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ABSTRACT

This paper studies self-supervised learning from the perspective of instance-wise
similarity (IwS), characterized by the pairwise similarity matrix among all instances.
Ideally, the IwS matrix in the representation space should closely mirror that in the
input space so that the learned representations retain their discriminative power
and account for semantic similarities. This perspective not only allows us to
understand diverse existing self-supervised learning methodologies better but also
uncovers a notable limitation within current approaches: the discrepancy between
IwS matrices in the input and representation spaces. Indeed, many established
methods, including SimCLR and MoCo v3, implicitly assume that the IwS matrix
within the representation space is an identity matrix, even when the IwS matrix
in the input space may deviate from this form. Inspired by this observation, we
introduce sparse contrastive learning, a new approach that learns an appropriately
sparse IwS matrix within the representation space instead of presuming an identity
IwS matrix. Our comprehensive experiments conducted on ImageNet and CIFAR
datasets substantiate the superior performance of our method in comparison to
other state-of-the-art methods.

1 INTRODUCTION

Self-supervised learning excels in acquiring transferable representations that remain invariant to
various augmentations, and it has gained significant popularity within the machine learning commu-
nity (Chen et al.| 2020a; He et al.,|2020; |Caron et al., 2020; |Grill et al., [2020; [Zbontar et al., |2021]).
This approach has found extensive application in diverse tasks, including multimodality learning,
object detection, and segmentation (Radford et al.| 2021} |LLi et al.| [2022; Xie et al.,|2021; Wang et al.}
2021} |Yang et al.| |2021; Zhao et al., 2021). The pursuit of a deeper understanding of self-supervised
learning stands as an important research avenue (Arora et al.,|2019; [Wang & Isolal 2020; Wang &
Liu} 2021). In this paper, we introduce a novel perspective that rethinks self-supervised learning.

Specifically, we approach self-supervised learning from the perspective of Instance-wise Similarity
(IwS), characterized by the pairwise similarity matrix among all instances. Figure[I] provides a visual
representation of the IwS matrix, which is a binary matrix indicating the semantic similarity between
any two arbitrary instances. This matrix can be computed in both the input and representation
(embedding) spaces. Ideally, the IwS matrix in the representation space should closely mirror that
in the input space, ensuring that the learned representations maintain their discriminative abilities
and effectively capture semantic similarities. However, obtaining IwS in the input space is generally
unfeasible due to the absence of labels/supervision, making it impossible to use IwS directly for
representation learning.

Contrastive learning methods, including SimCLR (Chen et al.| |2020al), MoCo v3 (Chen et al., [2021)),
and various other variants (Garrido et al., 2023} Ge et al.| 2023 (Chuang et al.}[2020; Dwibedi et al.,
2021; |Robinson et al., 2021)), address this challenge by implicitly assuming the IwS matrix to be
an identity matrix. These methods aim to align positive pairs, comprising augmented image pairs
generated from the same image, while simultaneously repelling negative pairs, which can consist of
any two distinct images from the training dataset. In essence, only the diagonal entries of the IwS
matrix in the representation space are set to 1, as depicted in Figure[I(c)] However, this assumption
may deviate from the underlying IwS matrix in the input space. For instance, both the (1,3) and (3,1)
entries are 1 instead of 0 because the 1st and 3rd images are semantically similar (both depicting
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Figure 1: Visualizing the IwS matrix in the input space (R”), and the representation space (R°) for the Siamese
network and contrastive learning. The 1/0 indicates the pairwise semantic similarity/difference. (a) illustrates
data augmentation. (b) visualizes the IwS matrix in the input space. Some off-diagonal entries are 1. For example,
both the (3, 1) and (1, 3) entries are 1, indicating that the 1st and 3rd images share the same semantic/label
(cat). (c) shows the IwS matrix for contrastive learning methods such as SimCLR (Chen et al.} 2020a), which is
implicitly assumed as an identity matrix. (d) shows the IwS matrix for the Siamese network in the representation
space, which is an all-one matrix.

cats), as illustrated in Figure [I(b)] Therefore, simply assuming an identity structure can potentially
hinder the algorithm from learning semantically meaningful representations, resulting in reduced
performance in downstream tasks.

In contrast, a Siamese network (Hadsell et al., 2006) focuses solely on aligning positive pairs,
which can potentially lead to a constant solution where all representations collapse into one single
point (Chen & Hel 2021)). This issue is commonly referred to as the “collapse problem" (Jing et al.,
2022). When this occurs, the IwS matrix in the representation space becomes an all-one matrix, as
depicted in FigurdI(d)} Certain variants, like BYOL (Grill et al, 2020) and SimSiam (Chen & He|
2021), introduce an asymmetric network architecture to mitigate this problem. However, lacking
explicit constraints on off-diagonal entries, these methods fail to fully exploit the sparse structure
inherent in the IwS matrix.

Therefore, the Siamese network and contrastive learning represent two opposing extremes: Contrastive
learning assumes the IwS matrix to be an identity matrix (or extremely sparse), while the Siamese
network does not leverage any sparse structure within the IwS matrix, as illustrated in Figures
and [I(d)] To strike a balance between these two extremes, we introduce a sparsity penalty/loss
that encourages an appropriate level of sparsity in the IwS matrix within the representation space.
Leveraging this sparsity penalty, we present Sparse Contrastive Learning (Sparse CL), a novel
self-supervised learning approach, for representation learning that fully utilizes the sparse structure
inherent in the IwS matrix. Our extensive experimental results on ImageNet-100/1k and CIFAR-
10/100 datasets empirically demonstrate the effectiveness of our proposed method.

Our primary contributions are as follows. (i) We study self-supervised learning from the perspective
of IwS, providing a novel framework. (ii) We pinpoint critical issues in both the Siamese network,
associated with an overly dense IwS matrix, and existing contrastive learning methods, which
assume identity IwS matrices. (iii) We introduce Sparse CL, a novel self-supervised learning
approach, to learn an appropriately sparse IwS matrix in the representation space, resulting in
improved representations. (iv) Our proposed Sparse CL achieves state-of-the-art performance in
linear evaluation on several benchmark datasets.

RELATED WORK

Dimension Contrastive Learning and Others Dimension-contrastive methods penalize the oft-
diagonal terms of the covariance matrix of the embeddings rather than the IwS matrix (Garrido et al.
2023). For instance, Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al.,|2022) make the
covariance matrix as close to an identity one as possible, while W-MSE(Ermolov et al.,[2021)) and
Zero-CL (Zhang et al.|[2022) directly whiten the covariance matrix. Clustering-based self-supervised
methods (Caron et al., 2018;2020;2021) are based on the prototype-wise or cluster-wise similarity.
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Weak Supervision Inspired by the success of supervised contrastive learning (Khosla et al., [2020),
weak supervision has been adopted in self-supervised learning. For instance, AdpCLR (Zhang et al.}
2021) initiates by identifying the top-k nearest samples in the representation space and subsequently
employs this information to construct an adjacency matrix, which serves as a form of supervision.
In pursuit of improved supervision, WCL (Zheng et al.| [2021a} |Chen et al.| 2022a)) takes a step
further by enforcing symmetry in the nearest neighbor graph. Other approaches by (Huynh et al.|
2022) and (Chen et al., 2022b)) utilize detected false negative samples as a means of supervision
in self-supervised learning. However, these methods grapple with the limitation of weak or even
inaccurate supervision, resulting in suboptimal performance.

2 METHODOLOGY

We first review the fundamentals of self-supervised learning in Section 2.I] Subsequently, in
Section[2.2] we introduce the IwS perspective to reevaluate self-supervised learning. Section [2.3]
presents Sparse CL, a novel self-supervised approach designed to learn an appropriately sparse IwS
matrix in the representation space and thus better representations.

2.1 PRELIMINARY: SELF-SUPERVISED LEARNING

To learn invariant representations across various augmentations (Chen et al.,|2020a; |He et al.| 2020),
most self-supervised learning methods maximize the similarity of positive pairs using Siamese
networks (Hadsell et al.| [2006; |Grill et al., 2020; |(Chen & He} 2021)). A positive pair consists of
two augmentations 7; and 7> applied to the same sample. Specifically, given a set of samples
in the input space, X = {z1,x2,...,Z,}, each sample in X is augmented to create two views,
denoted as 2¢ = T (z;) and 2% = T(;). Most self-supervised learning methods (Grill et al., 2020;
Dwibedi et al., 2021} He et al., 20205 [Chen & Hel 2021} |Chen et al., [2021) swap the positive pair
(2, 27) to obtain a second pair (x?, 2¢), and then feed both pairs to the online encoder (fy(-)) and
target encoder(f¢(+)) to obtain the feature embeddings: ¢¢ = fp(2%), ¢° = fo(a?), k¢ = fe(x9),
= fe(a?).
To obtain invariant representations, (g%, k%) and (¢%, k%), of the positive pairs, mean squared er-

ror (MSE) is a commonly used loss function to align their ¢, normalized representations on the
hypersphere (Grill et al., [2020; [Ermolov et al.| 2021) Speciﬁcally, the alignment loss is defined as:

2
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In this paper, we revisit self-supervised learning from the perspective of instance-wise similarity, with
its formal definition introduced in the next section.

2.2 INSTANCE-WISE SIMILARITY

We define instance-wise similarity as a function that maps two arbitrary instances in any Euclidean
space, including both the input and representation spaces, to a semantic similarity indicator. A
value of 1 indicates the same semantic meaning, while a value of O indicates different semantics.
Specifically, let

wij : R x R — 0/1,
be the semantic similarity indicator between the i-th and j-th instances in R™.

Input Space Given a positive set pair

b b b b
(Xa = {x‘f,x%, e 7I?L}7X = {‘Tla Loy 7In})a

where each sample pair (z¢, z?) forms a positive pair in the input space, the instance-wise similarity

(IwS) can be characterized by a binary matrix:
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where w;; indicates the semantic similarity between z§ and x . As previously defined, it takes a

value of either 1 when c(z¢) = c(z%) or 0 when c(z¢) # c(z ) where ¢(x) is a function indicating
the underlymg class of sample x (Arora et al.} 2019) In self—superv1sed learning, the semantic
information is invariant to different augmentatlons, SO xl and :cl share the same semantics, i.e.,
w;; = 1. For the off-diagonal entries w;;,7 # 7, they can be either 1 or 0. Thus, the IwS matrix
exhibits sparsity, and the level of sparsity depends on the number of classes and the data distribution.
Generally, as the number of classes increases or the data distribution becomes more balance the
sparsity of the IwS matrix becomes more pronounced.

Representation Space Given the positive set pair

(Q® = {g7,¢%, ., a2}, K* = {KV, kS, ..., k2})

or Q and K@, the IwS matrix is a binary matrix Wab — (w;;)™*"™, where w;; signifies the semantic
similarity between ¢ and k;’ It takes on a value of 1 when c(¢f") = c(k;é’) (indicating they belong

to the same class) and 0 when c(¢?) # c(kg’) (indicating different classes). Ideally, the IwS matrix
in the representation space should closely resemble the one in the input space to ensure that the
learned representations maintain their discriminative power and capture semantic similarities, i.e.,
web = Web = Wha In self-supervised learning, the IwS matrix in the input space remains
unknown due to the absence of labels or supervision, making it challenging to pick an appropriate
IwS matrix in the representation space. To address this challenge, most self-supervised approaches
adopt simple, albeit less accurate, strategies.

The Issue with Siamese Networks Siamese networks (Hadsell et al.| |2006) employs a symmetric
network to align positive pairs. However, there are trivial collapsing solutions (Chen & He, |[2021)),
corresponding to an all-one IwS matrix in the representation space, i.e., Wab = Wab — 1,,«n. Some
variants, such as BYOL (Grill et al., 2020) and SimSiam (Chen & He| 2021)), propose additional
techniques like employing an extra predictor, momentum updates, and stop-gradient operators to
mitigate this collapsing issue. However, the lack of explicit constraints on the off-diagonal positions
makes it insufficient to fully exploit the sparse structure of the underlying IwS matrix.

The Issue with Contrastive Learning Contrastive learning methods, such as SimCLR (Chen et al.,
2020a) or MoCo v3 (Chen et al., 2021}, operate by aligning positive pairs and repelling negative
pairs. These methods implicitly assume that the IwS matrix in the representation space is an identity
matrix, i.e., W = Wb = I,,. However, as discussed earlier, the IwS matrix in the input space may
deviate from the identity matrix. Consequently, using the identity IwS matrix can compromise the
discriminative power of learned representations, ultimately resulting in suboptimal performance in
downstream tasks. In essence, contrastive learning adopts an overly aggressive approach by using an
extremely sparse IwS matrix in the representation space.

2.3  SPARSE CONTRASTIVE LEARNING

In this section, we introduce a novel self-supervised approach aimed at learning an appropriately
sparse IwS matrix in the representation space. To achieve this, we formulate a sparsity loss/penalty
that can encourage the desired sparsity level in the IwS matrix for representation learning. While
one direct idea might be to apply the ¢; norm to Wb and WP to construct the loss objective, the
non-differentiability of 0;; in the IwS matrix poses a challenge for end-to-end training.

Instead, we propose to use the cosine similarity between ¢; and k; as w;;:

ik —t 1
wij:cr(q . °>: : )
T 1+ exp (:(qi"irto))

! Assuming there are K distinct classes, and the proportions for each class are denoted as p1, pa, . . . , px, We
have p(w;; = 1,1 # j) = Zf(:lp? > (Zfil pi)?/K = Zfll(l/K)Q. Consequently, with a more balanced
data distribution, the probability of p(w;; = 1,4 # j) diminishes, resulting in increased sparsity within the IwS
matrix.
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Figure 2: The overall illustration of our proposed method Sparse CL, which consists of an online encoder, and a
target encoder. ® and o represent dot product and sigmoid activation, respectively. During the pre-training phase,
we extract query and key embeddings from the online encoder and target encoder to construct two element-wise
positive pairs (Q?, K?) and (Qb, K*), base on which the IwS in the representation space, e.g., W4 and Wb“,
are estimated in a differentiable manner. Then we achieve sparsity in the representation space by imposing ¢
norm on the estimated IwS.

where - denotes the inner product, ¢ is a thresholding constant, and 7 is the temperature parameter.
We choose a relatively small temperature 7 = 0.1 to make ;; close to 1 or 0. Specifically, w;; ~ 1
when ¢; - k; > 1o, and w;; ~ 0 when ¢; - k; < to. Finally, the proposed sparsity loss or penalty is:

i#j i#j

1 N .
Lo =5 o i+ Y llwylh 4)

Wi eWeab Wi eWba

When combined with the alignment loss described in Equation|I] the overall objective function for
self-supervised learning becomes:

min £+ Lap, )

where )\ serves as a regularization parameter that controls the trade-off between the alignment loss
and the sparsity loss. We refer to this method as Sparse Contrastive Learning, aka Sparse CL. Figure
[2 provides a visual summary of the proposed approach.

3 EXPERIMENTS

This section empirically validates the performance of Sparse CL. More specifically, Section [3.1]
presents the results of experiments conducted on four well-established benchmarks frequently used
in self-supervised learning: CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1k (Zhang et al.,
2022). To provide further insights into the proposed approach, additional analyses and visualizations
are carried out in Section[3.2] We will release the PyTorch code publicly.

Baseline Methods We benchmark Sparse CL against a set of baseline methods, including Zero-
CL (Zhang et al.,[2022), DeepCluster V2 (Caron et al., 2020), DINO (Caron et al., 2021}, MoCo
V2 (Chen et al.,|2020b)), NNCLR (Dwibedi et al.,2021), ReSSL (Zheng et al.||2021b)), SimCLR (Chen
et al.| [2020a), SimSiam (Chen & He} [2021)), SWAV (Caron et al., 2020), VICReg (Bardes et al.| 2022),
W-MSE (Ermolov et al.,|[2021)), Barlow Twins (Zbontar et al.,[2021), BYOL (Grill et al., 2020), and
MoCo v3 (Chen et al.,[2021). Notably, for CIFAR-10/100 and ImageNet-100 datasets, we cite results
from solo-learn (da Costa et al., |2022), which reports superior performance compared to the original
papers or other third-party sources.

We further explore the proposed Sparse CL from three different perspectives. Firstly, we perform an
ablation study by removing the sparsity loss term from Sparse CL, denoted as Sparse CL-s. Next, we
evaluate Sparse CL in a supervised setting, where the IwS matrix in the representation space equals
that in the input space. Lastly, we examine Sparse CL in the context of transfer learning. For detailed
experimental settings, please refer to Appendix
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Table 1: Linear evaluation performance on CIFAR-10, CIFAR-100 and ImageNet-100.: results by (da Costa
et all[2022), ¥: results by (Zhang et all2022). 1 indicates gains. Best self-supervised baselines are underlined.

] CIFAR-T0 CIFAR-100 TmageNet-100
Methods Acc@1T  Acc@5T Acc@IT  Acc@5] Acc@IT  Acc@5T
Zero-CL? 90.81 9977 7033 9205 79.26 94.98
DeepCluster V2I  88.85 99.58  63.61 88.09 7536 93.22
DINO' 89.52 9971 66.76 9034 74.84 92.92
MoCo V21 92.94 9979  69.89 9165 7820 95.50
NNCLR' 91.88 9978 69.62 9152 79.80 95.28
ReSSL 90.63 99.62 6592 8973 7692 94.20
SimCLR! 90.74 9975  65.78 80.04  77.04 94.02
SimSiam! 90.51 9972 66.04 80.62 7454 93.16
SwAVT 89.17 99.68  64.88 8878  74.04 92.70
VICReg' 92.07 99.74  68.54 90.83  79.22 95.06
W-MSE! 88.67 99.68  61.33 8726  67.60 90.94
Barlow Twins' 92.10 9973 70.90 9191 8038 95.28
BYOL! 92.58 9979 70.46 9196  80.16 94.80
MoCo v3' 93.10 99.80  68.83 90.57  80.36 95.18
Sparse CL 93.12 9986 7145 92.92  80.06 95.66
Sparse CL 93.45 T(]_gg 99.89 73.09 Tl.(irl 93.72 80.98 T(]”\)Q 95.72

3.1 EXPERIMENTAL RESULTS

Main Results We conduct experiments on CIFAR-  Taple 2: Top-1 Accuracy under linear eval-
10/100 and ImageNet-100/1k datasets and evaluate all yation on the ImageNet-1k dataset. T: re-
experiments following a linear evaluation protocol. As sults by (Dwibedi et al, 2021), *: results
presented in Tables [T] and 2] our proposed Sparse CL by (Chen et al., [2021), *: results by (Zhang
consistently outperforms all prior methods in terms of ~[etal}[2022). Best self-supervised baseline mod-
top-1 accuracy (Acc@1) and top-5 accuracy (Acc@5) ¢ls are underlined.

across all datasets. Notably, our Sparse CL, when trained Methods 100 eps 200 eps
for 100 and 200 epochs on the ImageNet-1k dataset, sur- SIimCLRT 665 683
passes the best-performing model, NNCLR (Dwibedi MoCo v21 67.4 69.9
et al., 2021), by 1.7 and 2.0 in top-1 accuracy, re- BYOL' 66.5 70.6
spectively. Intriguingly, even with just 100 epochs of SwAVT 66.5 69.1
training, Sparse CL outperforms most self-supervised SimSiam! 068.1 70.0
models trained for 200 epochs. It is worth noting that ~ NNCLRT 09.4 70.7
BYOL (Grill et al], 2020) and MoCo v3 (Chen et al, ~ MoCov3¥ 68.9 -
2021)) share the same network architecture as Sparse CL, ~ Barlow EW’HS§ 67.7 .
with the main distinction being the different constraints gg;(r)sgIéL gf? 72'.7

applied to the IwS matrix in the representation space.
Specifically, BYOL does not leverage the sparse structure of the IwS matrix, MoCo v3 implicitly
assumes the IwS matrix to be an identity matrix, while Sparse CL utilizes the proposed sparsity
penalty. Sparse CL achieves the best performance, providing empirical evidence of the effectiveness
of the proposed sparsity penalty.

Without the Sparsity Loss Table|l|demonstrates the importance of the sparsity penalty in self-
supervised learning. Sparse CL-s, which is Sparse CL without the sparsity penalty, achieves less
favorable results in terms of top-1 accuracy (Acc@1) and top-5 accuracy (Acc@5) across CIFAR-
10/100 and ImageNet-100 datasets. This suggests that the sparsity penalty plays a crucial role in
enhancing performance. Sparse CL outperforms Sparse CL-s by significant margins, achieving
improvements of 0.35%, 2.29%, and 1.15% in top-1 accuracy (Acc@1) on CIFAR-10, CIFAR-100,
and ImageNet-100 datasets, respectively.

SuperYised Sparse Contrastive Taple 3: Linear evaluation performance on CIFAR-10/100 and ImageNet-
Learning We conduct an ex- 100. Unsup and Sup are abbreviations for unsupervised and supervised.
periment where we directly use

the IwS matrix in the input Vethod CIFAR-10 CIFAR-100 TmageNet-100
]
elw ma .I’IX 1n the mput space ethods Acc@11  Acc@517 Acc@1fT  Acc@57 Acc@17  Acc@57
as supervision for the IwS ma- Sparse CL (Unsup) _ 93.45 9989  73.09 9372 8098 95.72
P : Sparse CL (Sup) 94.45 110 99.88  TATT tigs 9368 8164 Ty 96.02
trix in the representation space.  pIRCNG s 9224 9983 6888 90.76 ; -

Table [3 collects the results and
reveals that Sparse CL in the supervised setting outperforms its unsupervised counterpart by 1.1%,



Under review as a conference paper at ICLR 2024

2.30%, and 0.81% in terms of top-1 accuracy (Acc@1) on CIFAR-10, CIFAR-100, and ImageNet-
100 datasets, respectively. Thus when the IwS matrix in the representation space closely mirrors
that in the input space, the learned representations indeed retain their discriminative capabilities and
capture semantic similarities better.

Transfer Learning We fine-tune the entire Table 4: Transfer learning performance using
Sparse CL network on CIFAR-10/100, Oxford- ResNet-50 pretrained with ImageNet-1k. For
IIIT Pets (Parkhi et al., [2012), and Oxford 102 CIFAR-10/100 datasets, we report Top-1 Accu-
Flowers (Nilsback & Zisserman, [2008) datasets racy. For Pets and Flowers datasets, we report
using the weights pre-trained on ImageNet-1k as an mean per-class accuracy. ': results by (Dwibedi
initialization. Table ] presents the results of transfer €t al}2021).

learning across these four datasets. Except for the Methods _ CIFAR-10CIFAR-100 Pets _ Flowers

Pets dataset, Sparse CL outperforms other methods, ~ SmCLRT 905 744 846 926
indicatine i bility to 1 tations that  BYOL! 913 784 904  96.1
indicating its capability to learn representations tha NNCLR 937 790 918 951
are more transferable. Sparse CL__ 96.6 835 898 973

3.2 EXPERIMENTAL ANALYSES

To gain a deeper understanding of Sparse CL, we explore various approaches for implementing the
sparsity penalty. Following that, we carry out an array of qualitative and quantitative analyses to
elucidate how the proposed sparsity loss enhances representation learning. Additionally, we perform
sensitivity analyses on several hyperparameters of the model. These sensitivity analyses are conducted
on the CIFAR-100 dataset, with three distinct hyperparameters considered. Training dynamics on
the CIFAR-100 dataset and an analysis of the role of asymmetric architecture components in Sparse
CL can be found in Appendix |Bfand Appendix [C] respectively. We also explore replacing the ¢4
norm with the ¢ norm in the sparsity loss, and collect the details in Appendix [D] Lastly, Appendix [E]
contains a sensitivity analysis conducted with varying batch sizes on the CIFAR-100 dataset.

On the Sparsity Loss We explore alternative approaches for constructing the sparsity loss, including
applying the Softmax activation, Sparsemax (Martins & Astudillo, 2016, and Gumbel-Softmax (Jang
et al.| 201t) to the off-diagonal entries of the cosine similarity matrix, followed by using the entropy
as our sparsity loss. Table[5demonstrates that our proposed choice outperforms the other options on
CIFAR-10/100 datasets.

Table 5: Linear evaluation performance on CIFAR-10, CIFAR-100 datasets.

CIFAR-10 CIFAR-100
Choices
Acc@11 Acc@51 Acc@11 Acc@57
Softmax + entropy 92.76 99.90 71.72 92.98
Sparsemax + entropy 92.92 99.85 72.21 93.32

Gumbel-Softmax + entropy 93.03 99.88 71.75 92.93
Sigmoid + ¢; norm (Our) 93.45 99.89 73.09 93.72

(a) Sparse CL (A = (b) Sparse CL (A\ = (c) Sparse CL (A = (d) Sparse CL (A =
0.0) 0.01) 0.05) 0.1)

Figure 3: PCA visualization on the CIFAR-100 dataset. Classes (0-9) are distinguished by colors. Sparse CL
(A = 0.0) learns concentrated representations while Sparse CL (A = 0.1) is able to learn relatively divergent
representations.
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Representation Visualizations To provide an intuitive understanding of how the proposed sparsity
loss affects the distribution of learned representations, we conduct experiments on the CIFAR-100
dataset. We extract the top layer of a ResNet (He et al., 2016) that is trained using Sparse CL and
then use these representations for analysis. We project the extracted representations from R>!2 to R?
using principal component analysis (PCA) and visualized them in Figure[3] The figure illustrates
how the regularization parameter A effectively governs the degree of dispersion in the representations.
Specifically, when using a small A value (e.g., 0.0), Sparse CL tends to produce relatively compact
representations, as depicted in Figure[3(a)] Conversely, with a larger A value (e.g., 0.1), Sparse CL
tends to generate more diverse representations, as shown in Figure 3(d)}
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Figure 4: TwS visualization on the ImageNet-100 dataset. 1/0 indicates the same/different semantic information
for the specified pair.

In addition to the PCA visualization, we also visualize the learned IwS in Figure ] We pick 9 images
from three challenging-to-distinguish classes (bittern, water hen, and red-backed sandpiper), with
each class containing three images. The IwS in the input space is presented in Figure f(a) We
observe that when the predictor is removed from the network architecture in Sparse CL-s, it leads to
an all-one IwS matrix, as shown in Figure f(b)] indicating a severe “collapse problem" (Jing et al.|
2022)). Surprisingly, upon reintroducing the predictor, the sparse structure re-emerges in Sparse CL-s,
as visualized in Figurd4(c)] However, this level of sparsity remains insufficient compared to the
sparsity of the IwS matrix in the input space. To analyze the impact of the regularization parameter
A, we gradually increased it from O to 0.3. This led to a significant increase in the sparsity of the
IwS matrix, as depicted in Figures @(d)]and(e)} Comparing with MoCo v3, which assumes the IwS
matrix to be an identity matrix, as in Figure [4(f)] our proposed Sparse CL outperforms MoCo v3 by
producing learned IwS matrices in the representation space that more closely resemble those in the
input space.
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Figure 5: Representations analysis w.r.t various sparse loss coefficients (A) on the CIFAR-100 dataset.
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Quantitative Analysis on Learned Representations To gain a better understanding of how
the proposed sparsity loss impacts representation learning, we conduct quantitative analyses on
learned representations with respect to different choices of the regularization parameter A from three
different perspectives. These analyses are performed using the CIFAR-100 dataset, and we extract
representations from the predictor in the online encoder.

First, we conducted a sparsity analysis on the extracted representations using the proportion of
value-one elements in the learned IwS matrix as the sparsity measure. The results are shown in
Figure[5(a)] where it is evident that a larger A leads to a smaller proportion of value-one elements,
indicating increased sparsity in the learned representations.

Next, we perform a dimensional collapse analysis using the singular value spectrum (Jing et al.,
2022) of the extracted representations. This analysis reveals that a larger A reduces the degree of
dimensional collapse, as visualized in Figure [5(b)|

Finally, we assess the alignment and uniformity of the representations using Lalign and — Luniform
metrics, respectively, as proposed by [Wang & Isola|(2020). Figurd5(c)|illustrates that a larger A helps
increase uniformity and slightly hamper alignment. This suggests that the sparsity penalty increases
the uniformity of learned representations at the cost of a slight reduction in alignment.

Sensitivity Analysis Figure [f] presents the top-1 accuracies of our proposed method on the CIFAR-
100 dataset with varying hyperparameters, including the regularization parameter ), the threshold ¢y,
and the temperature 7. We explore the range of A from 0.0 to 0.5, and it is evident from Figure
that neither extremely small nor excessively large values of A result in optimal performance. This
observation supports the advantage of our proposed Sparse CL over BYOL (Grill et al.|, [2020) and
MoCo v3 (Chen et al., [2021)), as these methods can be seen as extreme examples that use either a
very small A (e.g., A = 0.0) or an overly large )\, leading to under-sparse or over-sparse IwS matrices.
In contrast, by carefully selecting an appropriate value of A, our proposed Sparse CL can learn an
appropriately sparse IwS in the representation space, thereby achieving better representations.
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Figure 6: Sensitivity analysis of the influence of different hyper-parameters on our proposed method.

The above analysis on regularization parameters A can be also applied to ¢y and 7, with results
collected in Figures and respectively. Similarly, too small/large tq would lead to an
under-sparse/over-sparse IwS matrix in the representation space. For the temperature 7, a too small 7
(e.g., 0.01) would lead to vanishing gradients in the sigmoid activation in the Equation 3] while a too

large 7 (e.g., 0.5) can not enforce the W and W4 to be binary matrices.

4 CONCLUSION

This paper unifies some self-supervised learning methods and offers a better understanding of them
from the perspective of instance-wise similarity. Using this perspective, we identify the key issues
of Siamese networks and constrastive learning. Specifically, contrastive learning assumes the IwS
matrix to be an identity or extremely sparse matrix, while the Siamese network does not utilize
any sparse structure and may produce collapsing solutions. To overcome these issues, we propose
Sparse CL, a new self-supervised approach that could learn an appropriately sparse IwS matrix in the
representation space and thus better representations. Extensive numerical studies on ImageNet and
CIFAR datasets empirically demonstrate the effectiveness of our proposed method. One limitation
of our work is that the proposed IwS is an instance-wise similarity measure, which hinders direct
extensions of the proposed sparsity loss to more cases, such as the dimension-contrastive methods.
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A EXPERIMENTAL SETTING

To achieve a fair comparison, we follow Zero-CL (Zhang et al., [2022), and employ ResNet-18 (He
et al.| |2016)) as the encoder network for CIFAR-10/100 and ImageNet-100 datasets, and ResNet-
50 (He et al.l 2016) for the ImageNet-1k dataset. Note that on CIFAR-10/100 datasets, we employ
commonly used tricks for low-resolution datasets by removing the first maxpool layer and modifying
the first convolutional layer with kernel size 3 and strides 1 in ResNet-18 (Chen et al.,[2020a}; Zhang
et al., 2022). In terms of image augmentation, we follow the pipeline of Barlow Twins (Zbontar
et al., 2021) and Zero-CL (Zhang et al., [2022), which consist of random cropping, resizing to 224
x 224 (32 x 32 for CIFAR), horizontal flipping, color jittering, converting to gray-scale, Gaussian
blurring, and solarization. During the pre-training phase, we use LARS optimizer (You et al.,2017)
with a base learning rate [, along with a cosine decay learning rate schedule (Loshchilov & Hutter,
2017) for all experiments. Specifically, our proposed Sparse CL are pre-trained 1000 epochs on
CIFAR-10/1000 datasets, 400 epochs on the ImageNet-100 dataset, and 100/200 epochs on the
ImageNet-1k dataset, respectively. We evaluate all experiments under a linear evaluation protocol
by adding a linear classifier on top of fixed representations of ResNets pre-trained by Sparse CL.
Specifically, the linear classifier is trained for 100 epochs by the SGD optimizer with a learning rate
of Iy and a cosine learning rate scheduler. More detailed experimental settings are shown in Table [6]

Table 6: Experimental settings for various datasets in experiments.

Datasets CIFAR-10/100  ImageNet-100  ImageNet-1k
Epochs 1000 400 100/200
Batch Size 256 1024 2048

Irq 0.2 0.1 0.05

Iry 0.3 0.1 0.15

to 0.5/0.6 0.6 0.7

T 0.1 0.1 0.1

A le-3/6e-3 0.03 0.04
Feature Dimension 2048 2048 4096
Encoder Network ResNet-18 ResNet-18 ResNet-50
GPU Resources 1 1080Ti GPU 8 1080Ti GPUs 8 A100 GPUs

B TRAINING DYNAMICS ON THE CIFAR-100 DATASET

To empirically understand how Sparse CL addresses the trade-off between alignment loss and sparsity
loss, we investigate their training dynamics. We plot the curve of alignment loss £ 4 and sparsity
loss L), in logarithmic scale on the CIFAR-100 training dataset, as shown in Figure and
respectively. We find the alignment loss decreases very fast at the early stage, and then converges
smoothly, while the sparsity loss always keeps a relatively smooth decrease till the convergence.
Besides, by enlarging the sparsity loss coefficient A, although it slightly harms the convergence of
alignment loss, it results in a significant decline in the curve of sparsity loss.
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Figure 7: Training dynamics on the CIFAR-100 dataset.
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C ANALYSIS ON ARCHITECTURE COMPONENTS

Analyzing the role of asymmetric architecture components such as an extra predictor (‘Pred’),
momentum update "Momem’), and stop gradient operator (‘SG’) in self-supervised learning is an
important research topic in the machine learning community (Tian et al.|[2021). To study the effect
of these components in our proposed Sparse CL, we remove them step by step within Sparse CL
architecture. As shown in Table[7} we can observe that the predictor and momentum update have
a significant impact on improving linear evaluation performance, particularly in CIFAR-100 and
ImageNet-100 datasets, while using the stop gradient operator only brings minor improvement.

Table 7: Ablation study of asymmetric architecture components, including applying the stop gradient operator
(‘SG’), the Momentum update ("Momem’), and an extra predictor ('Pred’) on one of the two branches in our
proposed Sparse CL.

CIFAR-10 CIFAR-100 ImageNet-100
Acc@11  Acc@57T Acc@1T Acc@5T Acc@11 Acc@51

Methods SG Momem Pred

Sparse CL v/ v v 93.45 99.89 73.09 93.72 80.98 95.72
Sparse CL v/ v X 92.61 99.86 72.18 92.96 79.92 95.22
Sparse CL v/ X x 92.43 99.89 70.94 92.30 78.80 94.58
Sparse CL X X x 92.39 99.85 70.93 92.48 78.76 94.84

D COMPARISON BETWEEN ¢; NORM AND {5 NORM

In Sec. to achieve binarization of IwS in the representation space, we apply ¢; norm to Wb and
Wb in Equation @ In this section, we replace the ¢; norm with ¢ norm, and experimental results
are compared in Table [8] Sparse CL (¢;) performs better than Sparse CL (¢2) on CIFAR-10/100
datasets, and we explain that {; norm attributes to learning the sparse structure of the IwS matrix in
the representation space, while /5 norm cannot.

Table 8: Linear evaluation performance on CIFAR-10/100 datasets.

CIFAR-10 CIFAR-100
Methods
Acc@1tT Acc@5T Acc@11 Acc@57
Sparse CL-s 93.12 99.86 71.45 92.92

Sparse CL (¢;) 93.45 99.89 73.09 93.72
Sparse CL (¢2) 93.04 99.81 72.18 92.99

E SENSITIVITY ON BATCH SIZE

75 To investigate the impact of batch size when pre-
= Sl training Sparse CL-s and Sparse CL from scratch, we
S | | I u o vary the batch size from 26 to 2!! and conduct exper-
% iments on the CIFAR-100 dataset. As visualized in
s I I I I I Figure 8] we can observe that both Sparse CL-s and
<65 Sparse CL are sensitive to the batch size. Therefore,
§ I I I I I I it is not recommended to use a too-large or too-small
60 batch size on the relatively small datasets during the
J I I I I l pre-training stage.
35 6 7 8 9 10 1

1
Batch Size (log, n)

Figure 8: Linear evaluation of our proposed
model trained with different batch size on the
CIFAR-100 dataset.
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