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Abstract
Modeling human preferences is crucial for align-
ing foundation models with human values. Tra-
ditional reward modeling methods, such as the
Bradley-Terry (BT) reward model, fall short in
expressiveness, particularly in addressing intran-
sitive preferences. In this paper, we introduce
preference embedding, an approach that embeds
responses into a latent space to capture intri-
cate preference structures efficiently, achieving
linear query complexity. Additionally, we pro-
pose preference score-based General Preference
Optimization (GPO), which generalizes reward-
based reinforcement learning from human feed-
back (RLHF). Experimental results show that
our General Preference embedding Model (GPM)
consistently outperforms the BT reward model
on the RewardBench benchmark and effectively
models cyclic preferences where any BT reward
model behaves like a random guess. Further-
more, evaluations on downstream tasks such as Al-
pacaEval2.0, following the language model post-
training with GPO and our general preference
model, reveal performance improvements over BT
models. These findings indicate that our method
may enhance the alignment of foundation models
with nuanced human values. The code is available
at https://github.com/general-preference/general-
preference-model.

1. Introduction
Modeling human preferences is a cornerstone in develop-
ing foundation models that interact seamlessly with users.
In natural language modeling and reinforcement learning,
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aligning models with human intent and values has led to
significant advancements, including improved text genera-
tion and enhanced decision-making policies (Ouyang et al.,
2022; Christiano et al., 2017). Traditional approaches of-
ten rely on reward modeling, wherein a reward function is
learned to guide the optimization of policies. While effec-
tive in certain contexts, these methods face expressiveness
and computational efficiency challenges, particularly when
addressing complex or intransitive human preferences (Tver-
sky, 1969; Munos et al., 2023).

Preference learning algorithms typically employ pairwise
comparisons to capture human judgments (Ibarz et al.,
2018; Ziegler et al., 2019). The Bradley-Terry (BT)
model (Bradley & Terry, 1952) is popular for modeling
such pairwise preferences due to its simplicity and compu-
tational efficiency: given K responses, a BT reward model
cost O(K) inference-time compute to output the reward
dictating the preferences. The efficiency of the BT model
comes from the implicit assumption that each option can
be conveniently represented by a scalar reward, which in-
evitably limits the model’s capacity to capture the richness
of human judgments that may be context-dependent or ex-
hibit intransitivity (Gardner, 1970).

On the other hand, supervised (sequential-classification)
pair preference models (PairRM / PairPM) (Jiang et al.,
2023; Dong et al., 2024) that predict the preference given
a concatenation of the two responses can express complex
and intransitive (cyclic) structures. But to fully capture the
preference relations among K responses, it requires evaluat-
ing O(K2) pairwise preferences between all K candidate
responses (Munos et al., 2023; Wu et al., 2024b). This
quadratic scaling hinders them for applications with larger
response sets especially in test-time scaling for reasoning
tasks using verifiers and ranking models (Snell et al., 2024;
Wu et al., 2024a).

In addition to computational inefficiency, supervised pref-
erence models exhibit asymmetric preference behaviors re-
lated to positions. The model’s design choice can also be
highly ad hoc, varying among different templates and model
architecture designs.

Based on the above observations, it is thus natural to raise
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(a) Bradley-Terry (BT) reward model (b) PairRM / PairPM

(c) General Preference embedding model (GPM)

Figure 1. Illustration of (a) Bradley Terry (BT) reward model, (b) supervised pair preference model (PairRM, PairPM) (Jiang et al., 2023;
Dong et al., 2024), and (c) our General Preference embedding Model (GPM).

the following question:

Is there a principled way to model general preference?

In this paper, we answer this question affirmatively by
proposing preference embedding, which bridges the gap
between expressiveness and efficiency in general prefer-
ence modeling. Our method embeds responses into a multi-
dimensional latent space that captures the complex prefer-
ence structure beyond transitive relations while allowing for
efficient querying of preferences. Notably, our approach
achieves a computational complexity of O(K), matching
the efficiency of the BT model but with enhanced expres-
siveness.

The main contributions of our work are summarized as
follows:

• We introduce preference embedding for general prefer-
ence modeling, enabling both efficient and expressive rep-
resentation of human preferences. Our approach general-
izes the Bradley-Terry (BT) reward model by embedding
responses into a latent space, capturing complex struc-
tures, including intransitive preferences. Notably, our
General Preference embedding model (GPM) achieves
a query complexity of O(K) for evaluating preferences
among K responses which match the complexity of the
Bradley-Terry reward model, an improvement over the
O(K2) complexity of traditional supervised preference
models that rely on pairwise inputs (see Section 4).

• We demonstrate GPM’s effectiveness across various tasks,

including CyclicPreference (ours) and the renowned Re-
wardBench (Lambert et al., 2024). Specifically, GPM
models intransitive (e.g., cyclic) preferences with near-
perfect accuracy, whereas the BT reward model performs
like random guessing (see Section 6.2). Additionally,
GPM consistently outperforms the BT reward model on
RewardBench (see Section 6.1).

• For language model alignment, we propose General Pref-
erence Optimization (GPO), which leverages the prefer-
ence scores provided by GPM. The general preference
score can also be integrated as a preference signal into a
wide range of RLHF and preference optimization meth-
ods (Rafailov et al., 2024; Munos et al., 2023; Wu et al.,
2024b). Experimental results on AlpacaEval-2.0 reveal
that our approach may improve reward-based language
model alignment methods (see Section 6.3).

2. Related Work
Reward-Based Reinforcement Learning from Human
Feedback (RLHF). Typical approaches to modeling hu-
man preference for language model alignment usually learn
a reward model from a preference dataset. The human
preference is assumed to follow the Bradley-Terry (BT)
model (Bradley & Terry, 1952) or the Thurstone model
(Thurstone, 2017). LLM policies then are fine-tuned to max-
imize these scalar reward signals for better alignment (Chris-
tiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022).
Later, the direct preference optimization (DPO) methods are
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proposed by Rafailov et al. (2024) only implicitly to learn
a reward model represented by an LLM. The human pref-
erence is still assumed to follow the Bradley-Terry model.
However, the reliance on scalar rewards imposes a total or-
dering on preferences, which may not reflect the intransitive
or stochastic nature of human judgments (Tversky, 1969;
Agranov & Ortoleva, 2017).

Figure 2. Intransitiveness
in real-world preferences.
Left: Food preferences
might cycle (Apple ≻
Banana ≻ Cherry ≻
Apple). Right: Rock-
Paper-Scissors is a classic
intransitive game.

Preference-Based Reinforce-
ment Learning from Human
Feedback. Recently, there
emerged a line of works that
directly estimate the preference
probability without imposing a
reward-based preference model
or any transitivity assumptions
(Lou et al., 2022; Wu et al.,
2023; Wang et al., 2023) ei-
ther for preference-based RL
or in the context of RLHF. Ef-
forts have been made to op-
timize policies directly from
pair-wise preference compar-
isons, thereby mitigating the
limitations of scalar reward
functions (Munos et al., 2023;
Swamy et al., 2024; Rosset
et al., 2024; Wu et al., 2024b).

3. Background
In this section, we present preliminaries on reward model-
ing, preference modeling, and reinforcement learning from
human feedback (RLHF) for language model alignment.
We consider an autoregressive language model that gener-
ates responses to the given prompts. Let x = [x1, x2, . . .]
denote a prompt (a sequence of tokens). The language
model π generates a response y = [y1, y2, . . . , yN ] based
on the conditional probability distribution: π(y | x) =∏N

i=1 π (yi | x,y<i), where y<i represents the sequence of
tokens generated before position i. In this paper, we assume
a general-preference oracle. Given two responses y and
y′ to the same prompt x, the oracle provides the feedback
indicating which response is preferred.

P (y ≻ y′ | x) := E [o (y ≻ y′ | x)] .

3.1. Reward-Based Reinforcement Learning from
Human Feedback

The most prevalent approach to aligning language models
with human preferences is to consider a scalar reward func-
tion r(y;x) that assigns a numerical score to each response.
The preference between two responses is then determined
solely by the reward scores for the two responses. For exam-

ple, the Bradley-Terry (BT) model (Bradley & Terry, 1952)
is a widely used method for modeling pairwise preferences
in this context. However, the BT model can not capture
intransitive (e.g. cyclic) preferences effectively (Bertrand
et al., 2023). Under BT model, the probability that response
y is preferred over y′ is given by:

P(y ≻ y′ | x) = σ
(
r(y;x)− r(y′;x)

)
,

where σ(z) = 1/(1+e−z) is the logistic (sigmoid) function.

In practice, the reward function r(y;x) is learned by maxi-
mizing the likelihood of the observed preference data. Once
the reward function is established, policy optimization tech-
niques, such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), can be applied to adjust the language
model to generate responses that maximize expected re-
wards. The optimization problem can be formulated as:

max
θ

Ex∼X , y∼πθ(·|x) [r(y;x)]−

βEx∼X [KL (πθ(· | x) ∥πref(· | x))] ,

where θ are the parameters of the policy πθ, πref is a refer-
ence policy (often the pre-trained or supervised-fine-tuned
language model), β is a scaling parameter that controls the
strength of regularization, and KL denotes the Kullback-
Leibler divergence.

3.2. Preference Modeling

We consider the scenario where given a prompt x, a set of
responses {yi} is generated, and human preferences over
these responses are represented as pairwise probabilities
P(yi ≻ yj | x) ∈ (0, 1), indicating the likelihood that
response yi is preferred over yj given the prompt x.

To model these preferences, we define a (pairwise) prefer-
ence score function:

s(yi ≻ yj | x) := log
P(yi ≻ yj | x)

1− P(yi ≻ yj | x)
,

which represents the log-odds of yi being preferred over
yj . This score function allows us to express the preference
probability as:

P(yi ≻ yj | x) = σ (s(yi ≻ yj | x)) , (3.1)

where σ(z) = 1/(1+ e−z) is the logistic function. One can
see that the BT model is a special case: s(yi ≻ yj | x) =
r(yi;x)− r(yj ;x).

3.3. Pair Preference Models

Existing approaches often involve concatenating the prompt
and responses with a template and training an LLM-based
sequential classifier in a supervised learning manner. For
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example, Jiang et al. (2023) simply concatenate the three
segments (x,y1,y2) sequentially and form a single input
sequence with special tokens as separators:

‘<s> <source> x </s> <candidate1> y1
</s> <candidate2> y2 </s>’

Then a sequential classification head on the last token is
trained to predict the preference. Another example is Munos
et al. (2023), which uses the following template for text
summarization:

‘You are an expert summary rater. Given
a piece of text and two of its possible
summaries, output 1 or 2 to indicate
which summary is better.
Text - 〈text〉, Summary 1 - 〈summary1〉,
Summary 2 - 〈summary2〉.
Preferred Summary -’

Then use the last logit for an arbitrarily chosen token as
s(y1 ≻ y2|x) for training.

However, due to the language model’s position encod-
ing (Press et al., 2021; Su et al., 2024) and the causal at-
tention (Radford et al., 2018; 2019) mechanism not being
symmetric, the candidate’s order in the concatenation will
affect the final prediction results. It is mitigated by randomly
shuffling the two responses in the training dataset but the
output is still highly asymmetric. Another limitation is that
how to represent the preference score can be highly ad-hoc.
The two examples above already use different templates and
different model architectures (sequential classification v.s.
language modeling).

3.4. Preference-based Reinforcement Learning from
Human Feedback

To address the potential intransitive human preference, the
preference-based LLM alignment algorithms (Munos et al.,
2023; Azar et al., 2023; Wu et al., 2024b; Rosset et al., 2024)
have been proposed to directly work on the preference pairs
instead of assuming a reward function.

Given a preference oracle P (y ≻ y′ | x). The objective is
to find a policy π that performs well against another compet-
ing policy π′ in terms of these preference probabilities. For
example, Azar et al. (2023) consider competing with another
fixed policy µ (X denotes the distribution over prompts):

max
π

Ex∼X

[
Ey∼π(·|x), y′∼µ(·|x)

[
P
(
y ≻ y′ | x

)]
− βKL

(
π∥πref

)]
,

Other works (Munos et al., 2023; Wu et al., 2024b; Rosset
et al., 2024) consider solving the two-player constant-sum

game:

max
π

min
π′

Ex∼X f
[
Ey∼π(·|x), y′∼π′(·|x) [P (y ≻ y′ | x)]

]
.

To simplify notation, we define the winning probability of a
policy π over another policy π′ as:

P (π ≻ π′ | x) = Ey∼π(·|x), y′∼π′(·|x) [P (y ≻ y′ | x)] .

The optimization problem then becomes:

max
π

min
π′

Ex∼X [P (π ≻ π′ | x)] . (3.2)

4. General Preference Embedding Model
In this section, we propose a general preference embedding
framework that can efficiently and expressively model hu-
man preferences. Each response is embedded as a vector in a
latent space, and the preferences are modeled through inter-
actions between these embeddings using a skew-symmetric
operator. We first define preference embeddings, which
serve as the foundation for modeling the relationships be-
tween responses.

Definition 4.1 (Preference Embeddings). Given a prompt x,
we assign to each response y a preference embedding vector
vy|x ∈ R2k. These embeddings are designed to capture the
features relevant to human preferences beyond what can be
represented by scalar rewards.

Next, to model the directional nature of preferences, we
introduce the skew-symmetric preference operator, which
ensures that the model respects the skew-symmetry (anti-
symmetry) in preference modeling.

Definition 4.2 (Skew-symmetric Preference Operator). To
capture the directional nature of preferences, we define
a skew-symmetric (anti-symmetric) preference operator
R≻ ∈ R2k×2k. Specifically, R≻ is a block-diagonal ma-
trix consisting of k skew-symmetric blocks of the form (for
more discussion, please see Appendix A):

Rl =

[
0 −1
1 0

]
, l = 1, . . . , k.

An example of R≻ for k = 2 is:

R≻ =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Finally, we define the preference score, which quantifies
the degree to which one response is preferred over another.
This score is calculated based on the interaction between the
preference embeddings, mediated by the skew-symmetric
operator.
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Definition 4.3 (Preference Score). The preference score
between two responses yi and yj using preference embed-
dings is defined as:

s(yi ≻ yj | x) =
〈
R≻vyi|x,vyj |x

〉
, (4.1)

where ⟨·, ·⟩ denotes the inner product in R2k. This score
captures the anti-symmetric relationship between responses
induced by human preferences.

We model the preference probability using the logistic func-
tion as defined in (3.1)). Our general preference embedding
model (GPM) exhibits two desirable properties:

1. Skew-symmetry. The preference score function is skew-
symmetric, satisfying:

s(yi ≻ yj | x) = −s(yj ≻ yi | x).

This reflects the fact that the preference relation is nat-
urally skew-symmetric: if yi is preferred over yj with
probability pi,j , then yj is preferred over yi with proba-
bility 1− pi,j .
Specifically,

s(y ≻ y | x) =
〈
R≻vy|x,vy|x

〉
= 0.

This means that a response is neither superior nor inferior
to itself.

2. Magnitude preserving. The skew-symmetric preference
operator does not change the representation vector’s mag-
nitude, which makes this operation stable for training
and inference.〈

R≻vy|x,R
≻vy|x

〉
=
〈
vy|x,vy|x

〉
.

Relation to Bradley-Terry Model. If we set k = 1,
vy = [r(y | x), c]⊤, where c is a constant and c ̸= 0 (e.g.,

c = 1), and R≻ =

[
0 −1
1 0

]
, then the preference score

reduces to:

s(yi ≻ yj | x) = c
(
r(yi | x)− r(yj | x)

)
,

and the preference probability becomes:

P(yi ≻ yj | x) = σ
[
c
(
r(yi | x)− r(yj | x)

)]
,

which is exactly the Bradley-Terry (BT) model as a disk
game (Balduzzi et al., 2019).

4.1. Expressiveness of the Model

Our general preference embedding model is fully expres-
sive for any real skew-symmetric preference matrix (see
Appendix A.1 for complex representations interpretation).
Specifically, we establish the following theorem (similar
results have been proved in Balduzzi et al. (2018)):

Theorem 4.4 (Expressiveness of Preference Embedding
Model). Let P ∈ Rk×k be a real skew-symmetric matrix
(i.e., P = −P⊤). Then there exist vectors {vi}ki=1 ⊂
R2k and a block-diagonal skew-symmetric matrix R≻ ∈
R2k×2k, with R≻ consisting of k blocks of the form:

Rl =

[
0 −1
1 0

]
, l = 1, . . . , k,

such that:
Pij = v⊤

i R
≻vj , ∀ i, j.

Theorem 4.4 suggests that our preference embedding frame-
work can theoretically model arbitrary complex and poten-
tially intransitive (e.g., cyclic) preference structures (see
Appendix C for proofs).

4.2. Implementing General Preference Embedding
Model

When the preference score matrix P has an even dimension,
i.e., P ∈ R2k×2k, we have a more interesting interpretation
based on spectral decomposition.
Theorem 4.5. Let P ∈ R2k×2k be a real skew-symmetric
matrix (i.e., P = −P⊤). Then there exist embeddings
{vi}2ki=1 ⊂ R2k and a block-diagonal skew-symmetric ma-
trix R≻ ∈ R2k×2k, such that:

Pij = v⊤
i R

≻vj , ∀ i, j.

Moreover, the representations {vi} can be constructed from
the orthogonal matrix U in the decomposition of P, scaled
by the square roots of the positive eigenvalues of P.

To effectively capture general preferences while maintaining
computational efficiency, we implement our preference em-
bedding model by augmenting an existing language model
with two additional components: an eigenvalue scale gate
and an eigenvector embedding head. The embeddings vy|x
are derived from the final hidden state of the language model
after processing the prompt x and response y.

Eigenvalue Scale Gate. The eigenvalue scale gate Gλ

computes context-dependent scaling factors {λl(x)}, where
λl(x) ≥ 0, based solely on the prompt x:

{λl(x)} = Gλ(x).

This component models how different preference dimen-
sions are weighted in the context of the given prompt, effec-
tively adjusting the importance of various aspects such as
helpfulness, instruction-following, and creativity.

Eigenvector Embedding Head. The eigenvector embed-
ding head Ev generates embeddings vy|x for each response
y in the context of the prompt x:

vy|x = Ev(x,y).
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These embeddings capture the nuanced characteristics of
the responses relevant to human preferences.

Preference Score. The preference score between two re-
sponses is computed as:

s(yi ≻ yj | x) = v⊤
yi|xD(x)R≻D(x)vyj |x.

where D(x) is a block-diagonal matrix with blocks√
λl(x)I2, and R≻ is the skew-symmetric preference op-

erator. We normalize the embeddings vy|x to have unit
length ∥vy|x∥2 = 1 to ensure training stability and bound-
edness of the preference score (see Appendix C for details
on boundedness related to Theorem 5.1).

Automatic Subspace Discovery. The use of multiple di-
mensions in the embeddings allows the model to discover
different subspaces corresponding to various preference di-
mensions automatically. Each pair of dimensions can cap-
ture distinct aspects of preferences, such as helpfulness,
correctness, or stylistic elements. The context-dependent
eigenvalues λl(x) modulate the contributions of these sub-
spaces based on the prompt, enabling the model to adapt to
varying user preferences dynamically.

5. General Preference Optimization
Policy Optimization with Preference Score. Once we
have a general preference model that outputs the preference
score s(yi ≻ yj |x) at hand, we aim to find a policy π that
performs well against an opponent policy µ in terms of
expected preference scores. The optimization problem is
formulated as:

max
θ

Ex

[
Ey∼πθ(·|x), y′∼µ(·|x) [s(y ≻ y′ | x)]

]
− βEx [KL (πθ(· | x)∥πref(· | x))] , (5.1)

where πref is a reference policy (e.g., the initial language
model), µ is the opponent policy (usually the same as πref),
and β > 0 is a regularization parameter controlling the di-
vergence from the reference policy. We would like to point
out that this formulation is different from the many previ-
ous works (Wu et al., 2024b; Swamy et al., 2024; Rosset
et al., 2024; Munos et al., 2023; Azar et al., 2023) as they
consider maximizing the win rate P(y ≻ y′|x), while our
formulation is to maximize s(y ≻ y′|x) = log P(y≻y′|x)

P(y≺y′|x) .
Note that P(y ≻ y′|x) only varies between 0 and 1, while
s(y ≻ y′|x), can be seen as a generalized version of the
reward r(y;x) in RLHF or DPO (see Section 4), can take
arbitrary values.

General Preference Optimization (GPO). We consider the
iterative preference optimization process such as SPPO (Wu
et al., 2024b), while we use preference score instead of pref-
erence probability in the loss form. SPPO used K responses
for each prompt x and calculated the empirical win rate of

each response yk. Instead, we calculate ŝ (yi ≻ µ | x) to
estimate the empirical win rate over the distribution µ as
below:

ŝ (yi ≻ µ | x) = 1

K

K∑
k=1

s (yi ≻ yk | x) ,∀i ∈ [K],

(5.2)
At each iteration t, GPO has the following learning objec-
tive:

θt+1 =argmin
θ

Ex∼X ,y∼πθt (·|x)

[(
log

πθ(y | x)
πθt

(y | x)

− 1

β

(
ŝ (y ≻ πθt | x)− logZπθt

(x)
))2

]
, (5.3)

where we have the normalizing factor Zπθt
(x) :=∑

y πθt(y|x) exp (ŝ (y ≻ πθt | x)). In practice, we di-
rectly replace logZπθt

(x) with 01.

Intuitively, if a response y receives a high average score,
GPO will increase its log probability. We report the em-
pirical performance of GPO in Section 6.3. The following
theorem establishes the convergence properties of GPO:

Theorem 5.1. Consider the optimization problem defined
by the GPO loss (5.3) and assume it is realizable. Let
{πθt

}Tt=1 denote the sequence of policies generated by GPO,
and define π̄T = 1

T

∑T
t=1 πθt

as the average policy. Given
that the preference score s is bounded within [−ρ, ρ], by
setting β = Θ

(√
T
)

, we have:

max
π

s (π ≻ π̄T )−min
π

s (π ≺ π̄T ) = O

(
1√
T

)
.

Connection to Policy Gradient. Applying policy gradient
on (5.1) gives:

Ex∼X ,y∼πθ

[(
ŝ(y ≻ πθt

)− β log
πθ(y|x)
πθt

(y|x)

)
∇θ log πθ(y|x)

]
= Ex∼X ,y∼πθ

[
−∇θ

(
ŝ(y ≻ πθt)− β log

πθ(y|x)
πθt

(y|x)

)2]
.

So Equation (5.3) can also be seen as a policy gradient
method for the optimization problem (5.1).

Remark 5.2. Note that the general preference score given
by our GPM can also be integrated as a preference (re-
ward) signal for many other off-the-shelf RLHF and prefer-
ence optimization methods, including (iterative) DPO-based

1In late stages of the iterative training, πθt is close to equilib-
rium so the preference model can not distinguish between policy
πθ and the opponent policy πθt ( meaning ŝ (y ≻ πθt | x) ≈ 0).
Therefore, we have logZπθt

(x) ≈ 0.
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methods (Rafailov et al., 2024), IPO (Azar et al., 2023),
NLHF (Munos et al., 2023), SPPO (Wu et al., 2024b) and
REBEL (Gao et al., 2024), as well as PPO-based meth-
ods (Ouyang et al., 2022) by directly optimizing prob-
lem (5.1).

6. Experiments
We conducted several experiments to evaluate the effective-
ness of the proposed General Preference embedding Model
(GPM) in comparison to traditional reward-based models,
particularly focusing on its ability to model general prefer-
ence and improve language model alignment.

Table 1. Comparison of Bradley-Terry (BT) reward models and
General Preference embedding models (GPM) on cyclic preference
datasets. Cyclic No. 1: Honest ≻ Truthful ≻ Helpful ≻
Honesty; Cyclic No. 2: IF ≻ Truthful ≻ Helpful ≻ IF;
Cyclic No. 3: IF ≻ Honesty ≻ Helpful ≻ IF; Cyclic No. 4:
IF ≻ Honesty ≻ Truthful ≻ IF.

Model Dataset Acc. (%)

Random Guess 50.0

BT RM Cyclic No. 1 62.4
GPM Cyclic No. 1 100.0 (+37.6)

BT RM Cyclic No. 2 61.6
GPM Cyclic No. 2 100.0 (+38.4)

BT RM Cyclic No. 3 50.0
GPM Cyclic No. 3 100.0 (+50.0)

BT RM Cyclic No. 4 62.9
GPM Cyclic No. 4 100.0 (+37.1)

6.1. Experiments on RewardBench

We compare the GPM and BT reward model on the Re-
wardBench benchmark (Lambert et al., 2024), which covers
diverse preference modeling tasks, including Chat, Chat-
Hard, Safety, and Reasoning.

Datasets and Experimental Setup. We train both BT RMs
and GPMs using the decontaminated version of Skywork
Reward Data Collection (Liu & Zeng, 2024), which contains
around 80k pairwise preference data from tasks in various
domains. We evaluate both models on RewardBench, us-
ing two different base models: Gemma-2B-it (Team et al.,
2024) (2B parameters) and Llama-3.1-8B-Instruct (Dubey
et al., 2024) (8B parameters), which are well-suited for
instruction-following tasks (please refer to Appendix E.3
for the implementation details).

Results and Analysis. The results are presented in Table 2.
On RewardBench, using the Gemma-2B-it base model,
GPM achieves an average score of 82.29%, which is an
improvement of 7.44% over the BT model’s average score
of 74.85%. Specifically, in the Chat task, GPM improves
performance from 67.32% (BT RM) to 79.61%, and in the
Chat-Hard task, from 63.37% to 75.66%. For the Llama-

3.1-8B-Instruct base model, GPM achieves an average score
of 91.90% (embedding dimension 8), representing a 1.34%
improvement over the BT model’s average score of 90.56%.
In the Chat task, GPM improves from 88.55% (BT RM) to
93.58%, and in the Chat-Hard task, from 85.75% to 88.38%.
These results indicate that GPM generally outperforms the
BT model across various base models and tasks, particularly
in the Chat and Chat-Hard categories which may involve
more nuanced or complex preferences. Note that BT RM
is a special case of GPM when the embedding dimension
d = 1 (see Section 4). Further analysis on challenging cases
is in Appendix E.1.

Ablation studies. We conducted ablation studies to assess
the impact of varying the embedding dimension in GPM.
As shown in Table 2, the performance of GPM varies with
the embedding dimension. For the Llama-3.1-8B-Instruct
base model, an embedding dimension of 8 achieves the high-
est average score of 91.90%, compared to 91.86% with a
dimension of 6 and 91.60% with a dimension of 4. In the
Chat-Hard task with the same base model, the highest score
of 88.38% is achieved with an embedding dimension of 2,
compared to 87.50% with dimension 8. In addition, we can
find that for the Gemma-2B-it base model, the highest aver-
age score of 82.29% is achieved with an embedding dimen-
sion of 6, showing an improvement over lower dimensions,
such as 80.43% with dimension 4. These results suggest
that the optimal embedding dimensions vary across different
base models and tasks. For additional ablation studies on
GPM architecture design, please refer to Appendix E.1.

6.2. Cyclic Preference Modeling

We evaluate the ability of GPM to capture intransitive, cyclic
preferences that traditional transitive models (like the BT
model) struggle to represent. Specifically, we evaluate
GPMs and BT RMs on CyclicPreference datasets, which are
constructed based on the Ultrafeedback dataset (Cui et al.,
2024) (See Appendix E).

Training and Evaluation. We trained GPMs and BT RMs
using the Gemma-2B-it language model as the base and
evaluated the models based on their ability to predict in-
transitive preferences. For GPM, the loss function is Equa-
tion (A.1). For the Bradley-Terry (BT) model, the loss func-
tion is L = − log σ(rw − rl) (Ouyang et al., 2022). Since
cyclic preferences are inherently intransitive, we measure
accuracy as the percentage of correctly predicted human
preferences, where higher scores indicate better handling
of non-transitive preferences. As shown in Table 1, the GP
representation model achieves near-perfect accuracy across
all datasets, significantly outperforming the BT model (we
report the test accuracy on the training dataset but with dif-
ferent comparison pairs used in the training dataset). These
results validate GPM’s ability to capture complex, cyclic
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Table 2. Comparison between the Bradley-Terry (BT) models and the General Preference embedding models (GPM) with varying
embedding head dimensions on RewardBench. The highest scores are in bold. Note that BT RM is a special case of GPM when
embedding dimension d = 1 (see Section 4).

Model Embed Dim. Chat Chat-Hard Safety Reasoning Average

Base Model: Gemma-2B-it

BT RM 1 67.32 63.37 85.68 83.04 74.85
GPM 2 77.37 73.46 85.00 85.50 80.33

4 78.77 72.59 85.54 84.82 80.43
6 79.61 75.66 85.27 88.61 82.29 (+7.44)
8 78.49 74.34 84.19 86.95 81.00

Base Model: Llama-3.1-8B-Instruct

BT RM 1 88.55 85.75 91.49 96.47 90.56
GPM 2 91.62 88.38 90.68 94.82 91.37

4 93.30 86.18 91.22 95.69 91.60
6 91.90 87.50 91.62 96.40 91.86
8 93.58 87.50 91.08 95.44 91.90 (+1.34)

Table 3. AlpacaEval 2.0 evaluation results. Base model: Llama3-8B-it. Evaluator: GPT-4-turbo. Results grouped by RM/GPM size
(2B/8B) and type (BT/GPM), and training iterations (Iter). Bold entries indicate GPM outperforms BT RM under the same SPPO/GPO
setting. Metrics follow AlpacaEval 2.0 standard: LC. WR = Length-Controlled Win Rate (%), WR = Win Rate (%) against the reference
model (GPT-4-turbo), Avg. Len = Average response length (tokens).

Size Type Iter SPPO GPO
LC. WR WR Avg. Len LC. WR WR Avg. Len

base 23.07 23.34 1959 23.07 23.34 1959

2B BT RM 1 31.95 31.59 1939 34.01 33.08 1929
2 36.00 36.77 2032 38.90 39.90 2049
3 40.01 42.12 2136 42.21 44.20 2151

GPM 1 30.87 32.48 (+0.89) 2066 35.27 37.95 (+4.87) 2102
2 34.54 40.76 (+3.99) 2301 36.77 42.96 (+3.06) 2343
3 36.06 45.61 (+3.49) 2498 37.74 48.25 (+4.05) 2582

8B BT RM 1 32.20 27.83 1740 36.32 30.37 1702
2 39.75 36.95 1868 41.79 40.11 1933
3 42.55 40.92 1948 40.37 38.56 1969

GPM 1 33.48 30.85 (+3.02) 1861 36.00 33.19 (+2.82) 1850
2 37.93 38.38 (+1.43) 2029 40.81 42.80 (+2.69) 2115
3 39.45 41.64 (+0.72) 2385 38.98 41.54 (+2.98) 3249

preferences, confirming the theoretical advantages of using
a preference embedding-based approach over traditional
reward models that assume transitivity.

6.3. Downstream Performance on Aligning Language
Models with Human Preferences

We further investigate the effectiveness of GPM in lan-
guage model alignment using Self-Play Policy Optimization
(SPPO) (Wu et al., 2024b) and our proposed General Pref-
erence Optimization (GPO), integrating preference scores
provided by our GP representation model (GPM). We eval-
uated the models on AlpacaEval 2.0 (Dubois et al., 2024),
MT-Bench (Zheng et al., 2023), GSM8K, MMLU, etc., sev-
eral widely used benchmarks for evaluating LLM alignment.

Results and Analysis. The evaluation results on the bench-
marks are as follows. For AlpacaEval 2.0, we compared

the generated responses of the aligned models with those
of GPT-4o-mini and GPT-4-turbo. The results of the three
evaluators are presented in Tables 3 and 5. From Table 3, we
observe that both SPPO and GPO demonstrate improved win
rates with successive iterations, highlighting the iterative
nature of these optimization methods, and GPO consistently
outperforms SPPO. In addition, the bolded entries indicate
that GPM-integrated methods consistently outperform BT
RM-based methods under the same settings on Win Rate
(WR).

7. Conclusion
In this work, we introduce preference embedding, a frame-
work for modeling human preferences that can capture com-
plex, intransitive structures. Our General Preference em-
bedding model (GPM) achieves linear complexity while

8
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can model intricate preference relationships. It consistently
outperforms traditional models like Bradley-Terry reward
models across various benchmarks, including cyclic pref-
erence datasets and real-world tasks from RewardBench.
Additionally, incorporating preference scores from GPM
into policy optimization methods, such as SPPO and the
newly introduced General Preference Optimization (GPO),
led to performance improvements in downstream tasks that
require alignment with intricate human preferences.

Impact Statement
This paper presents work to align AI systems with human
preferences and values. Improving AI alignment could lead
to more reliable and helpful AI systems that better serve
human needs while respecting human values. The enhanced
ability to model complex, intransitive preferences could
result in AI systems that better understand and accommo-
date nuanced human judgments across different contexts.
This advancement underscores the potential of AI alignment
algorithms in both technological and societal contexts.

Acknowledgements
We thank Andrew Yao, Yang Yuan, Kaifeng Lyu, Haodong
Wen, and Yifan Luo for helpful discussions and feedback.
We also thank the anonymous reviewers for their valuable
comments and suggestions, which helped us significantly to
improve this paper.

References
Agranov, M. and Ortoleva, P. Stochastic choice and prefer-

ences for randomization. Journal of Political Economy,
125(1):40–68, 2017.

Azar, M. G., Rowland, M., Piot, B., Guo, D., Calandriello,
D., Valko, M., and Munos, R. A general theoretical
paradigm to understand learning from human preferences.
arXiv preprint arXiv:2310.12036, 2023.

Balduzzi, D., Tuyls, K., Perolat, J., and Graepel, T. Re-
evaluating evaluation. Advances in Neural Information
Processing Systems, 31, 2018.

Balduzzi, D., Garnelo, M., Bachrach, Y., Czarnecki, W.,
Perolat, J., Jaderberg, M., and Graepel, T. Open-ended
learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR,
2019.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Bertrand, Q., Czarnecki, W. M., and Gidel, G. On the
limitations of the elo, real-world games are transitive,
not additive. In International Conference on Artificial
Intelligence and Statistics, pp. 2905–2921. PMLR, 2023.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International Conference on Machine
Learning, pp. 1597–1607. PMLR, 2020.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cui, G., Yuan, L., Ding, N., Yao, G., He, B., Zhu, W.,
Ni, Y., Xie, G., Xie, R., Lin, Y., Liu, Z., and Sun, M.
Ultrafeedback: Boosting language models with scaled ai
feedback, 2024. URL https://arxiv.org/abs/
2310.01377.

Czarnecki, W. M., Gidel, G., Tracey, B., Tuyls, K., Omid-
shafiei, S., Balduzzi, D., and Jaderberg, M. Real world
games look like spinning tops. Advances in Neural Infor-
mation Processing Systems, 33:17443–17454, 2020.

Dong, H., Xiong, W., Pang, B., Wang, H., Zhao, H., Zhou,
Y., Jiang, N., Sahoo, D., Xiong, C., and Zhang, T. Rlhf
workflow: From reward modeling to online rlhf. arXiv
preprint arXiv:2405.07863, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sra-
vankumar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang,
A., and et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Dudı́k, M., Hofmann, K., Schapire, R. E., Slivkins, A., and
Zoghi, M. Contextual dueling bandits. In Conference on
Learning Theory, pp. 563–587. PMLR, 2015.

Freund, Y. and Schapire, R. E. Adaptive game playing using
multiplicative weights. Games and Economic Behavior,
29(1-2):79–103, 1999.

Furuta, H., Lee, K.-H., Gu, S. S., Matsuo, Y., Faust, A.,
Zen, H., and Gur, I. Geometric-averaged preference opti-
mization for soft preference labels. Advances in Neural
Information Processing Systems, 37:57076–57114, 2024.

9

https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2407.21783


Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment

Gao, Z., Chang, J. D., Zhan, W., Oertell, O., Swamy, G.,
Brantley, K., Joachims, T., Bagnell, J. A., Lee, J. D., and
Sun, W. Rebel: Reinforcement learning via regressing
relative rewards. arXiv preprint arXiv:2404.16767, 2024.

Gardner, M. Mathematical games. Scientific american, 222
(6):132–140, 1970.

Hu, J., Wu, X., Wang, W., Xianyu, Zhang, D., and Cao, Y.
Openrlhf: An easy-to-use, scalable and high-performance
rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Jiang, D., Ren, X., and Lin, B. Y. Llm-blender: Ensembling
large language models with pairwise ranking and genera-
tive fusion. arXiv preprint arXiv:2306.02561, 2023.

Lambert, N., Pyatkin, V., Morrison, J., Miranda, L.,
Lin, B. Y., Chandu, K., Dziri, N., Kumar, S., Zick,
T., Choi, Y., Smith, N. A., and Hajishirzi, H. Re-
wardbench: Evaluating reward models for language
modeling. https://huggingface.co/spaces/
allenai/reward-bench, 2024.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 5 2023.

Liang, X., Chen, C., Wang, J., Wu, Y., Fu, Z., Shi, Z., Wu, F.,
and Ye, J. Robust preference optimization with provable
noise tolerance for llms. arXiv e-prints, pp. arXiv–2404,
2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, C. Y. and Zeng, L. Skywork reward model
series. https://huggingface.co/Skywork,
September 2024. URL https://huggingface.
co/Skywork.

Lou, H., Jin, T., Wu, Y., Xu, P., Gu, Q., and Farnoud, F.
Active ranking without strong stochastic transitivity. Ad-
vances in neural information processing systems, 35:297–
309, 2022.

Meng, Y., Xia, M., and Chen, D. Simpo: Simple preference
optimization with a reference-free reward. arXiv preprint
arXiv:2405.14734, 2024.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. Advances in neural informa-
tion processing systems, 26, 2013.

Mitchell, E. A note on dpo with noisy preferences & rela-
tionship to ipo, 2023.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and Long-
pre, S. Octopack: Instruction tuning code large language
models. arXiv preprint arXiv:2308.07124, 2023.

Munos, R., Valko, M., Calandriello, D., Azar, M. G., Row-
land, M., Guo, Z. D., Tang, Y., Geist, M., Mesnard, T.,
Michi, A., et al. Nash learning from human feedback.
arXiv preprint arXiv:2312.00886, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Owen, G. Game theory. Emerald Group Publishing, 2013.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. openai.com, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Rosset, C., Cheng, C.-A., Mitra, A., Santacroce, M., Awadal-
lah, A., and Xie, T. Direct nash optimization: Teaching
language models to self-improve with general preferences.
arXiv preprint arXiv:2404.03715, 2024.
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A. More on General Preference Embedding
In this section, we present additional discussion on general preference modeling with preference embeddings.

Proposition A.1. For any two vectors vi ∈ R2k and vj ∈ R2k, if R ∈ R2k×2k satisfies the following two properties:

1. Skew-symmetry: ⟨Rvi,vj⟩ = −⟨Rvj ,vi⟩.

2. Magnitude preserving: ⟨Rvi,Rvi⟩ = ⟨vi,vi⟩.

Then R must be in the form R = UJU⊤, where U ∈ R2k×2k is an orthonormal matrix (e.g. identity matrix I2k) and J is a
block-diagonal matrix consisting of k skew-symmetric blocks of the form:

Jl =

[
0 −1
1 0

]
, l = 1, . . . , k.

A.1. Complex Embeddings Interpretation

Our model can also be interpreted using complex embeddings. By representing the embeddings as complex vectors vy ∈ Ck,
we can express the preference score as:

s(yi ≻ yj | x) = Im
(
⟨vyi

,vyj
⟩
)
,

where Im(·) denotes the imaginary part, and ⟨·, ·⟩ is the Hermitian inner product. This formulation captures cyclic and
intransitive preferences through the angular relationships between complex presentations.

Theorem A.2 (Expressiveness of Complex Preference Embeddings). Let P ∈ Rk×k be a real skew-symmetric matrix (i.e.,
P = −P⊤). Then, there exist complex vectors {vi}ki=1 ⊂ Ck such that:

Pij = Im (⟨vi,vj⟩) , ∀ i, j.

Example. For k = 1, let vy = eiθy , then:

s(yi ≻ yj | x) = sin(θyi
− θyj

).

(a) Cyclic 3 (b) Cyclic 4 (c) Cyclic 5

Figure 3. Visualization of learned preference embedding vectors for cyclic preferences with sizes 3, 4, and 5, e.g., A ≻ B ≻ C ≻ A.
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A.2. Training Objective

The preference embedding can thus be obtained by minimizing the cross-entropy loss over observed preference data. Given
a dataset (x,yw,yl) ∼ D of preference comparisons, we denote P(yw ≻ yl|x) as the probability of the winner yw being
chosen over the loser yl (1 if hard preference is given). The cross-entropy loss function is:

LCE = −
∑

(x,yw,yl)∈D

[
PD(yw ≻ yl | x) log σ

(
1

β
s(yw ≻ yl | x)

)

+(1− PD(yw ≻ yl | x)) log σ
(
− 1

β
s(yw ≻ yl | x)

)]
.

(A.1)

Alternatively, if there is an oracle providing continuous scores, we can use a regression loss:

LMSE =
∑

(x,yw,yl)∈D

(
1

β
s(yw ≻ yl | x)− sD(yw ≻ yl | x)

)2

,

where sD(yw ≻ yl | x) is the dataset-provided score satisfying σ (sD(yw ≻ yl | x)) = PD(yw ≻ yl | x).

B. More on General Preference Optimization
Note that General Preference Optimization (GPO) employs an iterative framework inspired by the multiplicative weights
update (MWU) algorithm (Freund & Schapire, 1999), which update rule is formulated as:

πt+1(y | x) ∝ πt(y | x) exp (η · s (y ≻ πt | x)) ,
t = 1, 2, . . . ,

where η denotes the learning rate and s (y ≻ πt | x) represents the preference score of response y over the current policy πt

given prompt x.

The von Neumann winner represents a fundamental concept in social choice theory (Sen, 1986) that has found significant
applications in preference-based reinforcement learning (Owen, 2013; Dudı́k et al., 2015). It corresponds to the Nash
equilibrium of a two-player symmetric game (3.2), representing a mixed strategy—a probability distribution over possible
responses—that performs optimally against any opponent in the worst-case scenario.

For notational clarity, we define the preference score of a policy π over another policy π′ as:

s (π ≻ π′ | x) = Ey∼π(·|x), y′∼π′(·|x) [s (y ≻ y′ | x)] .

A distribution π∗ is formally defined as a von Neumann winner when it satisfies:

min
π′∈∆

Ex∼X [s (π∗ ≻ π′ | x)] ≥ 0.

This condition ensures that π∗ is, on average, at least as preferred as any other policy π′. The symmetric nature of the
two-player game (3.2) guarantees the existence of such a winner.

C. Proofs of Theorems
C.1. Proof of Proposition A.1.

Proof. Let R ∈ R2k×2k be a real matrix satisfying the following properties:

1. Skew-symmetry with respect to the inner product:

⟨Rv,w⟩ = −⟨Rw,v⟩, ∀v,w ∈ R2k.

2. Magnitude preserving:
⟨Rv,Rv⟩ = ⟨v,v⟩, ∀v ∈ R2k.
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Recall that the standard inner product in R2k is given by ⟨v,w⟩ = v⊤w, which is symmetric: ⟨v,w⟩ = ⟨w,v⟩.

From the skew-symmetry condition, we have:

⟨Rv,w⟩+ ⟨Rw,v⟩ = 0, ∀v,w ∈ R2k.

Since ⟨Rw,v⟩ = (Rw)⊤v = w⊤R⊤v, the above condition becomes:

v⊤R⊤w +w⊤R⊤v = 0, ∀v,w ∈ R2k.

This implies that R⊤ is skew-symmetric:

R⊤ = −R.

From the magnitude-preserving property, we have:

⟨Rv,Rv⟩ = (Rv)⊤Rv = v⊤R⊤Rv = v⊤v, ∀v ∈ R2k.

Therefore,

R⊤R = I2k.

Using R⊤ = −R, we obtain:

(−R)R = I2k ⇒ R2 = −I2k.

This shows that R satisfies the equation R2 = −I2k.

The characteristic polynomial of R is then:

det(R− λI2k) = 0.

Since R2 = −I2k, it follows that the eigenvalues λ satisfy:

λ2 = −1 ⇒ λ = ±i.

Thus, R has eigenvalues ±i, each with algebraic multiplicity k.

Because R is real and skew-symmetric, it can be brought into block-diagonal form via an orthogonal transformation.
Specifically, there exists an orthogonal matrix U ∈ R2k×2k such that:

R = UJU⊤,

where

J = blockdiag(J1,J2, . . . ,Jk),

and each block Jl is a 2× 2 skew-symmetric matrix of the form:

Jl =

[
0 −1
1 0

]
, l = 1, . . . , k.

This decomposition leverages the standard canonical form for real skew-symmetric matrices, which states that any such
matrix can be orthogonally diagonalized into blocks of this type.

Therefore, R can be expressed as:

R = UJU⊤,

where U ∈ R2k×2k is an orthogonal matrix, and J is the block-diagonal matrix consisting of k blocks Jl.

This completes the proof.
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C.2. Proof of Theorem 4.4.

Proof. We aim to represent the entries of the skew-symmetric matrix P ∈ Rk×k using vectors in R2k and a block-diagonal
skew-symmetric matrix R≻ ∈ R2k×2k.

For each i = 1, . . . , k, define the vector vi ∈ R2k as:

vi =

[
ai
bi

]
,

where ai,bi ∈ Rk are real vectors to be specified.

Set ai = ei, the i-th standard basis vector in Rk, and define bi as:

bi =
1

2
pi,

where pi is the i-th row of P. Thus, the j-th component of bi is (bi)j =
1
2Pij .

Define the block-diagonal matrix R≻ ∈ R2k×2k as:

R≻ = blockdiag(R1, . . . ,Rk),

where each block Rl is the 2× 2 skew-symmetric matrix:

Rl =

[
0 −1
1 0

]
, l = 1, . . . , k.

Now, compute the inner product v⊤
i R

≻vj :

v⊤
i R

≻vj =
[
a⊤i b⊤

i

] [0k×k −Ik
Ik 0k×k

] [
aj
bj

]
= −a⊤i bj + b⊤

i aj .

Since ai = ei, we have:

a⊤i bj = e⊤i bj = (bj)i =
1

2
Pji = −1

2
Pij , (C.1)

b⊤
i aj = b⊤

i ej = (bi)j =
1

2
Pij . (C.2)

Therefore,

v⊤
i R

≻vj = −
(
−1

2
Pij

)
+

1

2
Pij = Pij .

Thus, for all i, j,
Pij = v⊤

i R
≻vj .

This construction shows that any real skew-symmetric matrix P can be represented in terms of vectors {vi} ⊂ R2k and the
block-diagonal skew-symmetric matrix R≻.

This completes the proof.

C.3. Proof of Theorem 4.5.

Proof. Since P is real and skew-symmetric with even dimension 2k, it can be brought into block-diagonal form via an
orthogonal transformation. Specifically, there exists an orthogonal matrix U ∈ R2k×2k such that:

P = UΛU⊤,

16



Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment

where Λ is a block-diagonal matrix composed of k blocks λlJ, with λl ≥ 0 and

J =

[
0 −1
1 0

]
.

This decomposition leverages the fact that the eigenvalues of P are purely imaginary and occur in conjugate pairs ±iλl.

Define the block-diagonal matrix R≻ = blockdiag(J, . . . ,J) ∈ R2k×2k, and let

D = blockdiag(
√
λ1I2, . . . ,

√
λkI2) ∈ R2k×2k, where I2 is the 2× 2 identity matrix.

Observe that Λ = DR≻D.

Set V = UD. Then,
P = UΛU⊤ = UDR≻DU⊤ = VR≻V⊤.

Therefore,
Pij = v⊤

i R
≻vj , ∀ i, j,

where vi is the i-th row of V.

This construction shows that any real skew-symmetric matrix P can be represented in terms of embeddings {vi} and the
asymmetric operator R≻, confirming the full expressiveness of our preference representation model.

C.4. Proof of Theorem 5.1.

Proof. The proof follows the logic of standard multiplicative weights update analysis, adapted for our preference score
objective. First, since the preference score s is bounded in [−ρ, ρ], we can normalize it to [0, 1] by the transformation:

s̃(y ≻ y′ | x) = s(y ≻ y′ | x)
2ρ

+
1

2

By Theorem 1 in (Freund & Schapire, 1999), for any sequence of mixed policies µ1, µ2, . . . , µT , the sequence of policies
π1, π2, . . . , πT produced by GPO satisfies:

T∑
t=1

s̃(πt ≺ µt) ≤ min
π

[
η

1− e−η

T∑
t=1

s̃(π ≺ µt) +
KL(π∥π0)

1− e−η

]
,

where η = 1/β is the learning rate parameter in the MWU view (related to β in our GPO loss Eq. 5.3). The preference score
s is assumed bounded, which holds in our implementation due to L2 normalization of embeddings and bounded eigenvalues
(Section 4.2).

Setting µt = πt, note that s̃(πt ≺ πt) =
1
2 due to the normalization and symmetry. Thus:

T

2
≤ min

π

[
ηT

1− e−η
s̃(π ≺ π̄T ) +

KL(π∥π0)

1− e−η

]
where π̄T = 1

T

∑T
t=1 πt is the mixture policy.

Rearranging terms:
1− e−η

2η
≤ min

π

[
s̃(π ≺ π̄T ) +

KL(π∥π0)

ηT

]
Since π0 is an autoregressive model with finite vocabulary support, | log π0(·)| is bounded from above. Thus:

KL(π∥π0) ≤ ∥ log π0(·)∥∞

Setting η = ∥ log π0(·)∥∞√
T

and using Taylor expansion 1−e−η

2η = 1
2 − η

4 +O(η2):

1

2
− ∥ log π0(·)∥∞

4
√
T

+O(T−1) ≤ min
π

[s̃(π ≺ π̄T )] +

√
∥ log π0(·)∥∞

T
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Converting back to the original preference score scale:

min
π

[s(π ≺ π̄T )] ≥ −ρ

2
−O

(
ρ√
T

)

By symmetry:

max
π

[s(π ≻ π̄T )] ≤
ρ

2
+O

(
ρ√
T

)
Therefore, the duality gap is:

max
π

s(π ≻ π̄T )−min
π

s(π ≺ π̄T )

= max
π

s(π ≻ π̄T )−min
π

s(π ≺ π̄T )

= O

(
1√
T

)

Proof of Theorem A.2.

Proof. We aim to represent any real skew-symmetric matrix P ∈ Rk×k using the imaginary parts of inner products of
complex vectors.

For each i = 1, . . . , k, define the complex vector vi = ai + ibi, where ai,bi ∈ Rk. Let ai = ei, the i-th standard basis
vector in Rk, and set

bi =
1

2

k∑
j=1

Pijej .

This implies that the j-th component of bi is (bi)j =
1
2Pij .

The Hermitian inner product of vi and vj is

⟨vi,vj⟩ = (a⊤i − ib⊤
i )(aj + ibj) = a⊤i aj + b⊤

i bj + i (b⊤
i aj − a⊤i bj).

Therefore,
Im (⟨vi,vj⟩) = b⊤

i aj − a⊤i bj .

Compute b⊤
i aj and a⊤i bj :

b⊤
i aj = (bi)j =

1

2
Pij ,

a⊤i bj = (bj)i =
1

2
Pji = −1

2
Pij ,

since Pji = −Pij due to skew-symmetry.

Thus,

Im (⟨vi,vj⟩) =
1

2
Pij −

(
−1

2
Pij

)
= Pij .

Therefore, we have constructed complex vectors vi such that

Pij = Im (⟨vi,vj⟩) , ∀ i, j.

This completes the proof.
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D. More Related Work
Intransitivity in Game Theory. The symmetric zero-sum game and its intransitivity have also been frequently studied in
the context of game theory. Balduzzi et al. (2018) explored game decompositions into transitive and cyclic components,
proposing Nash averaging for agent evaluation. Balduzzi et al. (2019) generalized the results from matrix games to functional-
form games and proposed algorithms for diverse agent populations. Czarnecki et al. (2020) investigated the geometrical
properties of real-world games (e.g., Tic-Tac-Toe, Go, StarCraft II) and proposed that real-world games have a “spinning
top” geometry, with a strong transitive dimension and gradually diminishing non-transitive cyclic dimensions. Very recently,
Bertrand et al. (2023) examined the limitations of the Elo rating system and proposed an alternative “disc decomposition”
method that can better handle both transitive and cyclic game dynamics.

Representation Learning and Embedding. Representation learning involves learning transformations of data that make
it easier to extract useful information (Bengio et al., 2013). Techniques like word embeddings (Mikolov et al., 2013) and
contrastive learning (Chen et al., 2020; Radford et al., 2021) learn powerful representations for various tasks. While these
methods capture semantics or similarities, their direct application to modeling the directed, potentially asymmetric, and
intransitive nature of human preferences in RLHF has been less explored. Our GPM specifically introduces a structured
embedding space with a skew-symmetric operator tailored to capture these preference characteristics, offering a novel
application of representation learning principles to the alignment problem.

Alternative Preference/Reward Models. Beyond the standard BT model, other approaches exist. Pairwise preference
models (Section 3.3) often concatenate pairs, potentially suffering from order effects and quadratic complexity in the number
of responses per prompt. Multi-dimensional reward models like ArmoRM (Wang et al., 2024a) decompose reward into
interpretable dimensions (e.g., helpfulness, harmlessness). While offering interpretability, they typically require multi-
dimensional annotations and, being based on summing scalar rewards, may still struggle to represent complex intransitive
structures compared to GPM’s more general formulation (Theorem 4.4). GPM aims for expressiveness and automatic
discovery of preference dimensions from standard pairwise labels.

Preference Optimization Methods. Recent work has explored various algorithms beyond PPO for RLHF. DPO (Rafailov
et al., 2024) directly optimizes the policy using a derived reward. IPO (Azar et al., 2023) and related works (Mitchell, 2023;
Liang et al., 2024; Furuta et al., 2024) focus on robustness or handling noisy/soft preferences within the DPO framework.
For instance, Mitchell (2023) analyzed the relationship between DPO and IPO under noisy preferences, while Liang et al.
(2024) and Furuta et al. (2024) proposed robust preference optimization methods to handle noise and soft labels, respectively.
Nash-based methods (Munos et al., 2023; Swamy et al., 2024; Rosset et al., 2024; Wu et al., 2024b) explicitly consider the
game-theoretic aspect of finding optimal policies. Our GPO (Section 5) builds upon these ideas but uses the preference
score s directly, offering an alternative optimization target compared to win rates or implicit rewards. GPM’s preference
scores can potentially be integrated into many of these existing optimization frameworks.

E. More on Experiments
Cyclic Preference Dataset. We constructed a dataset by inducing cyclic preferences from the Ultrafeedback dataset (Cui
et al., 2024). The dataset includes responses evaluated across four key metrics: instruction following, honesty, truthfulness,
and helpfulness. We created preference cycles such as: instruction following ≻ honesty ≻ truthfulness
≻ helpfulness ≻ instruction following, ensuring the presence of intransitive cycles. We further generated
four sub-datasets by omitting one metric from each cycle, resulting in 4 different datasets with 216 to 363 instances.

We construct the Cyclic Preference Dataset using the following steps: 1. Filter Ultrafeedback for prompts with at least 3
responses where multi-aspect ratings (helpfulness, honesty, etc.) are available.

2. For a set of 3 responses (A, B, C) to the same prompt, check if ratings imply a cycle based on chosen criteria. Example:
If criterion 1 is Honesty and criterion 2 is Helpfulness, check if Rating(A, Honesty) ≻ Rating(B, Honesty), Rating(B,
Helpfulness) ≻ Rating(C, Helpfulness), and Rating(C, Honesty) ≻ Rating(A, Honesty). This implies a potential cycle A ≻
B ≻ C ≻ A across criteria. 3. Define pairwise preferences based on the higher rating for the specific criterion involved in
the cycle link (e.g., A ≻ B based on Honesty, B ≻ C based on Helpfulness, C ≻ A based on Honesty). 4. Collect these
cyclic triplets (or longer cycles) to form the datasets used in Table 1. Different datasets (Cyclic No. 1-4) were created by
focusing on cycles involving different combinations of the four criteria.
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E.1. Additional Ablation Studies

Ablations on Scale Gate and Embedding head. We investigate the effects of scale gates and embedding head dimensions,
with and without L2 normalization, on model performance. As shown in Table 4, for Gemma-2B-it models, incorporating
a scale gate generally enhances GPM performance across various embedding dimensions. L2 normalization on the
embedding head output consistently improves models with scale gates. Interestingly, Gemma-2B-it-based models without
L2 normalization or scale gates outperform those with L2 normalization but no scale gates. A plausible explanation for this
phenomenon is that removing L2 normalization introduces additional degrees of freedom, particularly beneficial for models
with smaller parameter spaces and high-dimensional embedding layers. This increased flexibility may allow the model to
utilize its limited parametric capacity better, potentially leading to enhanced expressiveness and task-specific adaptability.

Table 4. Impact of the embedding head and the scale gate on GPM’s performance on RewardBench. Dim. represents the dimension of the
embedding head. The highest average scores for each base model are in bold.

Embedding Type Dim. Chat Chat-Hard Safety Reasoning Average

Base Model: Gemma-2B-it

w. scale gate w. l2 2 77.37 73.46 85.00 85.50 80.33
w. scale gate w.o. l2 2 79.33 74.34 85.14 88.41 81.80
w. o. scale gate w. l2 2 78.49 71.27 85.68 86.13 80.39
w. o. scale gate w.o. l2 2 79.05 73.46 84.86 86.56 80.98

w. scale gate w. l2 4 78.77 72.59 85.44 84.82 80.43
w. scale gate w.o. l2 4 80.45 72.81 84.46 87.61 81.33
w. o. scale gate w. l2 4 79.61 70.39 85.00 86.84 80.46
w. o. scale gate w.o. l2 4 80.72 73.02 83.51 86.96 81.06

w. scale gate w. l2 6 79.61 75.66 85.27 88.61 82.29
w. scale gate w.o. l2 6 76.54 76.10 85.14 87.55 81.33
w. o. scale gate w. l2 6 79.61 71.05 85.81 87.74 81.05
w. o. scale gate w.o. l2 6 77.93 73.25 85.41 86.66 80.81

w. scale gate w. l2 8 78.49 74.34 84.19 86.95 81.00
w. scale gate w.o. l2 8 82.40 74.78 85.54 85.47 82.05
w. o. scale gate w. l2 8 77.09 72.15 86.08 85.41 80.18
w. o. scale gate w.o. l2 8 81.28 73.25 84.59 85.90 81.26

Base Model: Llama-3.1-8B-Instruct

w. scale gate w. l2 2 91.62 88.38 90.68 94.82 91.37
w. scale gate w.o. l2 2 93.85 86.84 90.68 91.60 90.74
w. o. scale gate w. l2 2 92.18 86.18 91.89 94.05 91.08
w. o. scale gate w.o. l2 2 93.30 87.94 91.22 93.55 91.50

w. scale gate w. l2 4 93.30 86.18 91.22 95.69 91.60
w. scale gate w.o. l2 4 94.13 86.18 89.86 90.55 90.18
w. o. scale gate w. l2 4 92.46 87.28 91.76 93.19 91.17
w. o. scale gate w.o. l2 4 93.58 86.40 90.95 95.33 91.56

w. scale gate w. l2 6 91.90 87.50 91.62 96.40 91.86
w. scale gate w.o. l2 6 93.02 85.75 91.08 91.31 90.29
w. o. scale gate w. l2 6 92.18 85.53 90.81 94.20 90.68
w. o. scale gate w.o. l2 6 93.30 87.94 90.95 90.90 90.77

w. scale gate w. l2 8 93.58 87.50 91.08 95.44 91.90
w. scale gate w.o. l2 8 93.02 87.06 90.81 92.20 90.77
w. o. scale gate w. l2 8 91.90 86.62 91.22 92.63 90.59
w. o. scale gate w.o. l2 8 93.02 87.72 90.68 90.16 90.39

E.2. Additional Experimental Results

More Results on Language Model Alignment. We further conduct additional evaluations of our fine-tuned models
using various benchmarks. AlpacaEval 2.0 evaluation results are listed in Table 5, using GPT-4o-mini as evaluators. For
MT-Bench, we used the default mode to let GPT-4 grade and give a score to the model’s answer, and the MT-Bench scores
of aligned models are presented in Table 6.
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Table 5. AlpacaEval 2.0 evaluation results. Base model: Llama3-8B-it, Evaluator: GPT-4o-mini. The results are grouped by the size and
type of the RM or PM, and the number of iterations. Bold entries indicate that GPM outperforms BT RM under the same training settings.

Size Type Iter SPPO GPO
LC. WR WR Avg. Len LC. WR WR Avg. Len

base 23.07 32.26 1959 23.07 32.26 1959

2B BT RM 1 48.84 46.09 1939 53.15 49.94 1929
2 59.77 58.41 2032 66.19 64.88 2049
3 66.81 67.14 2136 71.75 71.68 2151

GPM 1 48.09 49.15 (+3.06) 2066 55.66 57.12 (+7.18) 2102
2 56.63 63.53 (+5.12) 2301 61.11 67.78 (+2.90) 2343
3 60.77 70.91 (+3.77) 2498 64.52 74.78 (+3.10) 2582

8B BT RM 1 45.24 36.95 1740 49.77 40.26 1702
2 56.24 50.36 1868 60.75 56.30 1933
3 63.71 58.38 1948 62.63 59.17 1969

GPM 1 46.84 41.42 (+4.47) 1861 53.12 46.64 (+6.38) 1850
2 58.03 56.07 (+5.71) 2029 59.86 60.37 (+4.07) 2115
3 61.64 63.42 (+5.04) 2385 62.51 67.48 (+8.31) 3249

Table 6. MT-Bench evaluation results. Base model: Llama3-8B-it, Evaluator: GPT-4. Bold entries indicate that GPM outperforms BT RM
under the same training settings.

Size Type Iter SPPO GPO
1st 2nd Avg. 1st 2nd Avg.

base 8.31 7.77 8.03 8.31 7.77 8.03

2B BT RM 1 8.42 7.57 8.00 8.33 7.85 8.09
2 8.20 7.73 7.96 8.30 7.66 7.98
3 8.44 7.66 8.05 8.41 8.09 8.25

GPM 1 8.23 7.65 7.94 8.70 7.95 8.33
2 8.53 8.24 8.38 8.69 8.01 8.35
3 8.39 7.84 8.12 8.48 7.76 8.12

8B BT RM 1 8.44 8.10 8.27 8.41 7.85 8.13
2 8.75 7.85 8.30 8.73 7.83 8.28
3 8.34 7.99 8.17 8.68 7.83 8.26

GPM 1 8.43 7.94 8.18 8.29 7.90 8.10
2 8.51 8.05 8.28 8.26 7.99 8.13
3 8.47 7.76 8.12 7.57 7.51 7.54

Discussion on Length Control (LC. WR). As observed in Section 6.3 (Table 3, 5), GPM-aligned models often produce
longer responses than BT-aligned models. The standard AlpacaEval Win Rate (WR) doesn’t penalize length, whereas the
Length-Controlled Win Rate (LC. WR) is designed to mitigate length bias, potentially penalizing models that win primarily
by being more verbose. GPM’s multi-dimensional embeddings might better capture the value of comprehensive answers
that address multiple facets of a prompt (e.g., being helpful, detailed, and stylistically appropriate simultaneously), leading
to higher preference scores and thus longer generated responses under GPO. While beneficial for overall quality perceived
by the preference model, this can negatively impact the LC. WR metric. For applications where conciseness is highly valued
or length bias is a major concern, specific techniques might be needed. One approach is length normalization within the
optimization objective.

Length-Normalized GPO (LN-GPO) Results. We explored a variant, Length-Normalized GPO (LN-GPO), which modifies
the GPO loss (Eq. 5.3) to normalize the policy update by response length, similar in spirit to Meng et al. (2024). The
objective becomes:

LLN-GPO(θ) =Ex∼X ,y∼πθt (·|x)

[(
1

|y|γ
log

(
πθ(y | x)
πθt

(y | x)

)
− 1

β

(
ŝ (y ≻ πθt | x)− logZπθt

(x)
))2]

.

Here, |y| is the length of the response y, and γ is a hyperparameter (typically 1). Initial results using LN-GPO with γ = 1
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are shown in Table 7. We observe that LN-GPO with GPM (2B) achieves a slightly higher LC. WR (45.55%) compared
to LN-GPO with BT RM (45.51%), while producing longer responses (Avg. Length 2112 vs 1951). This suggests length
normalization can help, although further tuning and investigation are needed to fully balance performance and length control
with GPM.

Table 7. AlpacaEval 2.0 evaluation results with LN-GPO. Base model: Llama3-8B-it. Evaluator: gpt-4o-mini.
Model Win Rate (%) Avg. Length LC. WR (%)

LN-GPO-Llama-3-8B-Instruct-Iter1 gp 2b 48.31 2112 45.55
LN-GPO-Llama-3-8B-Instruct-Iter1 bt 2b 43.38 1951 45.51

E.3. Implementation Details

Details on Training Setup. Our experiments on RewardBench and Cyclic Preference Dataset were implemented using the
HuggingFace Transformers library (Wolf et al., 2020) and the OpenRLHF framework (Hu et al., 2024). For reward model
training on Skywork Reward Data Collection, we employed the following settings (in Table 8):

• Gemma-2B-it: Trained with a learning rate of 2× 10−6.
• Llama-3.1-8B-Instruct: Trained with a learning rate of 2× 10−6.
• Gemma-2-9B-it: Trained with a learning rate of 2× 10−6.
• Training Configuration: Both models were trained for two epochs with a global batch size of 32. We used a cosine

learning rate scheduler with a warm-up ratio of 0.03. Input sequences were truncated to a maximum length of 2048 tokens.
• Hyperparameters: For our general preference embedding model (GPM), we set β = 0.1, determined via hyperparameter

tuning on a validation set.
• Hardware: All experiments were conducted on machines equipped with NVIDIA A800 80GB GPUs, utilizing 8 GPUs

per experiment.

For cyclic preference experiments, the training settings are as follows, except for the parameters specified below; all other
experimental parameters remain consistent with experiments on RewardBench (in Table 9):

• Gemma-2B-it: Trained with a learning rate of 1× 10−6.
• Training Configuration: Models were trained for 50 epochs with a global batch size of 1.
• Hardware: Experiments were conducted on machines equipped with NVIDIA A800 80GB GPUs, utilizing a single GPU

per experiment.

Details on Evaluation Dataset RewardBench. RewardBench is divided into four core sections:

• Chat: Evaluates the ability to differentiate between thorough and correct responses in open-ended conversations, using
data from AlpacaEval (Li et al., 2023) and MT Bench (Zheng et al., 2023).

• Chat-Hard: Tests the handling of trick questions and subtle instruction differences, using adversarial examples from MT
Bench and LLMBar (Zeng et al., 2024).

• Safety: Assesses the capacity to refuse harmful content appropriately, using data from XSTest (Röttger et al., 2024),
Do-Not-Answer (Wang et al., 2024b), and a custom AI2 dataset.

• Reasoning: Measures code generation and reasoning abilities, with prompts from HumanEvalPack (Muennighoff et al.,
2023) and PRM800k (Lightman et al., 2023).

F. Examples on Ultrafeedback Dataset
To illustrate that cyclic preferences can occur even without changing the criteria, we present several examples from the
Ultrafeedback dataset (Cui et al., 2024).

F.1. Example 1

Prompt: “Provide a detailed history and significance of the Mississippi Arts Center in Jackson”
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Table 8. Implementation details for experiments on RewardBench.

General Settings

Base models Gemma-2b-it and Llama3.1-8B-Instruct
Batch size 32
Quantization for training bf16
Learning Rate 2× 10−6

Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max training epochs 2
Gradient accumulation step 1
Max input length 2048
Zero stage 3
Flash attention enabled True

General Preference Model

β for loss function 0.1

Table 9. Implementation details for experiments on Cyclic Preference Dataset.

General Settings

Base models Gemma-2b-it
Batch size 1
Quantization for training bf16
Learning Rate 1× 10−6

Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max training epochs 50
Gradient accumulation step 1
Max input length 2048
Zero stage 3
Flash attention enabled True

General Preference Model

β for loss function 0.1

We have three responses within the Ultrafeedback dataset:

RESPONSE A:

“The Mississippi Arts Center, located in Jackson, Mississippi, is a vital cultural institution that has played a significant role
in the state’s arts scene for decades. It is a facility of the Mississippi Department of Archives and History and is home to the
Mississippi Arts Commission, Mississippi Craft Center, Mississippi History Museum, and the Eudora Welty House Museum.

The Mississippi Arts Center was established in 1968 as the Mississippi Arts Commission. Its primary purpose is to support
and develop the arts in Mississippi through a variety of programs and initiatives. Over the years, it has provided grants to
arts organizations, schools, and individual artists; managed a state artist roster; developed arts education programs; and
promoted cultural tourism in Mississippi.

The physical Mississippi Arts Center building opened in 2004 and houses various facilities and spaces for art exhibitions,
education, and programs. The Mississippi Craft Center is a featured part of the arts center, displaying and selling the works
of local artisans and craftsmen. It also offers educational programs, classes, and workshops for both children and adults.

The Mississippi History Museum is another important component of the arts center. The museum explores the state’s history
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from prehistoric times up to the present day, featuring exhibits on Mississippi’s Native American culture, the Civil War, and
the Civil Rights Movement.

In addition to these facilities, the Mississippi Arts Center is also home to the Eudora Welty House Museum, which is
dedicated to the life and work of Eudora Welty, a renowned short-story writer and photographer from Mississippi. The
museum features tours of her home, which has been restored to its original condition.

The Mississippi Arts Center in Jackson holds significant importance as a vital cultural institution and resource for both the
local community and the state of Mississippi. It plays a crucial role in promoting the arts, preserving history, and providing
educational opportunities related to Mississippi’s rich cultural heritage. As a result, it has become an essential part of
Jackson’s cultural landscape and a must-visit for those interested in exploring Mississippi’s unique history and arts scene. ”

Response A provides extensive information about the Mississippi Arts Center but mixes in details about other institutions
like the Mississippi Arts Commission and the Mississippi History Museum, leading to partial inaccuracies.

Ratings of Response A.

• Instruction Following: 2 (Partially addresses the instruction but includes unrelated institutions)

• Honesty: 5 (Confident and detailed)

• Truthfulness: 3 (Some inaccuracies due to mixing institutions)

• Helpfulness: 4 (Informative but somewhat confusing)

RESPONSE B:

“ The Mississippi Arts Center (MAC) is a state-funded, non-profit art museum located in Jackson, Mississippi. It is the largest
art museum in the state, and its mission is to “inspire creativity, enrich lives, and connect communities through the arts.”

The MAC was founded in 1938 as the Mississippi Fine Arts Commission. It was originally housed in the Old Capitol building
in Jackson. In 1976, the MAC moved to its current location in the former Woolworth’s building on Capitol Street.

The MAC’s collection includes over 15,000 works of art, including paintings, sculptures, drawings, prints, photographs, and
decorative arts. The collection represents a wide range of artists from Mississippi and the American South.

The MAC also offers a variety of educational programs, including art classes, workshops, lectures, and tours. The MAC’s
Education Department serves over 100,000 people each year through its programs and outreach activities.

The MAC is a significant cultural institution in Mississippi. It is a place where people can come to learn about the arts,
create art, and experience the power of art to enrich lives.

Here are some additional facts about the Mississippi Arts Center: - The MAC’s building was originally a Woolworth’s
department store. It was designed by architect James Gamble Rogers, who also designed the Woolworth’s buildings in
New York City and Washington, D.C. - The MAC’s collection includes works by some of the most important artists of
the American South, including William Eggleston, Walker Evans, and Eudora Welty. - The MAC has hosted a number of
important exhibitions, including the first solo museum exhibition of the work of painter Kerry James Marshall. - The MAC is
a member of the American Alliance of Museums. - The MAC is accredited by the American Alliance of Museums. ”

Response B offers detailed facts about the Mississippi Arts Center but includes significant errors, such as incorrect founding
year and location, despite being confident.

Ratings of Response B.

• Instruction Following: 3 (Addresses some aspects but makes errors)

• Honesty: 2 (Confident but includes significant mistakes)

• Truthfulness: 5 (Avoids fabrication but contains factual errors)

• Helpfulness: 3 (Detailed but confusing key institutions)
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RESPONSE C:

“ The Mississippi Arts Center, also known as the Mississippi Museum of Art in Jackson, has a rich history and significance in
the state’s cultural and artistic landscape. Founded in 1911 as the Mississippi Art Association, its primary mission was to
promote the understanding, appreciation, and enjoyment of the visual arts in Mississippi.

In the beginning, the association held exhibitions in various locations across the state. However, in 1978, the Mississippi
Museum of Art at the Mississippi Agency building in Downtown Jackson was established, providing a permanent home
where the association could showcase its growing collection. Over time, the museum has evolved and expanded.

In 2007, the museum relocated to a new, state-of-the-art facility at 380 South Lamar Street in Downtown Jackson. This move
allowed for the enlargement of galleries, versatile exhibition spaces, and the incorporation of educational programs and
events. ”

Response C delivers a comprehensive history of the Mississippi Museum of Art, mistakenly equating it with the Mississippi
Arts Center, but avoids fabrication.

Ratings of Response C.

• Instruction Following: 5 (Comprehensive but misinterprets the prompt)

• Honesty: 4 (Accurate information but about a different institution)

• Truthfulness: 3 (Misunderstands the instruction)

• Helpfulness: 5 (Thorough and informative)

Analysis. Response A preferred over Response B: A is more accurate than B, which contains significant errors; Response B
preferred over Response C: Some evaluators prefer B over C because B discusses the correct institution (despite errors),
while C focuses on a different one. Response C preferred over Response A: Others prefer C over A because C provides a
thorough and helpful response, even if it’s about a different institution, whereas A includes confusing mixed references.
This forms a cycle: A ≻ B ≻ C ≻ A, even though the question and evaluation criteria remain the same.

F.2. Example 2

Prompt: “A whole school, a class-based cooking competition that runs throughout the week. Which class will win this
year? Winners announced on Monday 10th July in assembly. Based on the passage above, Could you provide some more
details about the cooking competition, such as the criteria for judging and the types of dishes being prepared?”

We have three responses within the Ultrafeedback dataset:

RESPONSE A:

“The Mississippi Arts Center, located in Jackson, Mississippi, is a vital cultural institution that has played a significant role
in the state’s arts scene for decades. It is a facility of the Mississippi Department of Archives and History and is home to the
Mississippi Arts Commission, Mississippi Craft Center, Mississippi History Museum, and the Eudora Welty House Museum.

Sure, here are some additional details about the school’s cooking competition: The cooking competition is divided into three
stages:

Stage 1: Prep Day - During this stage, students are given a list of ingredients and a set period of time to prepare their dish.
The goal of this stage is to encourage creativity and problem-solving skills as students work with limited time and resources.

Stage 2: Cook-off Day - In this stage, students prepare their dishes in front of a panel of judges. The judges will evaluate the
dishes based on a set of criteria, such as taste, presentation, and creativity.

Stage 3: Judging - After the cook-off, the judges deliberate and decide on the winning class. The winning class will be
announced during a school assembly and will receive a prize.

The dishes prepared in the competition range from simple to complex, and each class is required to prepare a different dish.
The criteria for judging the dishes include:

Taste: How well does the dish taste? Is it flavorful and balanced?
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Presentation: How well is the dish presented? Is it appealing to the eye?

Creativity: Was the dish creatively prepared? Did the student use unusual ingredients or techniques?

Overall Impression: How well did the student execute the dish? Did they meet the brief and deliver a high-quality result?

I hope this offers a more comprehensive view of the school’s cooking competition.”

Response A gives a detailed breakdown of the competition stages and judging criteria but introduces a three-stage format
not mentioned in the original prompt.

Ratings of Response A.

• Instruction Following: 5 - Provides detailed information about the competition’s structure, judging criteria, and dish
preparation

• Honesty: 4 - Mostly correct, but some stages (e.g., Prep Day) may have been inferred rather than drawn from the given
passage.

• Truthfulness: 3 – Introduces a three-stage competition format not mentioned in the original passage.

• Helpfulness: 4 – Highly informative, but lacks details about the specific types of dishes being prepared.

RESPONSE B:

“ Absolutely! It sounds like an exciting and fun-filled school cooking competition, with classes participating throughout the
week. Here’s some additional information based on the passage provided:

Criteria for Judging: Taste: The dishes should be flavorful, delicious, and appealing to the palate. Presentation: The dishes
should be visually appealing, with attention given to plating and garnishes.

Creativity: Participants should strive to create unique, original dishes or add a twist to traditional recipes.

Teamwork: The class’s ability to work cohesively and efficiently will also be taken into consideration.

Hygiene & Safety: Proper food handling practices and cleanliness will be of importance during the competition.

Types of Dishes Being Prepared:

Since the specific types of dishes are not mentioned in the passage, here are some suggestions for categories that could be
included in the competition:

Appetizers: Finger foods, dips, or small bites showcasing culinary skills. Main Courses: Protein-based dishes with sides,
vegetarian options, or one-pot meals. International Cuisine: Dishes inspired by the flavors and techniques of different
regions.

Desserts: Classic cakes, cookies, pastries, or innovative treats. Budget-Friendly: Nutritious and tasty dishes with minimal
costs, teaching budgeting skills. Winners of the competition will be announced on Monday, the 10th of July during the
assembly. Classes will eagerly await the results, and the winning class will earn the title of ”School Cooking Champions”
for the year. This competition is sure to be an engaging platform for students to learn new skills, make friends, and have a
blast while cooking. Bon appétit! ”

Response B offers speculative details about the competition, including possible dish categories and additional judging
criteria not specified in the prompt.

Ratings of Response B.

• Instruction Following: 4 – Covers judging criteria and possible dish types but includes speculative details not mentioned
in the passage.

• Honesty: 5 – Confident and mostly correct in providing details.

• Truthfulness: 4 – Slight hallucination about judging criteria (e.g., teamwork and hygiene) and dish categories.

• Helpfulness: 5 – Informative and engaging, with a well-rounded discussion of potential competition elements.
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RESPONSE C:

“ Sure, here are some more details about the cooking competition: The competition is open to all students in the school.

Each class will be assigned a different day of the week to cook and present their dish.

The criteria for judging will be taste, creativity, and presentation. The winning class will be announced on Monday, 10th
July, in the assembly.

The types of dishes being prepared are wide-ranging, and students are encouraged to be creative. Some popular dishes in
past competitions have included:

Pizza

Pasta

Burgers

Sandwiches

Cakes

Cookies

The cooking competition is a great way for students to learn about different cuisines and cultures, as well as to develop their
cooking skills. It is also a lot of fun! ”

Response C sticks closely to the prompt, providing clear judging criteria and examples of dishes, but lacks depth compared
to the other responses.

Ratings of Response C.

• Instruction Following: 4 – Provides clear judging criteria and dish examples but lacks depth in detailing the competition
format.

• Honesty: 4 – Mostly correct but assumes information (e.g., students being encouraged to be creative).

• Truthfulness: 5 – Free of hallucinations and accurately expands on possible competition elements.

• Helpfulness: 5 (Thorough and informative)

Analysis. A preferred over B: Some evaluators might prefer A over B because it provides a structured and detailed response,
despite introducing unconfirmed elements; B preferred over C: Others might prefer B over C due to its engaging style and
comprehensive coverage, even if some details are speculative; C preferred over A: Meanwhile, some may prefer C over
A because it sticks closer to the information provided, avoiding potential inaccuracies introduced by A. This results in a
preference cycle: A ≻ B ≻ C ≻ A.
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