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Abstract: Offline reinforcement learning (RL) is a promising direction that allows
RL agents to be pre-trained from large datasets avoiding recurrence of expensive
data collection. To advance the field, it is crucial to generate large-scale datasets.
Compositional RL is particularly appealing for generating such large datasets,
since 1) it permits creating many tasks from few components, and 2) the task struc-
ture may enable trained agents to solve new tasks by combining relevant learned
components. This paper provides four offline RL datasets for simulated robotic
manipulation created using the 256 tasks from CompoSuite [1]. Each dataset is
collected from an agent with a different degree of performance, and consists of 256
million transitions. We provide training and evaluation settings for assessing an
agent’s ability to learn compositional task policies. Our benchmarking experiments
on each setting show that current offline RL methods can learn the training tasks to
some extent, but are unable to extract their compositional structure to generalize to
unseen tasks, showing a need for further research in offline compositional RL.
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1 Introduction

Much of deep learning’s success at solving a wide variety of problems can be attributed to the
comtemporary increase in freely available data [2, 3, 4]. Similar to other areas, we would expect robot
learning techniques to leverage these vast amounts of data in order to solve multitudes of real-world
control problems. However, the field of robotics has yet to fully take advantage of the capabilities that
neural networks offer, as generating datasets for robotics is both expensive and time consuming, even
in simulation. Large-scale data collection is imperative to maximizing the utility of deep learning.

Much of the research in deep learning for robotics is devoted to reinforcement learning (RL) [5, 6, 7, 8].
Classical RL methods require the agent to collect data over time, which is ostensibly problematic for
neural networks that require an abundance of data. Offline RL approaches [9, 10]—those which train
an agent solely on a fixed, previously collected dataset—may address this issue, as their goal is to
learn policies comparable to those obtained by classical RL without requiring new data collection for
each new training trial. Once an agent has been pre-trained on offline data, the learned model can be
fine-tuned to new tasks in the real world with little additional data [11]. Despite these advantages, the
offline setting comes with its own challenges. First, offline RL requires large datasets [12] labeled
with reward functions, which cannot be as easily crowdsourced as image labels. Second, offline
RL algorithms do not have the ability to explore new states at training time, and must generalize to
specific states without having seen them during training [9]. This issue is enhanced by the fact that
standard offline RL evaluations are limited to consider only single-task problems [10, 13, 14, 15, 16].
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To address these issues, we consider compositional agents and environments. A compositional
agent can decompose complex problems into sub-components, solve them, and re-use this acquired
knowledge throughout the state space, mitigating the state generalization issues of offline RL.
Further, compositional RL agents move beyond single-task paradigms, showing sample efficiency
improvements in multi-task and lifelong RL via generalizable components and behaviors that can be
combined to solve new tasks [17, 18, 19, 20, 21, 22, 23, 24, 25]. On the other hand, compositional
environments offer re-usability of reward functions to create a plethora of training behaviors [1].

To facilitate the combined study of offline RL and compositionality, we provide several datasets
collected using CompoSuite [1]—a simulated robotic manipulation benchmark designed for studying
online compositional RL—and experiment scenarios designed to answer questions related to the
interplay of the two fields. Specifically, we contribute the following 1:

1. Four datasets of varying performance with trajectories from each of the 256 CompoSuite tasks,
2. Training-test split lists for evaluation to ensure comparability and reproducibility of results, and
3. Evaluation demonstrating both the utility of our datasets for offline compositional RL research,

and the poor ability of current offline RL techniques to leverage compositional structures.

2 Preliminaries

Offline RL We formulate offline RL as a Markov decision process M = {S,A, R,P, γ}, where S
is the state space, A is the action space, R is the reward function, P are the transition probabilities,
and γ is a discount factor. The goal is to find an optimal policy π∗(a, s) that maximizes the expected
return Eπ

∑T
t=0 γ

tR(st, at). However, the agent does not have access to M directly for online
interaction, but instead has access to a dataset D = {(si, ai, s′i, ri)}Ni=1 of transition tuples containing
a state, action, resulting state, and reward, collected from M using a behavioral policy πβ .

CompoSuite benchmark for compositional RL CompoSuite [1] is a recent simulated robotics
benchmark for RL that builds on top of robosuite [26] and uses the MuJoCo simulator [27]. It is
designed to study functional decomposition in RL algorithms. Every CompoSuite task is created by
composing four different axes: a robot manipulator that moves an object to achieve an objective
while avoiding an obstacle. Further, each axis consists of four elements yielding a total of 256
combinations of tasks. Note that, for a given objective, the reward function is constant across
other variations, making it easy to scale the number of tasks without the need to label every single
task individually. CompoSuite uses a combination of robot, object, obstacle, and objective

information as well as a multi-hot task indicator as its observation space. The action space consists of
target positions for each joint of the robotic manipulators as well as a gripper action. Each robot has
seven degrees of freedom, and so the observation and action spaces are consistent across all tasks.

3 Datasets for Offline Compositional RL

We elaborate on the specific training setting we consider and structure of the datasets we provide, and
detail several reproducible experiment configurations for analyzing offline compositional RL.

3.1 Data Collection

To collect our datasets, we trained several agents using Proximal Policy Optimization [6] on the
CompoSuite benchmark and used them as our behavioral policies πβ . Similar to commonly used
existing datasets [12], we collect one million transitions for every task in CompoSuite, totaling 256
million transitions per dataset. To achieve high success rate on all tasks, we use the compositional
neural network architecture from Mendez et al. [25]. We provide the following four datasets.

Expert dataset: Transitions from an agent that was trained to achieve 90% success on every task.
Medium Dataset: Transitions from an agent that was trained to achieve 30% success on every task.

1Datasets, split lists, and code for the experiments can be found at github.com/Lifelong-ML/CompoSuite
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Random dataset: Transitions from an untrained agent (randomly initialized), achieving 0% success.
Medium-replay-subsampled dataset: Transitions that were stored during the training of an agent
up to 30% success. For tasks that required more than one million steps to achieve 30% success, the
one million transitions were uniformly sampled.

Note that the process of collecting all these datasets requires training a single compositional agent
over all tasks, appropriately storing trained policies at various levels of performance for each task.

In the real world, expert data is rarely available. Instead, datasets have varying levels of performance,
represented by the expert, medium, and random datasets. This allows for the construction of training
sets containing data from trajectories of varying success rates (discussed in Section 3.2), which both
represents realistic data collection settings and lets researchers adapt the difficulty of offline RL tasks.
In addition, the medium-replay-subsampled dataset contains data that an online RL agent would see
during training, exhibiting various levels of proficiency at solving the task. Intuitively this should be
sufficient to learn good policies via offline RL, yet current approaches struggle in this setting [12].

3.2 Training Task Lists and Experimental Setup

We consider multiple training settings to analyze an agent’s ability to functionally decompose a task
and re-use its acquired knowledge. These settings are represented by different samplings of tasks
across the various datasets. To facilitate comparability of results, we provide various lists splitting the
tasks into training and zero-shot tasks, analogous to train-test splits in supervised learning problems.
Any of the sampling techniques can be used with any of the datasets from section 3.1. We differentiate
between uniform, compositional and restricted task sampling as follows:

Uniform sampling This sampling corresponds to the standard multi-task setting which is used to
evaluate training performance as well as zero-shot generalization to unseen tasks. We consider a
train-test split of tasks similar to data splits in supervised learning with 224 training and 32 test tasks.
The agent sees the training tasks but must perform zero-shot generalization to the test tasks.

Compositional sampling A more realistic setting should not assume access to data of equal
performance for every task. Instead, we split the data into 76 training tasks from the expert dataset,
148 additional training tasks from one of the other (non-expert) datasets, and 32 test tasks. This
setting acts as a proxy for measuring compositionality in a learning approach; a model that can
successfully decompose its knowledge about successful executions from the expert tasks should be
able to combine this knowledge with the noisier information from remaining tasks to compositionally
generalize to those other tasks. Note that if the training tasks for compositional sampling come from
expert-random data, we obtain a dataset with similar average success as the medium dataset but with
a significantly different success distribution across tasks.

Restricted sampling This setting is similar to the restricted sampling from the original CompoSuite
paper [1], which corresponds to a harder setting to evaluate an agent’s ability to extract compositional
information. This is achieved by restricting the training dataset to be smaller and to contain only a
single task for a specific element. As an example, if the selected element is the IIWA arm, then the
training set contains exactly one task which uses an IIWA arm. The training set contains a total of 56
tasks while the test set contains the remaining 63 tasks that contain the IIWA arm.

4 Experimental Results

We evaluate several of the suggested settings from section 3.2. We run two baselines for each setting,
Behavioral Cloning (BC) and Implicit Q-Learning (IQL), using the d3rlpy implementations [28].
BC imitates the behavioral policy πβ by learning to predict the correct action given a state from
the dataset, and we expect it to perform well over data from high performing agents. However, for
non-expert data one would hope to achieve better performance using IQL, an offline RL baseline
which can extrapolate information across states to generalize beyond the training data distribution.
After training each agent, we evaluate it online and report average cumulative return and success rate
over one trajectory per task. We include both training and zero-shot test task performance.
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Table 1: Test and training return and success rates achieved by Behavioral Cloning (BC) and Implicit
Q-Learning (IQL) on each dataset.

Dataset: Expert Dataset: Medium Dataset: Replay Dataset: Random
Sampling: Unif. Sampling: Unif. Sampling: Unif. Sampling: Comp.
BC IQL BC IQL BC IQL BC IQL

Train Return 339.54 276.66 185.05 178.73 104.28 150.89 119.31 94.48
Test Return 293.15 279.17 165.12 192.64 98.87 176.11 31.79 81.57
Train Success 0.87 0.69 0.23 0.33 0.00 0.15 0.30 0.22
Test Success 0.71 0.68 0.21 0.34 0.00 0.25 0.06 0.16

Table 2: Test and training return and success rates achieved by Behavioral Cloning (BC) and Implicit
Q-Learning (IQL) on the expert dataset in the restricted sampling setting.

Dataset: Expert Dataset: Expert Dataset: Expert Dataset: Expert
Elem.: IIWA Elem.: PickPlace Elem.: Hollowbox Elem.: ObjectWall

BC IQL BC IQL BC IQL BC IQL
Train Return 368.78 285.52 360.60 268.71 354.60 297.82 357.19 265.08
Test Return 25.73 33.49 31.96 57.88 25.04 74.27 8.12 15.95
Train Success 0.96 0.73 0.93 0.66 0.93 0.79 0.89 0.66
Test Success 0.03 0.03 0.03 0.08 0.03 0.14 0.00 0.00

Training on Uniformly Sampled Datasets To evaluate learnability and characterize different levels
of challenge among our scenarios, we train the BC and the IQL agents on the expert, medium, and
medium-replay-subsampled datasets. We use uniform sampling of 224 training and 32 test tasks as
discussed in section 3.2. The results are shown in the leftmost three columns of Table 1. The results
verify that both agents can achieve high performance on the expert datasets (column 1), but IQL
strictly outperforms BC in the settings where fewer successful trajectories are available (columns 2
and 3), and generalizes better to test settings. BC is not able to gain any success when trained on
replay data while IQL is still able to achieve a decent amount of success from this source.

Training on Expert-Random Composition Next, we demonstrate the importance of accounting
for compositional structure by training agents using compositional sampling over an expert-random
dataset combination. As shown in the right-most column of Table 1, both agents are able to extract
some information from the expert datasets and achieve similar training performance. On the zero-shot
tasks, IQL outperforms BC but achieves low overall success rates. For comparison, both agents
perform significantly better on the medium dataset (column 2), indicating that they learn something
closer to a mean behavior policy rather than extracting the compositional structure of the tasks.

Training on Restricted Sampling To further test current approaches’ propensity for compositional
learning, we compare the BC and IQL agents on four different restricted settings (Table 2). In each
experiment, we fix an element from a different axis to show the generality of the setting. These agents
were trained on expert data that only contains a single task with the specified element present while
the test tasks all contain this element. Across all settings, both agents achieve decent success on the
training tasks but fail to generalize to the zero-shot settings. When compared to the expert dataset
with uniform sampling setting in Table 1, it seems that having a large amount of data for every single
task element is required to generalize to unseen tasks. This is further evidence that current agents are
incapable of extracting and leveraging the compositional structure inherent to the environment data.

5 Conclusion

In this paper we have introduced several novel datasets to study the intersection of offline and compo-
sitional RL. Our results indicate that current offline RL approaches do not capture the compositional
structure of our tasks well, and that further research is required in this area. An interesting direction
for future work is the explicit modeling of modularity in neural networks, or the discovery of modular
structure, required to obtain networks that are capable of zero-shot generalization. We hope that, by
releasing the datasets and the experimental settings described in this work, we can further research
efforts in offline and compositional RL for robotics applications.
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