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ABSTRACT

A novel gradient boosting framework is proposed where shallow neural networks
are employed as “weak learners”. General loss functions are considered under this
unified framework with specific examples presented for classification, regression
and learning to rank. A fully corrective step is incorporated to remedy the pitfall
of greedy function approximation of classic gradient boosting decision tree. The
proposed model rendered outperforming results against state-of-the-art boosting
methods in all three tasks on multiple datasets. An ablation study is performed to
shed light on the effect of each model components and model hyperparameters.

1 INTRODUCTION

AI and machine learning pervade every aspect of modern life from email spam filtering and e-
commerce, to financial security and medical diagnostics (McKinney et al., 2020; Simeon et al.,
2019). Deep learning in particular has been one of the key innovations that has truly pushed the
boundary of science beyond what was considered feasible (He et al., 2016; Goodfellow et al., 2014).

However, in spite of its seemingly limitless possibilities, both in theory as well as demonstrated
practice, developing tailor-made deep neural networks for new application areas remains notori-
ously difficult because of its inherent complexity. Designing architectures for any given application
requires immense dexterity and often a lot of luck. The lack of an established paradigm for creat-
ing an application-specific DNN presents significant challenges to practitioners, and often results in
resorting to heuristics or even hacks.

In this paper, we attempt to rectify this situation by introducing a novel paradigm that builds neu-
ral networks from the ground up layer by layer. Specifically, we use the idea of gradient boosting
(Friedman, 2001) which has a formidable reputation in machine learning for its capacity to incre-
mentally build sophisticated models out of simpler components, that can successfully be applied
to the most complex learning tasks. Popular GBDT frameworks like XGBoost (Chen & Guestrin,
2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018) use decision trees
as weak learners, and combine them using a gradient boosting framework to build complex models
that are widely used in both academia and industry as a reliable workhorse for common tasks in a
wide variety of domains.

In this paper, we combine the power of gradient boosting with the flexibility and versatility of neural
networks and introduce a new modelling paradigm called GrowNet that can build up a Deep Neural
Network (DNN) layer by layer. Instead of decision trees, we use shallow neural networks as our
weak learners in a general gradient boosting framework that can be applied to a wide variety of tasks
spanning classification, regression and ranking. We introduce further innovations like adding second
order statistics to the training process, and also including a global corrective step that has been
shown, both in theory (Zhang & Johnson, 2014) and in empirical evaluation, to provide performance
lift and precise fine-tuning to the specific task at hand.

Our specific contributions are summarised below:

• We propose a novel approach to combine the power of gradient boosting to incrementally
build complex deep neural networks out of shallow components. We introduce a versatile
framework that can readily be adapted for a diverse range of machine learning tasks in a
wide variety of domains.
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• We develop an off-the-shelf optimization algorithm that is faster and easier to train than
traditional deep neural networks. We introduce training innovations including second order
statistics and global corrective steps that improve stability and allow finer-grained tuning
of our models for specific tasks.

• We demonstrate the efficacy of our techniques using experimental evaluation, and show su-
perior results on multiple real datasets in three different ML tasks: classification, regression
and learning-to-rank.

2 RELATED WORK

In this section, we briefly summarize the gradient boosting algorithms with decision trees and gen-
eral boosting/ensemble methods for training neural nets.

Gradient Boosting Algorithms. Gradient Boosting Machine (Friedman, 2001) is a function esti-
mation method using numerical optimization in the function space. Unlike parameter estimation,
function approximation cannot be solved by traditional optimization methods in Euclidean space.
Decision Trees are the most common functions (predictive learners) that are used in Gradient Boost-
ing framework. In his seminal paper, Friedman (2001) proposed Gradient Boosting Decision Trees
(GBDT) where decision trees are trained in sequence and each tree is modeled by fitting negative
gradients. In recent years, there have been many implementations of GBDT in machine learning
literature. Among these, Tyree et al. (2011) used GBDT to perform learning to rank, Friedman
et al. (2000) did classification and Chen & Guestrin (2016); Ke et al. (2017) generalized GBDT for
multi-tasking purposes. In particular, scalable framework of Chen & Guestrin (2016) made it possi-
ble for data scientists to achieve state-of-the-art results on various industry related machine learning
problems. For that reason, we take XGBoost (Chen & Guestrin, 2016) as our baseline. Unlike these
GBDT methods, we propose gradient boosting neural network where we train gradient boosting
with shallow neural nets. Using neural nets as base learners also gives our method an edge over
GBDT models, where we can correct each previous model after adding the new one, referred to as
“corrective step”, in addition to the ability to propagate information from the previous predictors to
the next ones.

Boosted Neural Nets. Although weak learners, like decision trees, are popular in boosting and
ensemble methods, there have been a substantial work done on combining neural nets with boost-
ing/ensemble methods for better performance over single large/deep neural networks. The idea of
considering shallow neural nets as weak learners and constructively combining them started with
Fahlman & Lebiere (1990). In their pioneering work, fully connected, multi-layer perceptrons are
trained in a layer-by-layer fashion and added to get a cascade-structured neural net. Their model is
not exactly a boosting model as the final model is a single, multi-layer neural network.

In 1990’s, ensemble of neural networks got popular as ensemble methods helped to significantly im-
prove the generalization ability of neural nets. Nevertheless, these methods were simply either ma-
jority voting (Hansen & Salamon, 1990) for classification tasks, simple averaging (Opitz & Shavlik,
1996) or weighted averaging (Perrone & Cooper, 1993) for regression tasks. After the introduction
of adaptive boosting (Adaboost) algorithm (Freund, 1995), Schwenk & Bengio (1997) investigated
boosting with multi-layer neural networks for a character recognition task and achieved a remarkable
performance improvement. They extended the work to traditional machine learning tasks with vari-
ations of Adaboost methods where different weighting schemes are explored (Schwenk & Bengio,
2000). The adaptive boosting can be seen as a specific version of the gradient boosting algorithm
where a simple exponential loss function is used (Friedman et al., 2000).

In early 2000’s, Hinton et al. (2006) introduced greedy layer-wise unsupervised training for Deep
Belief Nets (DBN). DBN is built upon a layer at a time by utilizing Gibbs sampling to obtain the
estimator of the gradient on the log-likelihood of Restricted Boltzmann Machines (RBM) in each
layer. Bengio et al. (2007) expounded this work for continuous inputs and explained its success on
attaining high quality features from image data. They concluded that unsupervised training helped
model training by initializing RBM weights in a region close to a good local minimum.

Recently, AdaNet (Cortes et al., 2017) was proposed to adaptively built Neural Network (NN) layer
by layer from a singe layer NN to perform image classification task. Beside learning network
weights, AdaNet adjusts the network structure and its growth procedure is reinforced by a theo-
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Figure 1: GrowNet architecture. After the first weak learner, each predictor is trained on combined
features from original input and penultimate layer features from previous weak learner. The final
output is the weighted sum of outputs from all predictors,

∑k=K
k=1 αkfk(x). Here Model K means

weak learner K.

retical justification. AdaNet optimizes over a generalization bound that consists of empirical risk
and complexity of the architecture. Coordinate descend approach is applied to the objective func-
tion, and heuristic search (weak learning algorithm) is performed to obtain δ−optimal coordinates.
Although the learning process is boosting-style, the final model is a single NN whose final output
layer is connected to all lower layers. Unlike AdaNet, we train each weak learner in a gradient
boosting style, resulting in less entangled training. The final prediction is the weighted sum of all
weak learners’ output. Our method also renders a unified platform to perform various ML tasks.

In recent years, a few work have been done to explain the success of deep residual neural networks,
ResNet, (He et al., 2016) with hundreds of layers by showing that they can be decomposed into
a collection of many subnetworks. Huang et al. (2018) extended AdaNet to specifically focus on
ResNet architecture to provide a new training algorithm for ResNet.Veit et al. (2016), meanwhile,
argued that these deeper layers might serve as a bagging mechanism in a similar spirit to random
forest classifier. These studies challenge the common belief that neural networks are too strong to
serve as weak learners for boosting methods.

3 MODEL

In this section, we first describe the basic framework of GrowNet for general loss functions, and
then we show how the corrective step is incorporated. The key idea in gradient boosting is to take
simple, lower-order models as weak learners and use them as fundamental building blocks to build
a powerful, higher-order model by sequential boosting using first or second order gradient statistics.
We use shallow neural networks (e.g., with one or two hidden layers) as weak learners in this paper.
As each boosting step, we augment the original input features with the output from the penultimate
layer of the current iteration (see Figure 1). This augmented feature-set is then fed as input to train
the next weak learner via a boosting mechanism using the current residuals. The final output of the
model is a weighted combination of scores from all these sequentially trained models.

3.1 GRADIENT BOOSTING NEURAL NETWORK: GROWNET

Let us assume a dataset with n samples in d dimensional feature space D = {(xi, yi)ni=1|xi ∈
Rd, yi ∈ R}. GrowNet uses K additive functions to predict the output,

ŷi = E(xi) =
K∑
k=0

αkfk(xi), fk ∈ F (1)

where F is the space of multilayer perceptrons and αk is the step size (boost rate). Each function
fk represents an independent, shallow neural network with a linear layer as an output layer. For a
given sample x, the model calculates the prediction as a weighted sum of fk’s in GrowNet.
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Let l be any differentiable convex loss function. Our objective is to learn a set of functions (shallow
neural networks) that minimize the following equation: L(E) =

∑n
i=0 l(yi, ŷi).

We may further add regularization terms to penalize the model complexity but it is omitted for
simplicity in this work. As the objective we are optimizing is over the functions and not on the
parameters, traditional optimization techniques will not work here. Analogous to GBDT Friedman
(2001), the model is trained in an additive manner.

Let ŷ(t−1)i =
∑t−1
k=0 αkfk(xi) be the output of GrowNet at stage t−1 for the sample xi. We greedily

seek the next weak learner ft(x) that will minimize the loss at stage t which can be summized as,

L(t) =

n∑
i=0

l(yi, ŷ
(t−1)
i + αtft(xi)) (2)

In addition, Taylor expansion of the loss function l was adopted to ease the computational complex-
ity. As second-order optimization techniques are proven to be superior to first-order ones and require
less steps to converge, we train models with Newton-Raphson steps. Consequently, regardless of the
ML task, individual model parameters are optimized by running weighted least squares regression
on the second order gradients of the GrowNet’s outputs. Objective function for the weak learner ft
can be simplified as follows,

L(t) =

n∑
i=0

hi(ỹi − αtft(xi))2 (3)

where ỹi = −gi/hi, and gi & hi are the first and second order gradients of the objective function l
at xi, w.r.t. ŷ(t−1)i . (See the pseudo-code in part 1 of Algorithm 1)

3.2 CORRECTIVE STEP (CS)

In a traditional boosting framework, each weak learner is greedily learned. This means that only the
parameters of tth weak learner are updated at boosting step t where all the parameters of previous
t − 1 weak learners remain unchanged. The myopic learning procedures may cause the model to
get stuck in a local minima, and a fixed boosting rate αk aggravates the issue (Friedman, 2001).
Therefore, we implemented a corrective step to address this problem. In the corrective step, instead
of fixing the previous t − 1 weak learners, we allow update of the parameters of the previous t −
1 weak learners through back-propagation. Moreover, we incorporated the boosting rate αk into
parameters of the model and it is automatically updated through the corrective step. Beyond getting
better performance, this move saves us from tuning a delicate parameter. CS can also be interpreted
as a regularizer to mitigate the correlation among weak learners, as during corrective step, the main
training objective becomes task specific loss function on just original inputs. The usefulness of
this step is theoretically investigated in Zhang & Johnson (2014) for gradient boosting decision
tree models and we applied these developments for our model. The Algorithm 3 from Zhang &
Johnson (2014) introduces the Regularized Greedy Forest (RGF) where the coefficients of the all
decision rules so far added as well as coefficients of basis functions are repeatedly re-optimized.
Regularization is imposed on the nonlinear function class H where the non-linearity is achieved by
additive models. Thus, the theoretical proofs therein can easily be adopted for our method. Our
experiments in the ablation study 6.2 empirically validate the necessity of corrective step in our
model as well. The corrective step is summarized in the second part of Algorithm 1.

4 APPLICATIONS

In this section, we show how GrowNet can be adapted for regression, classification and ranking
problems.

GrowNet for Regression. We employ mean squared error (MSE) loss function for the regression
task. Let us assume l is the MSE loss; then we can easily obtain ỹi, first order, and second order
statistics at stage t, as follows:

gi = 2(ŷ
(t−1)
i − yi), hi = 2 =⇒ ỹi = yi − ŷ(t−1)i
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Algorithm 1 Complete GrowNet training
Input: f0(x) = log(n+

n−
), α0, Training data Dtr

Output: GrowNet E
for k = 1 to M do

# Part 1 - Individual model training
Initialize model fk(x)
Calculate 1st and 2nd order gradients:
gi = ∂

ŷ
(k−1)
i

l(yi, ŷ
(k−1)
i ) & hi = ∂2

ŷ
(k−1)
i

l(yi, ŷ
(k−1)
i ), ∀xi ∈ Dtr

Train fk(·) by weighted least square regression on {xi,−gi/hi}
Add the model fk(x) into the GrowNet E
# Part 2 - Corrective step
for epoch = 1 to T do

Calculate GrowNet output: ŷ(k)i =
∑k
m=0 αmfm(xi), ∀xi ∈ Dtr

Calculate Loss from GrowNet: L = 1
n

∑n
i l(yi, ŷ

(k)
i )

Update step size αk and model fm parameters through back-propagation ∀m ∈ {1, ...k}
end for

end for

We train next weak learner ft by least square regression on {xi, ỹi} for i = 1, 2, ..., n. In the
corrective step, all model parameters in GrowNet are updated again using the MSE loss.

GrowNet for Classification. For the illustration purposes, let us consider the binary cross entropy
loss function; however, note that any differentiable loss function can be used. Choosing labels
yi ∈ {−1,+1} (this notation has an advantage of y2i = 1, which will be used in the derivation), the
first and second order gradients, gi and hi , respectively, at stage t can be written as follows,

gi =
−2yi

1 + e2yiŷ
(t−1)
i

, hi =
4y2i e

2yiŷ
(t−1)
i

(1 + e2yiŷ
(t−1)
i )2

; ỹi = −gi/hi = yi(1 + e−2yiŷ
(t−1)
i )/2 (4)

The next weak learner ft is fitted by least square regression using second order gradient statistics
on {xi, ỹi}. In the corrective step, parameters of all the added predictive functions are updated
by retraining the whole model using the binary cross entropy loss. This step slightly corrects the
weights according to the main objective function of the task at hand, i.e. classification in this case.

GrowNet for Learning to Rank. In this part, we demonstrate how the model is adapted to learning
to rank (L2R) with a pairwise loss. In the L2R framework, there are queries and documents asso-
ciated with each query. A document can be associated with many different queries. Then for each
query, the associated documents have relevance scores. Assume for a given query, a pair of docu-
ments Ui and Uj is chosen. Assume further that we have a feature vector for these documents, xi
and xj . Let ŷi and ŷj denote the output of the model for samples xi and xj respectively. According
to Burges (2010), a common pairwise loss for a given query can be formulated as follows,

l(ŷi, ŷj) =
1

2
(1− Sij)σ0(ŷi − ŷj) + log(1 + e−σ0(ŷi−ŷj))

where Sij ∈ {0,−1,+1} denotes the documents’ relevance difference; it is 1 if the Ui has a rel-
evance score greater than Uj , −1 vice-versa and 0 if both document have been labeled with the
same relevance score. σ0 is the sigmoid function. Note that the cost function l is symmetric and its
gradients can be easily computed as follows (for the details, readers can refer to Burges (2010)),

∂ŷi l(ŷi, ŷj) = σ0(
1
2 (1− Sij)−

1

1+eσ0(ŷi−ŷj)
), ∂2ŷi l(ŷi, ŷj) = σ2

0(
1

1+eσ0(ŷi−ŷj)
)(1− 1

1+eσ0(ŷi−ŷj)
)

where I denotes the set of pairs of indices {i, j}, for which Ui is desired to be ranked differently
from Uj for a given query. Then for a particular document Ui, the loss function and its first and
second order statistics can be derived as follows,

l =
∑

j:{i,j}∈I

l(ŷi, ŷj) +
∑

j:{j,i}∈I

l(ŷi, ŷj)

gi =
∑

j:{i,j}∈I

∂ŷi l(ŷi, ŷj)−
∑

j:{j,i}∈I

∂ŷi l(ŷi, ŷj), hi =
∑

j:{i,j}∈I

∂2ŷi l(ŷi, ŷj)−
∑

j:{j,i}∈I

∂2ŷi l(ŷi, ŷj)
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Table 1: L2R results in Normalized Discounted Cumulative Gain for top 5 and 10 queries
(NDCG@5 & 10), on Microsoft Learning to Rank with 10K queries and Yahoo LTR datasets.
GrowNet results are average of 5 iterations and the values in the parenthesis represents the standard
deviation. Note: XGBoost results on Yahoo dataset are from their own paper (Chen & Guestrin,
2016).

MSLR-WEB 10K Yahoo LTR
NDCG@5 NDCG@10 NDCG@5 NDCG@10

XGBoost 0.4677(0.0287) 0.4858(0.0245) 0.7618 0.7913
GrowNet (pairwise loss) 0.5106(0.0011) 0.5203(0.0015) 0.7726(0.0006) 0.8101(0.0003)
GrowNet (Gen. I div. loss) 0.5044(0.0072) 0.5137(0.0070) 0.7713(0.0006) 0.8088(0.0005)

5 EXPERIMENTS

Experiment Setup. All predictive functions added to the model are multilayer perceptrons with two
hidden layers. We generally set the number of hidden layer units to roughly half of the input feature
dimension. More hidden layers degraded the performance as the model starts overfitting. 40 additive
functions were employed in the experiments for all three tasks and the number of weak learners in
test time is chosen by the validation results. Boosting rate is initially set to 1 and automatically
adjusted during the corrective step.

We trained each predictive function for just 1 epoch and the entire model is also trained for 1 epoch
during the corrective step by stochastic gradient descent with Adam optimizer. The number of
epochs is increased to 2 for the ranking task. We also employed 2D batch normalization on the
hidden layers. We compared the proposed model performance with (1) XGBoost, the state of the art
in traditional boosting methods, as it yields similar results compared with LightGBM and CatBoos
and (2) AdaNet, the state of the art in structure learning for NNs. Tuning and model details of all 3
methods are provided in supplementary material.

Datasets. We evaluate our model on 5 datasets with 3 different tasks. Higgs Bozon dataset is
used for classification. Higgs data is created using Monte Carlo simulations on high energy physics
events.

To perform regression, 2 datasets from UCI machine learning repository are selected. The first one
is Computed Tomography (CT) slice localization data where the aim is to retrieve the location of CT
slices on axial axis. The second regression dataset is YearPredictionMSD, a subset of Million Song
dataset. The goal is to predict the release year of a song from its audio features.

We choose Yahoo LTR dataset Chapelle & Chang (2011) for the learning to rank task as it is a
well-known benchmark dataset and also used in the original XGBoost paper. The dataset has 20K
queries each associated with approximately 22 documents. Train-test split from the original paper is
preserved. The second benchmark ranking dataset we used is MSLR-WEB 10K in which there are
10K queries, each corresponding to list of 100− 200 documents. Detailed statistics of each dataset
can be found in the supplementary material.

5.1 RESULTS

Table 2: Regression results in root mean square
error (RMSE). GrowNet results are average of 5
iterations and the values in the parenthesis repre-
sent standard deviation.

Music Year Pred. Slice Localz.
XGBoost 8.9301 6.6744
AdaNet 12.1778 5.3824
GrowNet 8.8156 (0.0061) 5.3112 (0.3512)

Regression. Table 2 reports regression per-
formance on two UCI datasets. GrowNet
outperforms both methods on Music dataset
where AdaNet delivers the worse result. On
CT slice localization dataset, our model ob-
tains on par results with Adanet and displays
21% decrease in RMSE compared to XGBoost.

Classification. To make a fair comparison with
XGBoost, we tested our model on Higgs bozon
dataset as it is used in XGBoost’s paper Chen &
Guestrin (2016). Classification results are pre-
sented in the Table 3. GrowNet clearly outperforms XGBoost using all the data. Subsampling 10%
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of the data for training each weak learner also renders better performance. We used 30 weak learners
(multilayer perceptrons with two hidden layers of 16 units) and the number of weak learners to be
used at test time is chosen by validation results. In all 3 experiments, this number was 30.

Table 3: Classification results, in AUC, on Higgs
bozon dataset. For our model, we preset 3 dif-
ferent results: using all the data, 10% of the data
(1M ), and 1% of the data (100K).

XGBoost 0.8304
GrowNet (all data) 0.8510
GrowNet (data sampling= 10%) 0.8439
GrowNet (data sampling= 1%) 0.8180

Learning to Rank. Ranking experiment re-
sults on Yahoo and MSLR datasets are pre-
sented in Table 1. We evaluated GrowNet
with 2 different loss functions, namely pairwise
loss and generalized I-divergence loss. In both
scenarios, GrowNet outperforms XGBoost on
both datasets; in particular, it delivers 6 − 8%
increase on Microsoft data in NDCG@5 and
NDCG@10, and 2.5% performance boost on
Yahoo dataset in NDCG@10. For our model
to achieve these results, 30 weak learners were
enough.

6 ABLATION STUDY

Figure 2: Classification training losses

We investigated different components of
GrowNet. We picked 2 datasets for these
experiments: Higgs and Microsoft. For Higgs
dataset, we randomly selected 1M points
for training and 5% of the remaining as the
validation set. The original test data was used
as the test set. For Microsoft dataset, we used
Fold 1 and the original split was preserved. In
all upcoming experiments, only the component
that is being analyzed, is altered while the
rest of the parameters remain unchanged. All
ablation experiments are reported in Table 4,
and the third column (GrowNet) represents the
results from final version of our model on these
datasets.

6.1 STACKED VERSUS SIMPLE VERSION

As seen in Figure 1, every weak learner except the first one is trained on the combined features of the
original input and penultimate layer’s features from previous predictive function. It is worth to note
that the input dimension does not grow by iteration; indeed, it is always the dimension of hidden
layer plus the dimension of the original input. This idea of stacked features has a resemblance
to auto-context Tu & Bai (2010) in literature, where the authors utilized the direct output of the
classifier, along with the original inputs, to boost the image segmentation performance. The work
in Becker et al. (2013) extended this idea to not only use the output of the classifier, namely class
probabilities, but also the raw prediction image itself. Our model is significantly different from these
methods, as we do not simply use the previous model’s output but more expressive representation at
the penultimate layer. These features leverage our model by propagating more complex information
from previous model to the new one. Moreover, we utilize stacked features to introduce a novel
boosting scheme. Instead of weighted sampling, we used the penultimate layer features of the
previous weak learner and let the next learner to decide on selecting or fusing any features. In
addition to empirical evidence, Theorem 1 in Tu & Bai (2010) proves that stacked features, referred
to as auto-context, monotonically decrease the training error. The results of the theorem is not
bounded by any particular classifier type, thus, the proof can also be applied to the proposed model.

To empirically test the advantage of this stacked model, we compared the proposed model against
its simpler version in which the original input features are used for all learners. The sixth column in
Table 4 presents the results from the simpler version. In both tasks, the stacked model outperforms
the simpler version; especially, the difference is noteworthy in the ranking task. Training loss in
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Table 4: Ablation study experiment results on Higgs 1M and Microsoft (Fold 1) datasets. All models
have two-layer shallow networks as weak learners. Hidden layer dimension is 16 for classification
and 64 for ranking task. The third column is the final GrowNet model that all different versions are
compared against. Reported results are AUC scores for classification and NDCG for ranking.

Datasets Eval. metric GrowNet 1st order grad. Constant αt Simple version No CS CS in every 5 stage
Higgs 1M AUC 0.8401 0.8363 0.8397 0.8326 0.8093 0.8315

MSLR Fold1 NDCG@5 0.5106 0.5001 0.5020 0.4836 0.4743 0.4881
NDCG@10 0.5195 0.5104 0.5115 0.4972 0.4872 0.4998

Figure 2 also supports the information gain while the stacked version is utilized. Unlike tree boosting
methods, our model makes this architecture possible through its flexible weak learners.

6.2 ANALYZING CORRECTIVE STEP

Among all components of the model, the corrective step is presumably the most vital one. In this
step, the parameters of all weak learners, that are added to the model, are updated by training the
whole model on the original inputs without the penultimate layer features. The loss function used
in this step is a task specific one. This procedure allows the model to rectify the parameters to
specifically better accommodate the task at hand rather than fitting negative gradients. CS also
alleviates the potential correlation among weak learners. Moreover, within this step, we incorporated
the boosting rate αt and it is automatically adjusted without requiring any tuning. The last two
columns of Table 4 present the classification and learning to rank results from GrowNet without
using any corrective step and using a corrective step in every 5 stages, respectively. The performance
severely degraded in the former one, and the model hardly learned any information after a couple
of predictive functions added. The flat training loss in Figure 2 confirms this phenomenon as well.
Running the corrective step in every 5 steps rendered much better performance, yet was not as good
as GrowNet’s results. The stair-like loss curve in the Figure 2 evidently displays the influence of the
corrective step on model training.

Figure 3: Boosting rate evolution

Dynamic boost rate. Within the corrective step, we are able
to dynamically update the boost rate αt (at stage t). Taking
this measure saved us from tuning one more parameter as well
as yielded a mild performance increase in all tasks. Moreover,
the model obtained better training loss convergence, com-
pared to the fixed boost rate version (see Fig. 2). In our setup,
starting with α0 = 1, the boost rate is automatically updated
each time the corrective step is executed (see Fig. 3) . Results
of the best constant boost rate (αt = 0.1), coarsely tuned in a
set of {0.01, 0.1, 1}, are reported in fifth column of Table 4.

6.3 FIRST ORDER STATISTICS VS SECOND ORDER
STATISTICS

In this experiment, we explored the impact of first and second order statistics on model performance
as well as on the convergence of training loss. As the forth column of Table 4 displays, using the
second order (third column in the Table 4) renders a slight performance boost over the first order
in classification and almost 2% increase in learning to rank task. Figure 2 displays the effects of
first and second order statistics on training loss. The final model (with second order statistics) again
shows slightly better convergence on classification yet the difference is more apparent on ranking.
As the learning rate is decreased by a rate of 1/2 per 15 weak learners, sudden drops are observed
in classification loss curve at 15th and 30th stages in Figure 2.

6.4 ANALYZING THE EFFECT OF HIDDEN LAYERS

As the literature suggests, boosting algorithms work best with weak learners, thus we uti-
lized a shallow neural network with two hidden layers as a weak predictor for our model.
While adding more hidden layers yields stronger predictors, they are not weak learners any-
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more. To explore this weak learner limit on the number of hidden layers, we assayed weak
learners with 1, 2, 3, and 4 hidden layers. Each hidden layer had 16 units. Although
weak learners with more hidden layers render better training loss convergence as expected, the
overall model starts saturating on performance and overfitting. Weak learners with 1 and 2
hidden layers attain the best scores, yet the latter one outperforms the former. The worst
test AUC score is from the model with 4 hidden layers (See Fig 2 in Supp. material).

Figure 4: Effect of # neurons on
classification performance

Altering the number of hidden units has a lesser effect on per-
formance. To illustrate the impact of hidden layer dimensions,
we tested the final model (weak learner with two hidden lay-
ers) with various hidden units. Higgs data has 28 features and
we tested the model with 2, 4, 8, 16, 32, 64, 128 and 256
hidden units. The smaller the hidden layer dimension is, the
less information propagation the weak learners get. On the
other hand, having a large number of units also leads to over-
fitting after a certain point. Figure 4 displays test AUC scores
from this experiment on Higgs 1M data. The highest AUC of
0.8478 is achieved with 128 units, yet the performance suffers
when the number is increased to 256.

6.5 GROWNET VERSUS DNN

One might ask what would happen if we just combine all these shallow networks into one deep
neural network. There are a couple of issues with this approach: (1) it is very time-consuming to
tune the parameters of the DNN, such as the number of hidden layers, the number of units in each
hidden layer, the overall architecture, batch normalization, dropout level, and etc., (2) DNNs require
a huge computational power and in general run slower. We compared our model (with 30 weak
learners) against DNN with 5, 10 , 20, and 30 hidden-layer configurations. The best DNN (with 10
hidden layers) produced 0.8342 on Higgs 1M data in 1000 epochs, and each epoch took 11 seconds.
The DNN achieved this score (its best) at epoch 900. GrowNet rendered 0.8401 AUC on the same
configuration with 30 weak learners. The average stage training time, including the corrective step,
took 50 seconds. On top of performance boost, GrowNet has a clear advantage of 6x faster training
time (11 ∗ 900 = 9900 vs 50 ∗ 30 = 1500) compared to vanilla DNNs. Both models are run on the
same machine with NVIDIA Tesla V100 (16GB) GPU.

Further details and illustrations from the ablation study and the code are provided in the supplemen-
tary material.

7 CONCLUSION

In this work, we propose GrowNet, a novel approach to leverage shallow neural networks as “weak
learners” in a gradient boosting framework. This flexible network structure allows us to perform
multiple machine learning tasks under a unified framework while incorporating second order statis-
tics, corrective step and dynamic boost rate to remedy the pitfalls of traditional gradient boosting
decision tree. Ablation study is conducted to explore the limits of neural networks as weak learners
in the boosting paradigm and analyze the effects of each GrowNet component on the model perfor-
mance and convergence. We show that the proposed model achieves better performance in regres-
sion, classification and learning to rank on multiple datasets, compared to state-of-the-art boosting
methods. We further demonstrate that GrowNet is a better alternative to DNNs in these tasks as
it yields better performance, requires less training time and is less cumbersome in hyperparameter
tuning.
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