics of speakers and appropriately express the
features according to the given content is needed.

To address the problems of the previous methods, we
propose a method for Encoding speaker-specific Latent
speech Features for speech synthesis (ELF). Our main
goal is to present a method to express new speakers’ over-
all speech characteristics according to given contents, like
multi-speaker speech synthesis, without a training process.
We first encode various speech features from speakers’
speech into a dense and continuous distribution. Then, we
cluster these speech features to obtain discretized represen-
tative points. By observing various human speeches, we can
intuitively confirm that human speech characteristics cannot
be discretized. Therefore, it is difficult to expect good re-
sults from using these discretized features individually. We
took the inspiration that a weighted sum through attention is
essentially a linear combination of vectors and enables sam-
pling a point on a continuous space that is formed with the
given vectors. We designed a module to fuse the discretized
speech feature into a hidden representation of the content
through attention. It enables not only the speech synthesis
model to learn the speech feature space but also the features
to be fused to express the given content naturally.

ELF shows better speaker similarity, stability, and equiva-
lent naturalness without additional training compared to a
multi-speaker model trained with the target speaker’s dataset.
Moreover, it surpasses a zero-shot model by a significant
margin in the zero-shot scenario. In addition, ELF demon-
strates superior speaker blending performance, indicating
that the latent space is formed by feature vectors spaced
apart according to speaker similarity. It allows the synthe-
sis of high-quality speech with a newly generated artificial
speaker. Furthermore, we show that ELF enables the com-
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Figure 1: (a) Training procedure of SFEN. (b) Inference
procedure of SFEN.

plete reconstruction of a speaker’s speech solely with the
encoded speech features. This implies that the proposed
latent representation is informative enough to express the en-
tire target speaker’s speech, even without directly inputting
content. Additionally, we demonstrate that ELF has the
ability to synthesize high-quality speech in a cross-lingual
manner. We present the effectiveness of our method through
subjective and objective evaluations.

2. Method

2.1. Overview

In order to enable the text-to-speech model to synthesize
speech according to the overall speech characteristics of
an unseen speaker and a given content, it is essential to
condition speakers’ overall speech characteristics to the text-
to-speech model in training. Therefore, ELF consists of two
stages. The first stage encodes the individual speech features
of each speaker, and the second stage synthesizes speech
that expresses the target speaker’s speech characteristics
through conditioning the encoded features. The overall
structure of ELF is shown in Figures 1 and Figures 2. We
describe the details in the following sections.

2.2. Speech Feature Encoding

The speech synthesis task aims to synthesize a speech that
expresses the speech characteristics of a target speaker simi-
larly and naturally to the ground truth recorded by humans.
Therefore, an important point in encoding speech features
is obtaining representations capable of reconstructing the
original speech in high quality. We take the inspiration
that an autoencoder is a structure that encodes input data
to latent representation and decodes it to reconstruct the

original data; we design the speech feature encoding net-
work (SFEN) as an autoencoder trained to reconstruct the
raw waveform from the input mel-spectrogram through en-
coding and decoding. We adopt the generator that showed
superior performance in reconstructing raw waveforms of
the previous work (Kong et al., 2020) as the decoder in our
model. We also introduce the adversarial learning mecha-
nism and the discriminator to our work to increase recon-
struction performance. Furthermore, we use a variational
approach (Goodfellow et al., 2014) to fit the unit Gaussian
prior to increasing the possibility of sampling the point in
the learned space through a combination of latent represen-
tations.

Therefore, SFEN is a variational autoencoder; it is trained
to maximize the variational lower bound, also called the
evidence lower bound(ELBO), of the intractable marginal
log-likelihood of data log py(x):

log py(x) =
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where z is the latent variable generated from the prior
distribution p(z), unit Gaussian, pg(z|z) is the like-
lihood function of a data point z, and g¢4(z|z) is
an approximate posterior distribution.  The training
loss is then the negative ELBO, which is the sum
of reconstruction loss —logpg(x|z) and KL divergence

Drer(go(2[2)|[p(2)).

We define the reconstruction loss as the L; loss between the
input mel-spectrogram s and the mel-spectrogram § from the
reconstructed waveform. This can be viewed as a maximum
likelihood estimation assuming a Laplace distribution for
the data distribution and ignoring constant terms.

To introduce adversarial learning to train SFEN, follow-
ing the previous work (Kong et al., 2020), we adopt the
discriminator and the loss functions, the least-squares loss
function (Mao et al., 2017) for adversarial training, and the
feature-matching loss (Larsen et al., 2016). Then, the total
loss for training SFEN and the discriminator is defined as
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Figure 2: (a) Training procedure of TTS model. (b) Inference procedure of TTS model.

where D,; and Gy denote the discriminator and SFEN,
respectively, y is the ground truth waveform, 7" denotes the
total number of layers in the discriminator, and D', s is the
output feature map of the [-th layer of the discriminator with
N' number of features. We set A, ¢ = 45 following the
previous work (Kong et al., 2020).

Speaker-specific speech features are obtained using the en-
coder of the learned autoencoder networks. First, we input
the mel-spectrogram with 7" time steps generated from the
target speaker’s audio to the encoder and obtain y € R7*T
and o € R¥XT the distribution parameters, as the output,
which has the same time-step as the mel-spectrogram. Next,
we collect all the  values of all the target speaker’s audio
and cluster the values using k-mean++ (Arthur & Vassilvit-
skii, 2007). Then, we use the centroids of the clusters as
the latent speech feature codebook for the speaker. These
features are a finite number of non-contiguous vectors; how-
ever, the vectors are combined when conditioned to a speech
synthesis model, which leads to an effect similar to sam-
pling a point in the continuous space. A similar method of
combining a finite number of vectors was explored in the
previous work (Wang et al., 2018) to model various speech
styles.

2.3. Text-to-Speech with Speech Feature Condition

The codebook obtained through the speech feature encoding
process and clustering consists of a finite number of vec-
tors. Restoring individual discretized speech features to data
points in the original continuous space is difficult. There-
fore, expecting good results from using these discretized

features individually is not reasonable. Instead, we combine
and add these features to an intermediate feature of a speech
synthesis model with softmax attention scores, which al-
lows an effect similar to sampling a speech feature point in
continuous space. We apply this method to a text-to-speech
(TTS) task based on the previous work (Kim et al., 2021)
that showed superior performance. Various modules in the
model can be candidates to condition the speech features;
we design the combined speech feature to be fused to the
intermediate feature of the text encoder, considering some
factors, such as a speaker’s particular pronunciation and
intonation, significantly influences the expression of each
speaker’s characteristics but are not presented in the input
text. We first combine the vectors in the speech feature
codebook using transformer blocks without positional infor-
mation and add them to the intermediate feature of the text
encoder through multi-head attention so that the factors can
be effectively captured in modeling the prior distribution.

Since we condition the encoded speech features to the prior
encoder, the prior distribution differs from the previous
work (Kim et al., 2021). The conditional prior in our design
is defined as

&)

where ez, Cof, and A denote the input phonemes, the
speech feature codebook matrix of the target speaker, and
the alignment between the phonemes and latent variables,
respectively.

pé)(z‘ctemta Csf, A)

We change the duration predictor and normalizing flows
of the previous work (Kim et al., 2021). As shown in the
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Figure 3: Prior encoder of speaker blending.

figure, we design a relatively simple duration predictor with
adversarial learning, which models natural duration. We
use the hidden representation of the text h;e,¢, Which is
the output of the prior encoder and Gaussian noise z4 as
the input of the generator; the hy.,; and duration obtained
using monotonic alignment search(MAS) in the logarithmic
scale denoted as d or predicted from the duration predictor
denoted as d are used as the input of the discriminator. We
use two types of losses; the least-squares loss function (Mao
et al., 2017) for adversarial learning and the mean squared
error loss function. Then, the total loss function is defined
as

»Cdu'r(Ddur) = E(d,zd,htem) |:(Ddu7‘(d7 htezt) - 1)2
+ (Ddur(Gdur(z(i» htext)7 htext))2] ) (6)

Edur(GduT) = E(zd,htwt) {(Ddur(Gdur(zda htewt)) - 1)2:|
+ Adp-Z\4SE‘(C"TduT(Zdv htezt)a d) (7)

where Dy, and Gg,, denote the discriminator and the
duration predictor, respectively.

Also, capturing long-term dependencies can be crucial when
transforming distribution because each part of the speech is
related to other parts that are not adjacent. Therefore, we
add a small transformer block with the residual connection
into the normalizing flows to enable the capturing of long-
term dependencies.

2.4. Speaker Blending

In Section 2.3, we described the method to obtain fused
features to express a target speaker’s characteristics with
the speech feature codebook and the intermediate feature of
the text encoder. In a similar manner, synthesizing speech
in which the characteristics of multiple speakers coexist
is possible through modifying the prior encoder to sum
the intermediate features of multiple speakers at a specific
ratio. The modified prior encoder is shown in Figure 3.

Similar to TTS for an individual speaker, we first obtain the
fused intermediate features through the attention with each
speaker’s speech features and the intermediate feature of the
text encoder. Then, we multiplied the fused intermediate
features with the weights according to the given proportions
for each speaker and summed them all. Then, the final fused
feature from multiple speakers is obtained as

S
h =TRp(h" "', TRq(c;)), h™ = pihi (8)
=1

where S denotes the number of blending target speakers, h"
is the output of n-th transformer block in the text encoder,
h7', ci, and p; are i-th speaker’s fused intermediate feature,
codebook, and blending proportion, respectively, 7[Ry and
TR, are the transformer blocks to combine the vectors in
the codebook and the transformer block to fuse the inter-
mediate feature of the text encoder and the output of T'Ry,
respectively. In the multi-head attention in T'Ry, hn1is
used as query, and the output of T'R; is used as key K and
value V.

2.5. Speech Feature-to-Speech with Text Condition

To confirm that the encoded speech features are informative
enough to reconstruct the target speaker’s speech and to
suggest an example of extending our approach, we present a
new method to synthesize high-quality speech that expresses
a target speaker’s characteristics only with combined speech
features. Since the vectors in a codebook are sampled from
a latent space that can reconstruct a target speaker’s speech,
it can be possible to synthesize a target speaker’s speech
only with appropriately combined speech features if the
learned latent space is sufficiently informative. Thus, we
design a method to combine speech features to synthesize
speech corresponding to a given text. We modify the prior
encoder of the TTS model in Section 2.3, as shown in Ap-
pendix A.5. First, we obtain intermediate features from each
transformer block with speech features and a phoneme se-
quence. Then, we compute attention scores with multi-head
attention between the two intermediate features as query
and key, respectively. Then, we use the weighted sum of
the speech features on the attention scores as the input to
the next module. Therefore, the intermediate feature from
a phoneme sequence is used only for calculating the atten-
tion scores. This method can be easily extended to various
tasks where information to combine the speech features is
available.

3. Experiments

3.1. Datasets

Two public datasets were used to train SFEN, TTS model
and the speech feature-to-speech model. We used the Lib-
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Table 1: Comparison of subjective and objective evaluation results for text-to-speech with previous works.

Model Seen/Unseen SMOS (CI) MOS (CI) CER SECS
Ground Truth - 3.95 (4£0.09) 1.29 1.000
VITS multi-speaker Seen 3.73 (£0.09) 3.95 (4£0.09) 1.80 0.919
YourTTS Unseen 3.47 (£0.11) 3.88 (£0.10) 5.42 0.817
ELF (# of audio = 1) Unseen 3.62 (£0.10) 3.93 (£0.10) 2.35 0.848
ELF (# of audio = 20) Unseen 3.76 (£0.10) 3.96 (4+0.09) 1.26 0.879
ELF (all audio) Unseen 3.85 (+0.09) 3.98 (+0.09) 1.49 0.888

riTTS (Panayotov et al., 2015) dataset, which consists of
audio recordings of 2,456 speakers for a total duration of
approximately 585.80 hours. We split the dataset into the
training(2,446 speakers, 583.33 hours) and test(10 speak-
ers, 2.47 hours) sets. We used the VCTK (Veaux et al.,
2017) dataset containing 43.8 hours of speech from 108
speakers with various speech characteristics. The dataset
was split into the training(97 speakers, 39.46 hours) and
test(11 speakers, 4.34 hours) sets. We followed the previ-
ous work (Casanova et al., 2022) to select the test speakers
from both datasets. We trimmed the beginning and ending
silences and downsampled to 22.05kHz for all audio clips.

3.2. Speech Feature Encoding

To train SFEN, we used the windowed training and the
same segment size following HiFi-GAN (Kong et al., 2020).
Each segment was converted into an 80-dimensional mel-
spectrogram and used as the input. FFT, window, and hop
size were set to 2048, 2048, and 1024, respectively. The
encoder is composed of convolution blocks. The decoder
structure was the same as that of the HiFi-GAN (Kong et al.,
2020) V1 model. Because the settings of mel-spectrogram
generation differ from HiFi-GAN (Kong et al., 2020), the
upsampling kernel sizes and factors were adjusted to [16,
16, 8, 8] and [8, 8, 4, 4], respectively. The output latent
representation of the encoder was divided into p and o with
2048 dimensions for each frame. After training, the i values
of each speaker were clustered into 512 clusters using the
k-means++ (Arthur & Vassilvitskii, 2007) algorithm. The
latent speech feature codebook for each speaker is composed
of the centroids of the clusters.

We describe the details of optimization settings in Appendix
A7

3.3. Text-to-Speech

For the TTS model, the clean subsets of the LibriTTS dataset
and the VCTK dataset were used from the training dataset
described in Section 3.1. We used the same test set described
in Section 3.1. We used 80-dimensional mel-spectrogram to

calculate the reconstruction loss. In contrast to the previous
work (Kim et al., 2021), we used the same mel-spectrograms
as the input of the posterior encoder. We converted text
sequences into International Phonetic Alphabet sequences
using open-source software (Bernard, 2021), and fed the
text encoder with the sequences. The multi-head attention
mechanism (Vaswani et al., 2017) was used between the text
encoder’s fifth layer output and the output of the transformer
blocks for combining the speech feature in a codebook.
We describe the details of optimization settings and reusing
parameters in Appendix A.8

3.4. Speech Feature-to-Speech

To confirm that the proposed latent speech features are suffi-
ciently informative, we conducted speech feature-to-speech
experiments. The modified parts of the TTS model are
described in Appendix A.5. The training method and pa-
rameters are the same as the TTS model, except that the
speech feature-to-speech model is trained up to 800k steps
with random initialization.

4. Results
4.1. Text-to-Speech

We conducted subjective and objective evaluations to ver-
ify the performance of the proposed method in modeling
various speakers. We chose the best-performing models for
which official implementations were publicly available as
the comparison models: VITS (Kim et al., 2021) for the
training method and YourTTS (Casanova et al., 2022) for
the zero-shot method. We used all speakers of the LibriTTS
and VCTK datasets to train VITS. For an accurate com-
parison, YourTTS and the proposed model used the same
datasets and the test speakers described in Section 3.1. We
randomly sampled 500 (LibriTTS 250, VCTK 250) of the
test speakers’ data as the evaluation set. We sampled the
evaluation set with a minimum text length of 30 characters
and a maximum of 200 characters. The evaluation set was
not included in training VITS.
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Table 2: Evaluation results on the number
of blending speakers. (N speaker: N is
number of blending speakers)

Table 3: Comparison of similarity (SECS) changes according to the blending
ratio of two speakers. (A:B is the ratio of speaker A and speaker B)

Model ELF (Unseen) VITS (Seen)  YourTTS (Unseen)
Model MOS (CI) CER A B A B A B
Ground Truth 3.96 (0.09) 1.29 speaker A 1.000 0.506 1.000 0.554 1.000 0.510
ELF (1 speaker) 3.89 (0.10) 1.19 speaker B 0.506 1.000 0.554 1.000 0.510 1.000
ELF (4 speakers) 3.86 (0.09) 1.07 A:B=5:5 0.742  0.800 0.760 0.824 0.651 0.909
ELF (8 speakers) 3.96 (0.09) 1.03 A:B=2:8 0.568 0.936 0.609 0.932 0.533 0.966

For the audio conditioning to YourTTS, we matched each
data in the evaluation set with one randomly sampled audio
from the same speaker’s data. Because the length of condi-
tioned audio can be crucial to express speech characteristics
in a zero-shot TTS model, we used a length constraint in
the matching. Since audio in the VCTK dataset is relatively
shorter than the LibriTTS dataset, using the same length
constraint results in a shortage of candidates for the random
matching in the VCTK dataset. Therefore, we used audio at
least 3 and 5 seconds in VCTK and LibriTTS, respectively.

We conducted evaluations to confirm that the quality of
synthesized speech varies according to the amount of data
used in generating the speech feature codebook. We used
three variations: one audio sample, 20 audio samples, and
all available audio samples. For evaluation using one audio
sample, we used the same matched audio as YourTTS. Be-
cause the total number of output features from the encoder
with one input audio is shorter than the size of the codebook,
we use the y values as the speech feature condition without
the clustering. In the evaluation using 20 audio samples, we
matched each data in the evaluation set with randomly sam-
pled 20 audio from the same speakers with the same length
constraint. The results of the variations are shown in Table
1 in the manuscript as “# of audio=1", “# of audio=20", and
“all audio”, respectively.

We conducted two kinds of subjective evaluations: mean
opinion score (MOS) for naturalness and similarity mean
opinion score (SMOS) for speaker similarity. We used a
similar method in the previous work (Jia et al., 2018) for
the SMOS evaluation. Because speaker characteristics, such
as pronunciation and intonation, can vary depending on the
content, the SMOS evaluations were set up so that the text
of the reference audio and synthesized sample are identical.
It allowed raters to assess the similarity accurately.

The scales of both MOS and SMOS ranged from 1 to 5
with 1 point increment. We randomly sampled 50 samples
(LibriTTS 25, VCTK 25) from the evaluation set for the sub-

jective evaluations.”> We crowd-sourced raters on Amazon
Mechanical Turk with a requirement that they live in North
America. The total numbers of raters are 165 and 105 for
MOS and SMOS, respectively. We also measured the confi-
dence interval (CI) with 95% for all subjective evaluation
results.

We also conducted two objective evaluations for speech in-
telligibility and speaker similarity. The entire evaluation set
(500 samples) described in Section 4.1 is used for objec-
tive evaluations. We employ an ASR model for the speech
intelligibility test to transcribe the generated speech and
calculate the character error rate (CER). The ASR model is
a CTC-based HuBERT (Hsu et al., 2021) pre-trained on Lib-
rilight (Kahn et al., 2020) and fine-tuned on the LibriSpeech
dataset. A lower value indicates higher intelligibility for the
synthesized speech.

To evaluate the speaker similarity between the ground truth
audio and the synthesized audio, we computed the speaker
encoder cosine similarity (SECS). We used the state-of-the-
art verification model, WavLM-TDNN (Chen et al., 2022),
to extract the speaker vectors. The SECS score is in the
range of [-1, 1], with higher values indicating higher simi-
larity.

Table 1 presents the results. Our model significantly out-
performs multi-speaker VITS in the SMOS evaluation and
shows equivalent performance in the MOS evaluations. Con-
sidering that the test speakers were used in training VITS,
but not in training our model, these are remarkable re-
sults. As shown in the results of CER, our model (# of
audio=20 and all audio) achieved lower CER results than
the multi-speaker VITS model, exhibiting that our method
enables stable speech synthesis with high intelligibility. Our
model with one audio condition (# of audio=1) outperforms
YourTTS in all evaluations, demonstrating that our method
is also substantially effective in the zero-shot scenario.

“Demo: https://speechelf.github.io/elf-demo/
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Table 4: Comparison of cross-lingual speech synthesis.

Model MOS (CI) CER SECS

Ground Truth 3.99 (0.10) 1.29 -

ELF 3.79 (0.12) 2.84 0.862

YourTTS 3.29 (0.13) 7.91 0.600
4.2. Speaker Blending

We conducted subjective and objective evaluations to con-
firm the quality of the synthesized speech with new artificial
speakers using the speaker blending method described in
Section 2.4. Table 2 presents MOS and CER with one
speaker and generated speakers with a blend of two, four,
and eight existing speakers, respectively. The MOS evalua-
tions demonstrate that high-quality speech comparable with
the ground truth can be synthesized with new artificial speak-
ers. In addition, the CER results of the synthesized speech
with artificial speakers are lower than the ground truth and
single speaker. It confirms that our blending method enables
synthesizing speech with high intelligibility and stability.

In order to obtain desired speech characteristics when cre-
ating a new speaker with existing speakers, controllabil-
ity to adjust the expression ratio of the original speakers’
speech characteristics is needed. Thus, one of the crucial
performance factors is how the similarity between speakers
changes according to a given proportion. To verify it, we
measured and compared SECS with various speaker propor-
tions. Table 3 shows the results of measuring 500 samples
generated by a new speaker at the ratios of 2:8, 5:5, and 8:2
for the two speakers (LibriTTS 1580, 1089), respectively.
For YourTTS, the blended output at a 5:5 ratio showed
a pronounced bias towards speaker B. It shows that even
though the point moved in the latent space according to the
combination of two vectors at a 5:5 ratio, the speaker simi-
larity is not related to the movement of the point. In other
words, speaker similarity is not related to the distances be-
tween points. On the other hand, our method demonstrates
a considerably uniform change in speaker similarity as the
proportion changes, showing even more uniform similarity
changes compared to the multi-speaker VITS model. It also
implies that the learned latent space of our method is contin-
uous and evenly distributed, allowing for consistent changes
in similarity.

4.3. Cross-Lingual Text-To-Speech

We measured MOS, CER, and SECS to confirm that our
method can synthesize speech similar to an original speaker
in a cross-lingual manner with high naturalness and intel-
ligibility. We generate the speech feature codebook with

Table 5: Comparison of evaluation results on speech feature-
to-speech

Model MOS (CI) CER SECS
Ground Truth 3.96 (0.09) 1.29 -
Speech Feature-to-Speech  3.91 (0.10) 1.36 0.881

200 audio clips from the Korean dataset (Park, 2018). We
synthesized 500 samples with all texts in the evaluation set
using the same TTS model in Section 4.1. As shown in
Table 4, the differences between our method and the ground
truth in CER and MOS are small, and SECS is comparable
with the English speaker results in Table 1. It demonstrates
that our method can synthesize high-quality speech similar
to the target speaker in the cross-lingual manner. These are
remarkable results, considering that English and Korean are
fundamentally different languages. We additionally com-
pared with YourTTS, which has an ability for cross-lingual
speech synthesis, with randomly selected reference audio
for each text. The results show that our method outperforms
YourTTS in the cross-lingual manner.

4.4. Speech Feature-to-Speech with Text Condition

To verify the proposed method described in Section 2.5,
MOS, CER, and SECS evaluations were conducted. Ta-
ble 5 shows that MOS and CER differences between our
method and ground truth are only 0.05 and 0.07, respec-
tively, and SECS is comparable with the results in Table 1.
It demonstrates that high-quality speech can be synthesized
solely with the speech features in the codebook, and the
codebook is sufficiently informative to reconstruct the target
speaker’s speech completely. It also implies that our method
can be generally used in various tasks where information to
combine the speech features in the codebook is available.

5. Conclusion

In this work, we present ELF, a novel method to encode
speakers’ overall speech features and express speech charac-
teristics of the speakers in high similarity without additional
training on the speakers’ dataset. In comparison to the other
models, ELF performs superior to the multi-speaker model
and outperforms the zero-shot model by significant margins.
Furthermore, it shows remarkable performance in generat-
ing new artificial speakers with the blending method. Also,
it presents the ability to synthesize speech with high quality
in the cross-lingual manner.

We showed that ELF enables encoding speech features
that are sufficiently informative to reconstruct the original
speaker’s speech completely, and it also enables expressing
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the speech characteristics with the combining method; it
can be used for various tasks as a general methodology to
encode and reconstruct speakers’ characteristics without
training.

Impact Statement

Our proposed method is a solution that can model numerous
speakers in the real world with high quality. It allows imitat-
ing someone else’s timbre and speech characteristics with
only a small amount of speech data. Thus, it is important to
acknowledge the potential for misuse of this technology. It
could be exploited for fraudulent purposes, such as imper-
sonating someone over the phone to perpetrate identity theft,
financial fraud, or other activities that negatively impact
our society. Consequently, members of society may suffer
material and psychological harm. Recently, these problems
have become more prominent with the advancements in
generative model technology. To prevent the risk of misuse,
research on technology to detect synthesized speech will be
needed. Recently, unrecognizable watermarking technolo-
gies have been actively studied, and we will contribute to the
research on detecting synthesized speech and the practical
application of detection technology.
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A. Appendix
A.1. Discussion about the latent space of speaker verification tasks and ours

The latent representation required for the speech synthesis task must contain the information needed to reconstruct the speech
of a target speaker. However, in the speaker verification task, the latent representation does not require any information to
reconstruct the speaker; only information that can distinguish each speaker is required, and it does not matter what shape
the distribution is. Suppose we divide audio data from a speaker into two groups and train a speaker verification model
to classify each group as a different speaker. In that case, the model will try to classify the two groups by capturing any
feature in the audio to reduce the loss. It will lead to a latent representation learned with little to do with speaker similarity
and reconstruction. The distribution obtained from high-performance speaker verification tasks can not be continuous and
evenly distributed. If it is continuous and even, establishing a decision boundary becomes difficult, resulting in diminished
performance of the speaker verification model. (Figure 4a shows the distribution of the vectors obtained from the speaker
encoder (Casanova et al., 2022) of a speaker verification model.) Therefore, sampling a speaker vector from discontinuous
areas that the synthesis model has never or rarely learned is often possible. Moreover, since the similarity of speakers is
not related to the distance between the speaker vectors, the synthesis model tends to learn each vector as an independent
condition rather than a space. Therefore, if there is a speaker with a very similar vector among the learned speakers, it
is successfully synthesized, but if not, it fails to synthesize correct speech, or it often synthesizes speech with definitely
different characteristics. In addition, when blending speakers, the sampled point is more likely to reside in unlearned regions,
thus increasing the possibility of failure in synthesis with an artificial speaker. The problems of the previous methods are
frequently observed and can be confirmed in the comparison results presented in our paper.

We use VAE to encode speech features. In VAE, the aggregated posterior can not perfectly fit the prior, and the training of a
model is not ideal; thus, it is difficult to see that the learned space follows the Gaussian distribution perfectly, however, both
theoretically and empirically, it forms a distribution close to Gaussian. Figure 4b shows the distribution of the entire speakers’
codebooks of our method. Since it is a dimensionality-reduced high-dimensional distribution, it can not demonstrate the
exact distribution, but it is noticed that it is a continuous and dense distribution.
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(a) Distribution of the vectors obtained from the speaker en-  (b) Distribution of the entire speakers’ codebooks of our
coder of a speaker verification model. method.

Figure 4: Visualization of two distributions. PCA is used for dimensionality reduction.
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A.2. Noise robustness

Because our method encodes speech features from raw waveforms, evaluating noise robustness is valuable in terms of
whether our method can be a practical solution. Therefore, we conducted experiments by introducing noise to clean audio to
evaluate noise robustness. We sampled a test speaker not included in training and added randomly sampled noises from the
TAU Urban Acoustic Scenes 2021 Mobile Evaluation dataset with a signal-to-noise ratio (SNR) of 15 dB. Subsequently,
we encoded them using SFEN, generated a codebook, and synthesized TTS samples. We measured CER and SECS; the
results are shown in Table 6. The results demonstrate that our method maintains high performance even in the presence of
significant noise.

Table 6: Evaluation results for noise robustness

Model CER SECS
Ground Truth 1.29 -
ELF with clean audio 1.49 0.888

ELF with noisy audio 2.07 0.865

A.3. Visualization of the speaker vectors from synthesized speeches

To confirm that the synthesized speeches with our method present distinguishable speech characteristics from each other, we
visualized the speaker vectors of the synthesized speeches of unseen speakers. We used the speaker encoder in the previous
work (Casanova et al., 2022) to obtain the speaker vectors and employed t-SNE for visualization. As shown in Figure 5,
each speaker’s vectors are closely clustered, and the speakers are distinguished clearly.
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Figure 5: Visualization of the speaker vectors from synthesized speeches
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A 4. Additional evaluation results of speaker verification

In addition to the objective similarity evaluation results using the speaker verification model described in Section 4.1, we
also provide metrics from the perspective of speaker verification. Table 7 shows equal error rates (EER) and minimum
detection cost functions (minDCF) for the test speakers, while the Figure 6 presents detection error tradeoff (DET) curves.

Table 7: Evaluation results of speaker verification

Model Seen/Unseen EER minDCF
Ground Truth - 9.9 0.020
VITS Seen 10.8 0.019
YourTTS Unseen 20.1 0.045
ELF (# of audio = 1) Unseen 16.9 0.039
ELF (# of audio = 20) Unseen 15.8 0.042
ELF (all audio) Unseen 11.2 0.040

Detection Error Tradeoff (DET) curves
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Figure 6: Detection error tradeoff (DET) curves of the speaker verification results
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A.5. Details of the speech feature-to-speech model
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Figure 7: The speech feature-to-speech model described in Section 2.5. The parts indicated by dashed lines are modified
from the TTS model.
A.6. Details of SFEN

Based on the previous work (Kong et al., 2020), we designed SFEN by adding an encoder. The encoder consists of the
WN module from the official implementation 3 of the previous work (Kim et al., 2021), and Table 8 shows its detailed
architecture.

Table 8: Architecture of the encoder of SFEN

Module Configuration

1D Convolution Layer in_channels=80, out_channels=512, kernel_size=1

WN Module hidden_channels=512, kernel size=5, dilation_rate=1, n_layers=8
1D Convolution Layer in_channels=512, out_channels=4096, kernel _size=1

A.7. Details of SFEN training

The networks were trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with 5; = 0.8, 82 = 0.99, and weight
decay A = 0.01. The learning rate decay was scheduled by a 0.999 factor in every epoch with an initial learning rate of
2 x 10%. 8 NVIDIA V100 GPUs were used to train the model. The batch size was set to 32 per GPU, and the model was
trained up to 800k steps.

A.8. Details of TTS training

The networks were trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with 5; = 0.8, 82 = 0.99, and weight
decay A = 0.01. The learning rate decay was scheduled by a factor of 0.998 in every epoch, with an initial learning rate of
2 x 10*. 8 NVIDIA V100 GPUs were used, and the batch size was set to 32 per GPU and trained up to 500k steps. Because
we use similar generator and discriminator architecture and data in both SFEN and the TTS model, we initialized the last
three of the four residual blocks in the generator and the discriminators of the TTS model with the parameters of SFEN. It
speeds up the training; therefore, the model performs better than random initialization at the same training step.

3https://github.com/jaywalnut310/vits
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