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ABSTRACT

The most popular class of active learners today queries for the labels of the sam-
ples for which the prediction is most uncertain and uses the labeled samples to
update its prediction. Unfortunately, quantifying uncertainty is an open question.
This paper mathematically defines uncertainty in terms of the least disagree metric
(LDM), which is the smallest perturbation required to alter the sample prediction.
Based on this metric, the predictor is updated by querying the label of the most un-
certain samples. Given a finite-sized training set, empirical LDM is incorporated
into an active learning algorithm and used to approximate the theoretical LDM of
each sample. Theoretical convergence properties between the empirical and the
mathematical definition of LDM are provided. Experimental results show that our
algorithm mostly outperforms other high-performing active learning algorithms
and leads to state-of-the-art performance on various datasets and deep networks.

1 INTRODUCTION

Active learning (Cohn et al., 1996) is a sub-field in machine learning for attaining sample efficiency
by sequentially selecting unlabeled samples for their labels. When selection is performed from
a large collection of unlabeled samples, this type of active learning is coined pool-based active
learning. Of the various active learning strategies, uncertainty-based sampling (Lewis & Gale, 1994;
Sharma & Bilgic, 2017; Nguyen et al., 2022) for its simplicity and relatively low computational load
is the most popular. Here, the focus is on determining the uncertainty of each unlabeled sample for a
given predictor. However, there is no consensus on quantifying the uncertainty (Balcan et al., 2007;
Settles, 2009; Houlsby et al., 2011; Yang et al., 2015; Sharma & Bilgic, 2017; Beluch et al., 2018;
Ash et al., 2020).

In this paper, we measure the uncertainty of a sample by perturbing the predictor to see how the pre-
dicted label is altered w.r.t. that perturbation. To the best of our knowledge, this approach has rarely
been considered in active learning literature. In active learning, the most similar works to ours are the
query-by-committee (QBC; Seung et al., 1992) and disagreement region-based approach (Hanneke,
2014), in which a committee of diverse experts is formed to identify the most disagreed samples in
that the experts give differing predictions. Despite its strong theoretical guarantee of achieving ex-
ponential sample complexity (Hanneke, 2014), the computational cost of creating numerous experts
(e.g. by training neural networks several times) is very heavy and often in modern deep learning
frameworks, infeasible.

As we will see later, our approach suffers from none of the aforementioned problems, largely be-
cause ours is based on a completely different framework. The main contributions of this paper are
as follows:

1. This paper proposes the least disagree metric (LDM) as the measure of the sample’s un-
certainty for the predictor, defined as the least probability of disagreement of the predicted
label with a perturbed predictor.

2. This paper then introduces a finite sample approximation to the true LDM, called empirical
LDM, along with some theoretical guarantees. We then provide a brute-force algorithm that
evaluates the empirical LDM.

3. This paper proposes an active learning algorithm querying unlabeled samples based on
(empirical) LDM. Experiments show the algorithm leads to state-of-the-art performance
on various datasets and deep networks.
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2 LEAST DISAGREE METRIC (LDM)

This section mathematically defines the least disagree metric (LDM) of a sample for a given predic-
tor in terms of the sample distribution. Henceforth, it will be assumed that the predictor belongs to
a certain hypothesis space. For a given finite sample set, an empirical LDM is incorporated into a
brute-force algorithm for estimating the theoretical LDM of each sample. This paper will focus on
the multi-class classification task.

2.1 DEFINITION OF LDM

Let X and Y be the instance and label space with Y , and H be the hypothesis space of h : X → Y .
Let D be the joint distribution over X ×Y , and DX be the instance distribution. Recall the disagree
metric between two hypotheses (Hanneke, 2014) defined as

ρ(h1, h2) := PX∼DX [h1(X) ̸= h2(X)]

where PX∼DX is the probability measure on X , induced by DX . For a reference hypothesis ĥ ∈ H
and x0 ∈ X , let Hĥ,x0 be the set of hypotheses disagreeing with ĥ in their prediction of x0 i.e.

Hĥ,x0 := {h ∈ H | h(x0) ̸= ĥ(x0)}.

Based on the above set and disagree metric, the uncertainty of a sample to a reference hypothesis is
defined as follows:
Definition 1. For given ĥ ∈ H and x0 ∈ X , the least disagree metric (LDM) is defined as

L(ĥ,x0) := inf
h∈Hĥ,x0

ρ(h, ĥ). (1)

Conceptually, a sample with a small LDM indicates that even a small perturbation in the predictor
can alter prediction and vice versa. Precisely, assuming the the hypothesis h and ĥ is parameterized
by w and ŵ,

L(ĥ,x1) < L(ĥ,x2) ⇐⇒ Pw∼N (ŵ,Iσ2)[h(x1) ̸= ĥ(x1)] > Pw∼N (ŵ,Iσ2)[h(x2) ̸= ĥ(x2)].

That is, the sample with the smallest LDM is the most uncertain. This intuition is verified in Ap-
pendix B.1.

Figure 1: An example of LDM of x for given ĥ
in binary classification with the linear classifier.
Here x is uniformly distributed on X ⊂ R2. The
h2 and h3 disagree with ĥ in prediction for x0,
and L(ĥ,x0) = inf

h∈Hĥ,x0
ρ(h, ĥ) = |θ2|/π.

To illustrate this concept more clearly, we
provide a simple example. Consider a two-
dimensional binary classification with a set of
linear classifiers,

H = {h : h(x) = sgn(xTw),w ∈ R2}

where x is uniformly distributed on X = {x :
∥x∥ ≤ 1} ⊂ R2. The decision boundary of w
is denoted as lw = {x : xTw = 0}. For given
ĥ and x0, let θ ∈ (−π, π) be the (radian) angle
between lw and lŵ. Then we have that

ρ(h, ĥ) = |θ|/π,

since ρ(h, ĥ) is the probability of X ∈ {x ∈
X | h(x) ̸= ĥ(x)} and h(x) ̸= ĥ(x) for all x
in the region between lw and lŵ. This is shown
in Figure 1; for instance,

h2, h3 ∈ Hĥ,x0 = {h ∈ H | h(x0) ̸= ĥ(x0)},

and thus,
L(ĥ,x0) = inf

h∈Hĥ,x0

ρ(h, ĥ) = |θ2|/π.
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2.2 EMPIRICAL LDM

In most cases, LDM is not computable for the following two reasons: 1) ρ is generally intractable,
especially when DX and the form of h are both complicated, e.g., neural networks over real-world
image datasets, and 2) one needs to take an infimum over H, which is usually an infinite set. We
can consider two approximations: 1) P in the definition of ρ is replaced by an empirical probability
based on S samples, and 2) H is replaced by a finite hypothesis set HN of cardinality N . More
precisely, we consider

LN,S(ĥ,x0) := inf
h∈Hĥ,x0

N

{
ρ

S
(h, ĥ) ≜

1

S

S∑
i=1

I
[
h(Xi) ̸= ĥ(Xi)

]}
, (2)

where Hĥ,x0

N :=
{
h ∈ HN | h ∈ Hĥ,x0

}
, I[·] is an indicator function, and X1, . . . , XS

i.i.d.∼ DX .
Here, S is the number of instances (sampled i.i.d.) for approximating ρ, and N is the number of
sampled hypotheses for approximating L.

Assumption 1. Our hypothesis space H is a complete, separable metric space with metric dH(·, ·).
Assumption 2. ρ(·, ·) is B-Lipschitz for some B > 0 i.e. ρ(h, g) ≤ BdH(h, g), ∀h, g ∈ H.

In the following theorem- its proof is deferred to Appendix A, we show that our proposed estimator
is asymptotically consistent.

Theorem 1. Let ĥ ∈ H and x0 ∈ X be arbitrary. Suppose that H1 ⊆ H2 ⊆ · · · ⊂ H is arbitrary
increasing sequence of sets satisfying the following: there exists ε > 0 s.t.

inf
h∗∈Hĥ,x0

ρ(h∗,ĥ)−L(ĥ,x0)<ε

min
h∈Hĥ,x0

N

dH(h∗, h)
P−→ 0 as N → ∞. (3)

Then, as1 min(S,N) → ∞ satisfying S = ω(log(CN)),
∣∣∣LN,S(ĥ,x0)− L(ĥ,x0)

∣∣∣ ≤ ε in proba-
bility.

Corollary 2. If Eqn. (3) holds for any ε > 0, then under the same assumptions as Theorem 1,
LN,S(ĥ,x0)

P→ L(ĥ,x0).

One important consequence is that the ordering of the empirical LDM is preserved in probability:

Corollary 3. Assume that L(ĥ,xi) < L(ĥ,xj). Under the same assumptions as Corollary 2, we
have that LN,S(ĥ,xi) < LN,S(ĥ,xj) in probability.

2.3 BRUTE-FORCE SEARCH FOR EMPIRICAL LDM

Assuming that the hypothesis set is parameterized i.e. h ∈ H is of the form h(·;w) with w ∈ Rp,
Algorithm 1 describes the algorithm for evaluating empirical LDM of x for ĥ. Prepare a set of
variances {σ2

k}Kk=1 such that σk < σk+1 and stop condition s. Initialize Lx = 1. For each k, h is
sampled with w ∼ N (ŵ, Iσ2

k), and if h(x) ̸= ĥ(x) then update Lx as min{Lx, ρS
(h, ĥ)}. When

Lx does not change s times consecutively, move on to k + 1. The final output Lx is the desired
empirical LDM.

When sampling the weights, the reason for using several σ2 is two-fold. We would want the sampled
hypothesis h to satisfy h(x) ̸= ĥ(x). Importantly, such probability (over the randomness of w
and thus h) is expected to be monotone increasing in σ2, as larger σ2 indicates that the sampled
hypothesis h is further away from ĥ. For the same reason, it is expected that the value Ew[ρ

S
(h, ĥ)]

is monotone increasing in σ2. In other words, with too large σ2, the minimum of ρ
S
(h, ĥ) over the

sampled h’s may be too far away from the true LDM, especially when the true LDM is close to 0.
This intuition is verified in Appendix B.2.

1For the asymptotic analyses, we write f(n) = ω(g(n)) if limn→∞
f(n)
g(n)

=∞.
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(a) (b) (c)

Figure 2: Empirical LDMs evaluated by Algorithm 1 by varying the stop condition s. (a) Here,
we consider the two-dimensional binary classification with the linear classifier (see Figure 1). The
empirical LDM is very close to the true LDM even when s = 10, and it reaches the true LDM
when s ≥ 20. (b) Empirical LDMs of MNIST samples with a four-layered CNN. Observe that the
empirical LDM monotonically decreases as s increases, and the rank order is well maintained. (c)
In the same setting, the rank and Pearson’s correlations between the empirical LDMs when s = 10
and s = 1000 are 0.999 and 0.997, respectively, suggesting that a moderate value of s suffices.

Figure 2a shows the empirical LDM, computed by our Algorithm 1, of a sample in binary clas-
sification with the linear classifier as described in Figure 1. The true LDM of the sample is
0.01, and the empirical LDM is evaluated 100 times for S ∈ {1000, 10000, 100000} and s ∈
{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. The empirical LDM is very close to the true LDM when
s = 10, and it reaches the true LDM when s ≥ 20 with the gap being roughly 10−4. This suggests
that even with a moderate value of s, our approach can output empirical LDM that is sufficiently
close to the true LDM.

Figure 2b shows the empirical LDMs of MNIST samples for a four-layered CNN. The empirical
LDMs are evaluated 100 times at S = 60000, which is the total number of samples of MNIST. We
denote xi as the ith sample ordered by the computed empirical LDM. Observe that the empirical
LDMs are monotonically decreasing as s increases, but even with s = 1000, the empirical LDMs
do not seem to converge. Furthermore, when s = 1000, as our algorithm samples 1M hypotheses,
it takes roughly 20 min to evaluate the empirical LDM of a single sample, suggesting that it is
computationally infeasible to obtain empirical LDM that is very close to the true LDM; this is
further discussed in Appendix D.1. Even though this is the case, one important observation is that
the empirical LDM maintains the relative ranking between the samples. Figure 2c shows the rank
and Pearson’s correlations of the empirical LDMs to that at s = 1000. In MNIST, when s = 10 and
s = 1000, the rank and Pearson’s correlations reach 0.999 and 0.997, respectively. We set s = 10
in Algorithm 1 in our experiments, as the runtime of our algorithm is of few seconds. As we will
discuss later, the ranking of the samples via their estimated empirical LDM is what is important.

3 LDM-BASED ACTIVE LEARNING

This section introduces LDM-S, the LDM-based batch sampling algorithm for pool-based active
learning. This is the setting in which we have a set of unlabeled samples, U , and we simultaneously
query q samples from randomly sampled pool data P ⊂ U of size m.

3.1 LDM-BASED BATCH SAMPLING

One LDM-based approach is to choose q samples with the lowest LDMs, which can be thought of
as choosing the most uncertain samples. However, as shown in Appendix D.2, this strategy often
does not lead to good performance; upon further inspection, we observed that there’s a significant
overlap of information in the selected batch. This problem is prevalent in batch active learning, and
one popular approach to mitigate this is to consider diversity to minimize redundancy among the
selected samples (Kirsch et al., 2019; Ash et al., 2020; Citovsky et al., 2021; Yang et al., 2021).

We incorporate diversity via a modification of the k-means++ seeding algorithm (Arthur & Vas-
silvitskii, 2007), which was reported to be the best algorithm to increase batch diversity without
introducing additional hyperparameters (Ash et al., 2020). Intuitively, the k-means++ seeding se-
lects centroids by iteratively sampling points proportional to their squared distance from the nearest

4



Under review as a conference paper at ICLR 2023

Algorithm 1 Evaluation of Empirical LDM
Input:
ĥ,x: Given hypothesis and sample
{σ2

k}Kk=1 : Set of Variances
s : Stop condition for parameter sampling

Function:
Lx = 1
for k = 1 to K do

c = 0
while c < s do

w ∼ N (ŵ, Iσ2
k)

c = c+ 1
if h(x) ̸= ĥ(x) and Lx > ρS (h, ĥ) then

Lx ← ρS (h, ĥ)
c = 0

end if
end while

end for
return: Lx

Algorithm 2 LDM-weighted Seeding (LDM-S)
Input:
L0,U0 : Initial labeled and unlabeled samples
m, q : pool and query size

Procedure:
for t = 0 to T − 1 do

Obtain ŵ by training on Lt

Randomly sample P ⊂ Ut with |P| = m
Evaluate Lx for x ∈ P by Algorithm 1
Compute γ(x) using Eq. 5
Q1 ← {x1} where x1 = argminx∈P Lx

for n = 2 to q do
p(x) = γ(x) ∗minx′∈Qn−1

dcos(zx,zx′)

Sample xn ∈ P w.p. P(xn) =
p(xn)2∑

xj∈P p(xj)2

Qn ← Qn−1 ∪ {xn}
end for
Lt+1 ← Lt∪{(xi, yi)}xi∈Qq , Ut+1 ← Ut \Qq

end for

centroid that has already been chosen, which tends to select a diverse batch. Our proposed modifi-
cation is to use the cosine distance between features of samples instead of the usual ℓ2-distance. The
reason for considering cosine distance is that for the final prediction, the scales of the features do
not matter, and the reason for considering features is that the perturbation is applied to the weights
of the last layer that takes the features as input. We introduce two seeding methods based on the
principle of querying samples with the least LDMs while pursuing diversity:

Seeding on the subset with small LDM. Let Pl ⊂ P be the set of top l samples with the smallest
LDM, where l is about 2-5 times the query size q. The LDM-based seeding algorithm starts by
selecting unlabeled samples with the smallest LDM in Pl. The next distinct unlabeled sample is
sampled from Pl by the following probability:

P(x) =
p(x)2∑

xj∈Pl
p(xj)2

, p(x) = min
x′∈Q

dcos(zx, zx′) (4)

where Q is the set of selected unlabeled samples for querying, dcos(·, ·) is the cosine distance,
and zx, zx′ are the feature vectors of x ∈ Pl and x′ ∈ Q, respectively. Repeating until |Q| = q
completes the selection of unlabeled samples for querying. However, this method requires setting an
additional hyperparameter l, and in the chosen subset Pl, the selection probability does not explicitly
take LDM into account. Thus the LDMs of the resulting query set are distributed evenly, which is
undesirable as we expect for the samples with low LDMs to be chosen more often.

Seeding by LDM-weighted distribution. For querying samples with the smallest LDMs, this pa-
per considers the exponential decay w.r.t LDM, which is a common choice as a decay function in
machine learning, e.g., EXP3 in bandits (Auer et al., 2002). In addition, the pool set P is partitioned
as Pq and Pc to balance the effect of choosing samples with the least LDMs and diversity, where Pq

is the set of samples with smallest LDM of size q (=query size) and Pc = P \ Pq . To avoid being
biased towards either LDM or diversity regardless of the choice of m and q, the total weights of Pq

and Pc are balanced to be equal. Precisely, the weights of x ∈ P are defined as follows:

γ(x) =

{
γ̃(x)/

∑
xj∈Pq

γ̃(xj) =
1
q , x ∈ Pq

γ̃(x)/
∑

xj∈Pc
γ̃(xj), x ∈ Pc

(5)

where

γ̃(x) = exp

(
− (Lx − Lq)+

Lq

)
,

(·)+ = max{0, ·}, and Lq = maxx∈Pq Lx. Then, the Eq. 4 is replaced with the following:

P(x) =
p(x)2∑

xj∈P p(xj)2
, p(x) = γ(x) ∗ min

x′∈Q
dcos(zx, zx′).
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Table 1: Settings for data and acquisition size. Acquisition size denotes the number of initial labeled
samples + query size for each step (the size of pool data) → the number of final labeled samples.

Dataset Model
# of parameters
sampled / total

Data size
train / validation / test

Acquisition size

MNIST S-CNN 1.3K/1.2M 55,000 / 5,000 / 10,000 20 +20 (2,000) → 1,020
CIFAR10 K-CNN 5.1K/2.2M 45,000 / 5,000 / 10,000 200 +400 (4,000) → 9,800

SVHN K-CNN 5.1K/2.2M 68,257 / 5,000 / 26,032 200 +400 (4,000) → 10,200
CIFAR100 WRN-16-8 51.3K/11.0M 45,000 / 5,000 / 10,000 5,000 +2,000 (10,000) → 25,000

Tiny ImageNet WRN-16-8 409.8K/11.4M 90,000 / 10,000 / 10,000 10,000 +5,000 (20,000) → 50,000
FOOD101 WRN-16-8 206.9K/11.2M 60,600 / 15,150 / 25,250 6,000 +3,000 (15,000) → 30,000

Note that this resolves the disadvantages of the first approach; there’s no hyperparameter, and the
selection probability is explicitly impacted by LDMs while having diversity as well. This difference
is shown in Figure 3.

3.2 ALGORITHM FOR LDM-WEIGHTED SEEDING

We now introduce LDM-S in Algorithm 2, the LDM-weighted seeding algorithm for active learning.
Let Lt and Ut be the set of labeled and unlabeled samples at iteration t. At each step t, the ŵ is
obtained by training on Lt, and the set of pool samples P ⊂ Ut with |P| = m is drawn uniformly at
random. Then for each x ∈ P , Lx and γ(x) are evaluated by Algorithm 1 and Eq. 5, respectively.
The set of selected unlabeled samples, Q1, is initialized as {x1} where x1 = argminx∈P Lx. For
n = 2, . . . , q, the algorithm samples xn ∈ P with probability P(x) = p(x)2/

∑
xj∈P p(xj)

2 where
p(x) = γ(x) ∗ minx′∈Qn−1

dcos(zx, zx′) and appends it to Qn. Lastly, the algorithm queries the
label yi of each xi ∈ Qq , and the algorithm continues until t = T − 1.

4 EXPERIMENTS

This section presents empirical results of the effect of diverse sampling on the LDM-based algo-
rithm, as well as a comprehensive performance comparison with various uncertainty-based active
learning algorithms. Six image classification benchmark datasets are considered: MNIST (Lecun
et al., 1998), CIFAR10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), CIFAR100 (Krizhevsky,
2009), Tiny ImageNet (Le & Yang, 2015), and FOOD101 (Bossard et al., 2014) datasets. S-CNN,
K-CNN (Chollet et al., 2015) and Wide-ResNet (WRN-16-8; Zagoruyko & Komodakis, 2016) are
used to evaluate the performance. All results are averaged over 5 repetitions. The active learning
settings regarding data, initial, and query sizes are summarized in Table 1. More details of datasets,
networks, and training settings are presented in Appendix C.

4.1 EFFECT OF DIVERSE SAMPLING ON LDM-BASED ALGORITHM

We first examine the effect of diverse sampling on our LDM-based active learning algorithm by
considering various combinations of LDM and diverse sampling. Figure 3 shows the test accuracy
with respect to the number of labeled samples and the histogram of samples’ indices selected from
pool data sorted by their LDMs on MNIST, CIFAR10, and CIFAR100 datasets, with the sizes of the
seeding subsets being 5q, 5q, and 2q respectively. LDM-weighted seeding selects more samples with
small LDM while pursuing batch diversity, which leads to significant performance improvement
compared to when batch diversity is not considered. However, seeding on a subset of samples with
small LDMs shows no significant performance improvement when diversity is not considered. This
is because, despite increasing diversity, only a few samples with small LDMs are chosen. As a sanity
check, we also consider ‘seeding on pool data’, which is the modified k-means++ seeding on pool
data without considering LDM. The result does indeed show that the success of our LDM-S cannot
be solely attributed to the effect of diverse sampling.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Final performance comparisons (a,b,c) and histograms of samples’ indices selected from
pool data sorted by LDMs on MNIST, CIFAR10, and CIFAR100 datasets (d,e,f). ‘LDM-weighted’:
seeding by LDM-weighted distribution, ‘LDM-subset (kq)’: seeding on a subset of size kq with
small LDM, ‘LDM-smallest’: selecting batch with the smallest LDM, ‘seeding in pool’: modified
k-means++ seeding on pool data without considering LDM. LDM-weighted seeding selects more
samples with small LDM while pursuing batch diversity, which leads to significant performance
improvement compared to those without batch diversity.

(a) (b) (c)

(d) (e) (f)

Figure 4: The performance comparison of LDM-S with the other algorithms on MNIST with S-
CNN (a), CIFAR10 (b), SVHN (c), CIFAR100 (d), Tiny ImageNet (e), and FOOD101 (f) datasets.
Overall, LDM-S consistently performs best or is comparable with all other algorithms.

4.2 COMPARING LDM-S TO OTHER ALGORITHMS

We now compare the performance of LDM-S with the baseline active learning algorithms, including
state-of-the-art algorithms. Figure 4 shows the test accuracy with respect to the number of labeled
samples on MNIST with S-CNN, CIFAR10, and SVHN with K-CNN, and CIFAR100, Tiny Ima-
geNet, and FOOD101, with WRN-16-82.

2Here, we show plots of test accuracy enlarged appropriately to accentuate the performance difference
among various methods. Figures for initially labeled sample sizes are presented in Appendix E.2.
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Table 2: The mean ± standard deviation of the averaged performance difference (%) relative to
Random overall steps for each repetition. The positive or negative value indicates respectively higher
or lower performance compared to Random, and the asterisk (∗) indicates that the p-value is less than
0.05 in paired sample t-test between LDM-S and others.

MNIST CIFAR10 SVHN CIFAR100 T. ImageNet FOOD101
LDM-S[ours] 3.33±0.43 1.34±0.19 2.53±0.22 0.98±0.44 0.55±0.16 1.27±0.34
Entropy49 2.36±0.84∗ 0.00±0.21∗ 1.52±0.19∗ 0.37±0.60 -0.61±0.28∗ -0.86±0.20∗

Coreset45 -0.04±1.23∗ -3.71±0.56∗ -1.66±0.51∗ 0.89±0.49 -0.20±0.46∗ 1.30±0.16
MC-BALD22 1.68±0.80∗ -0.15±0.31∗ 2.46±0.21 0.55±0.77 0.27±0.19∗ 1.18±0.35
ENS-VarR6 2.98±0.36 0.58±0.28∗ 2.08±0.22∗ 0.03±0.41∗ -0.15±0.35∗ -0.15±0.46∗

BADGE3 3.01±0.45 0.90±0.21∗ 2.18±0.23∗ 0.64±0.48 0.12±0.40∗ 0.71±0.43∗

Each algorithm is denoted as follows ‘Entropy’: entropy-based uncertainty sampling (Shannon,
1948), ‘Coreset’: core-set selection (Sener & Savarese, 2018), ‘MC-BALD’: MC-dropout sampling
with BALD (Gal et al., 2017), ‘ENS-VarR’: ensemble method with variation ratio (Beluch et al.,
2018), and ‘BADGE’: batch active learning by diverse gradient embeddings (Ash et al., 2020). For
‘MC-BALD’, we use 100 forward passes, and for ‘ENS-VarR’, we use an ensemble consisting of 5
networks of identical architecture but different random initialization and random batches.

Overall, LDM-S either consistently performs best or is at par with other algorithms for all datasets,
while the performance of the algorithms except LDM-S varies depending on datasets. For instance,
‘Entropy’ and ‘Coreset’ show poor performance compared to other uncertainty-based algorithms,
including ours, on MNIST, CIFAR10, and SVHN, while ‘Coreset’ performs at par with ours on
FOOD101. ‘ENS-VarR’, although comparable to other algorithms, still underperforms compared
to LDM-S on all datasets. A similar trend can also be observed for ‘MC-BALD’ and ‘BADGE’.
Furthermore, the runtime of LDM-S is comparable to Entropy, MC-BALD, Coreset, and BADGE;
see Appendix E.1 for more details. In Appendix D.3, the performance of LDM-S is compared with
the standard uncertainty methods (Entropy, MC-BALD, ENS-VarR) to which weighted seeding is
applied, with which these methods could be further benefitted. Even in that case, LDM-S still
outperforms the other methods, suggesting that the performance gains of LDM-S are attributed to
our newly introduced LDM’s superiority over the other uncertainty measures, and are not mere
artifacts of the seeding.

Figure 5: Dolan-Moré plot among the algorithms
across all experiments. LDM-S outperforms all
other algorithms. Here, AUC is the area under the
curve of the plot.

All in all, Table 2 presents the mean and stan-
dard deviation of the averaged performance dif-
ference relative to Random overall steps for
each repetition. The positive or negative value
indicates respectively higher or lower perfor-
mance compared to Random, and the asterisk
(∗) indicates the p-value is less than 0.05 in
paired sample t-test for the null of no differ-
ence versus the alternative that the LDM-S is
better than others. We observe that LDM-S ei-
ther consistently performs best or is comparable
with other algorithms for all datasets, while the
performance of the algorithms except LDM-S
varies depending on the datasets.

In order to provide a comprehensive comparison across datasets, the performance profile, which
is known as Dolan-Moré plot (Dolan & Moré, 2002), is examined. This curve has been widely
considered in benchmarking active learning (Tsymbalov et al., 2018; 2019), optimization profiles
(Dolan & Moré, 2002), and even general deep learning tasks (Burnaev et al., 2015a;b). To introduce
the Dolan-Moré plot, let accD,r,t

a be the test accuracy of algorithm a at step t, for dataset D and
repetition r, and ∆D,r,t

a = maxa′(accD,r,t
a′ )− accD,r,t

a . Then, we define the performance profile as

Ra(δ) :=

∑
D,r

∑
t I(∆D,r,t

a ≤ δ )∑
D,r TD,r

(6)
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where TD,r is the number of steps for dataset D at repetition r. Intuitively, Ra(δ) is the fraction
of cases where the performance gap between algorithm a and the best competitor is less than δ.
Specifically, when δ = 0, Ra(0) is the fraction of cases on which algorithm a performs the best.

Figure 5 shows the performance profile w.r.t. δ, for all algorithms. Overall, it is clear that LDM-S
retains the highest Ra(δ) over all considered δ’s. We also observe that RLDM-S(0) = 40% while
the other algorithms have a value less than 20%. All in all, this clearly shows that our LDM-S
outperforms the other considered algorithms.

5 RELATED WORK

There are various active learning strategies such as uncertainty sampling (Lewis & Gale, 1994;
Scheffer et al., 2001; Culotta & McCallum, 2005; Wang et al., 2010; Sharma & Bilgic, 2017),
expected model change (Settles et al., 2007; Freytag et al., 2014; Ash et al., 2020), expected er-
ror reduction (Roy & McCallum, 2001; Yoo & Kweon, 2019; Zhao et al., 2021a), variance reduc-
tion (Schein & Ungar, 2007), uncertainty reduction (Zhao et al., 2021b), core-set approach (Sener
& Savarese, 2018; Mahmood et al., 2022), clustering (Yang et al., 2021; Citovsky et al., 2021),
Bayesian active learning (Pinsler et al., 2019; Shi & Yu, 2019), discriminative sampling (Sinha
et al., 2019; Zhang et al., 2020; Gu et al., 2021; Caramalau et al., 2021), Fisher information (Ash
et al., 2021), multi-armed bandit (Bouneffouf et al., 2014), bidirectional exploration (Zhang et al.,
2015), and data augmentation (Kim et al., 2021)

For the uncertainty-based approach, various forms of uncertainty measures have been studied. En-
tropy (Shannon, 1948) based uncertainty sampling strategies query unlabeled samples yielding the
maximum entropy from the predictive distribution, but it does not perform well for multiclass clas-
sification tasks as the entropy is heavily influenced by probabilities of less important classes (Joshi
et al., 2009). Margin based strategies query unlabeled samples closest to the decision boundary,
and it is generally understood that unlabeled sample closest to the decision boundary is the most
uncertain (Balcan et al., 2007; Kremer et al., 2014; Ducoffe & Precioso, 2018). However, it is
difficult to identify samples closest to the decision boundary for multiclass classification with the
deep network as the Euclidean distance is often not readily measurable (Ducoffe & Precioso, 2018;
Mickisch et al., 2020). Mutual information based strategies, such as BALD (Houlsby et al., 2011),
DBAL (Gal et al., 2017), and BatchBALD (Kirsch et al., 2019), query unlabeled samples yielding
the maximum mutual information between predictions and model parameters. The DBAL approx-
imates the posterior of the model parameters of the deep network by MC-dropout sampling, but
each batch selection is independently conducted, and this leads to data inefficiency as correlations
between data points in the batch are not taken into account (Kirsch et al., 2019). To address this de-
ficiency, BatchBALD was introduced, but because BatchBALD theoretically computes all possible
mutual information between batch-wise predictions and model parameters. For this reason, it is not
appropriate for large query sizes. Variation ratio (Freeman, 1965) with ensemble method (Beluch
et al., 2018) based on query by committee (QBC) strategy (Seung et al., 1992) queries unlabeled
samples yielding the maximum variation ratio in labels predicted by the multiple networks, but it
requires high computational load: each network belonging to the ensemble must be individually
trained. Gradient based strategy (Ash et al., 2020) measures uncertainty as the gradient magnitude
with respect to parameters in the final layer and queries unlabeled samples where these gradients
span a diverse set of directions, but it requires a high computational load when the dimension of
parameters is large.

6 CONCLUSION

This paper defines the least disagree metric (LDM), which measures the uncertainty of samples by
perturbing the predictor, and introduces a hypothesis sampling method for evaluating approximated
LDM (empirical LDM). In addition, this paper proposes an LDM-based active learning algorithm to
select unlabeled samples with small LDM while pursuing batch diversity. The proposed algorithm
either consistently performs best or is comparable with other high-performing active learning algo-
rithms, leading to state-of-the-art active learning performance on most of the datasets considered in
this paper. Our algorithm is simple and relatively light in terms of computational cost, and thus we
expect it to be a meaningful addition to the field of uncertainty-based active learning.
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A PROOF OF THEOREM 1

We consider multi-class classification, which we recall here from Section 2. Let X and Y be the
instance and label space with Y = {ei}Ci=1, where ei is the ith standard basis vector of RC (i.e.
one-hot encoding of the label i), and H be the hypothesis space of h : X → Y . We also recall some
definitions: Hĥ,x0 = {h ∈ H | h(x0) ̸= ĥ(x0)} and Hĥ,x0

N :=
{
h ∈ HN | h ∈ Hĥ,x0

}
, where for

computation purpose H is replaced with HN of cardinality N . Lastly, we use S samples Xi ∼ DX
to construct the Monte-Carlo estimate of ρ(h, ĥ).

Let S(N) → ∞ be an arbitrary monotone increasing sequence in N such that S(N) =
ω(log(CN)). By the triangle inequality, we have that

|LN,S − L| ≤
∣∣∣LN,S − L̃N

∣∣∣︸ ︷︷ ︸
≜∆1(N)

+
∣∣∣L̃N − L

∣∣∣︸ ︷︷ ︸
≜∆2(N)

,

where we denote L̃N := min
h∈Hĥ,x0

N

ρ(h, ĥ).

∆1(N)
P→ 0

By definition,

∆1(N) =

∣∣∣∣∣ inf
h∈Hĥ,x0

N

ρ
S(N)

(h, ĥ)− inf
h∈Hĥ,x0

N

ρ(h, ĥ)

∣∣∣∣∣
=

∣∣∣∣∣∣ inf
h∈Hĥ,x0

N

1

S(N)

S(N)∑
i=1

I
[
h(Xi) ̸= ĥ(Xi)

]
− inf

h∈Hĥ,x0
N

EX∼DX [I[h(X) ̸= ĥ(X)]]

∣∣∣∣∣∣
As ∆1(N) is a difference of infimums of a sequence of functions, over a sequence of sets, we need
to establish some uniform convergence-type result. This is done by invoking “general” Glivenko-
Cantelli Theorem, which we recall here:

Theorem 4 (Theorem 4.2 of Wainwright (2019)). Let Y1, · · · , Yn
i.i.d.∼ P for some distribution P

over X . For any b-uniformly bounded function class F , any positive integer n ≥ 1 and any scalar
δ ≥ 0, we have

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Yi)− E[f(Y )]

∣∣∣∣∣ ≤ 2Rn(F) + δ

with P-probability at least 1− exp
(
−nδ2

8b

)
. Here, Rn(F) is the Rademacher complexity of F .

In our case, n = S(N), P = DX , b = 1, and

F =
{
f(x) = I[h(x) ̸= ĥ(x)] | h ∈ Hĥ,x0

N

}
Here, the usual Rademacher identities (e.g. see Section 4.2 of Wainwright (2019)) does not apply, as
we are considering the composition of vector-valued functions and vector-input functions. But for
our setting, we provide a simple yet effective upper bound on the empirical Rademacher complexity
for multi-class:

Lemma 5.

RS(N)(F) ≤

√
2 log(CN)

S(N)
. (7)

Proof. For simplicity, we denote E ≜ E{Xi}S(N)
i=1 ,σ

, where the expectation is w.r.t. Xi ∼ DX i.i.d.,
and σ is the S(N)-dimensional Rademacher variable. Also, let l : [S(N)] → [C] be the labeling
function for fixed samples {Xi}S(N)

i=1 i.e. l(i) = argmaxc∈[C]

[
ĥ(Xi)

]
c
. As ĥ outputs one-hot
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encoding for each i, l(i) is unique and thus well-defined. Thus, we have that f(Xi) = I[h(Xi) ̸=
ĥ(Xi)] = 1− hl(i)(Xi), where we denote h = (h1, h2, · · · , hC) with hj : X → {0, 1}.

By definition,

RS(N)(F) = E

sup
f∈F

1

S(N)

S(N)∑
i=1

σif(Xi)


= E

 sup
h∈Hĥ,x0

N

1

S(N)

S(N)∑
i=1

σi(1− hl(i)(Xi))


= E

 sup
h∈Hĥ,x0

N

1

S(N)

S(N)∑
i=1

σihl(i)(Xi)


≤ E

 sup
h∈Hĥ,x0

N ,l∈[C]

1

S(N)

S(N)∑
i=1

σihl(Xi)


= RS(N)

({
hl | h ∈ Hĥ,x0

N , l ∈ [C]
})

≤

√
2 log(CN)

S(N)
,

where the last inequality follows from Massart’s Lemma (Massart, 2000) and the fact that Hĥ,x0

N is
a finite set of cardinality at most N .

Choosing δ =
√

8 log(CN)
S(N) , we have that with probability at least 1− 1

CN ,

sup
h∈Hĥ,x0

N

∣∣∣ρS(N)
(h, ĥ)− ρ(h, ĥ)

∣∣∣ ≤ 4

√
2 log(CN)

S(N)
. (8)

The following lemma completes the proof of the first part:
Lemma 6.

inf
h∈Hĥ,x0

N

ρ
S(N)

(h, ĥ)− inf
h∈Hĥ,x0

N

ρ(h, ĥ)
P−→

N→∞
0

Proof. Let δ > 0 be arbitrary, and choose any N such that N > 1
Cδ and 4

√
2 log(CN)

S(N) < δ.

From Eqn. (8) we have: with probability at least 1− δ, sup
h∈Hĥ,x0

N

∣∣∣ρS(N)
(h, ĥ)− ρ(h, ĥ)

∣∣∣ < δ.

First, we choose a sequence {hj} ⊂ Hĥ,x0

N such that ρ(hj , ĥ) → infh∈HN
ρ(h, ĥ) for j → ∞.

Then,

inf
h∈Hĥ,x0

N

ρ(h, ĥ) = lim
j→∞

ρ(hj , ĥ) > lim
j→∞

ρ
S(N)

(hj , ĥ)− δ > inf
h∈Hĥ,x0

N

ρ
S(N)

(h, ĥ)− δ.

Similarly, by choosing a sequence {gj} ⊂ Hĥ,x0

N such that ρ
S(N)

(gj , ĥ) → infh∈HN
ρ

S(N)
(h, ĥ),

we have that

inf
h∈Hĥ,x0

N

ρ
S(N)

(h, ĥ) = lim
j→∞

ρ
S(N)

(gj , ĥ) > lim
j→∞

ρ(gj , ĥ)− δ > inf
h∈Hĥ,x0

N

ρ(h, ĥ)− δ.

Combining them, we have that for any δ > 0, there exists some M(δ) such that for any N > M(δ),

P

[∣∣∣∣∣ inf
h∈Hĥ,x0

N

ρ(h, ĥ)− inf
h∈Hĥ,x0

N

ρ
S(N)

(h, ĥ)

∣∣∣∣∣ < δ

]
≥ 1− δ.
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Denoting GN ≜ inf
h∈Hĥ,x0

N

ρ(h, ĥ)− inf
h∈Hĥ,x0

N

ρ
S(N)

(h, ĥ), above is equivalent to

∀δ > 0, ∃M(δ) s.t. ∀N ≥ M(δ), dKF (GN , 0) ≤ δ,

where dKF (X,Y ) = inf{δ ≥ 0 | P[|X − Y | ≥ δ] ≤ δ} is the Ky-Fan metric, which induces a
metric structure on the given probability space with the convergence in probability (see Section 9.2
of Dudley (2002)). In other words, as dKF (GN , 0) → 0, we conclude that GN

P→ 0.

limN→∞ P[∆2(N) ≤ ε] = 1
Let γ > 0 be arbitrary, and denote

Zε
N := inf

h∗∈Hĥ,x0

ρ(h∗,ĥ)−ρ⋆<ε

min
h∈HN

dH(h∗, h).

In this section, any convergence is w.r.t. the limit N → ∞ with ε fixed. It’s easy to see that Zε
N is

monotone decreasing i.e. Zε
1 ≥ Zε

2 ≥ · · · . Defining the events EN := {Zε
N < γ/B}, we have that

E1 ⊆ E2 ⊆ · · · . From our assumption and the fact that probability measure is continuous along
any monotone sequence of events, we have that

1 = lim
N→∞

P[EN ] = P
[
lim

N→∞
EN

]
= P

 lim
N→∞

inf
h∗∈Hĥ,x0

ρ(h∗,ĥ)−L(ĥ,x0)<ε

min
h∈HN

dH(h∗, h) ≤ γ

B

 .

This implies that w.p. 1 the following holds: for any ζ > 0 there exists N0 s.t. for all N ≥ N0, there
exists h ∈ HN and h∗ ∈ Hĥ,x0 with ρ(h∗, ĥ)− L(ĥ,x0) < ε s.t. dH(h∗, h) ≤ γ+ζ

B .

Thus,

∆2(N) =

∣∣∣∣∣ min
h∈Hĥ,x0

N

ρ(h, ĥ)− inf
h∈Hĥ,x0

ρ(h, ĥ)

∣∣∣∣∣
≤

∣∣∣∣∣ min
h∈Hĥ,x0

N

ρ(h, ĥ)− ρ(h∗, ĥ)

∣∣∣∣∣+ ∣∣∣ρ(h∗, ĥ)− ρ⋆
∣∣∣

≤

∣∣∣∣∣ min
h∈Hĥ,x0

N

ρ(h∗, h)

∣∣∣∣∣+ ε

≤ B min
h∈Hĥ,x0

N

dH(h, h∗) + ε ≤ γ + ζ + ε.

As γ and ζ were arbitrary, we conclude that w.p. 1, limN→∞ ∆2(N) ≤ ε, and we are done.

B THEORETICAL VERIFICATIONS OF INTUITIONS

Here, we consider two-dimensional binary classification with a set of linear classifiers, H = {hw :
hw(x) = sgn(xTw),w ∈ R2}. We assume that x is uniformly distributed on X = {x : ∥x∥ ≤
1} ⊂ R2. As we parametrize H using w, following our Algorithm 1, we set DH(ĥ) = N (ŵ, Iσ2),
where ĥ = hŵ. For simplicity, we omit the dependency on w and ŵ.

B.1 LDM AS AN UNCERTAINTY MEASURE

Recall from Section 2.1 that the intuition behind a sample with a small LDM indicates that even a
small perturbation in the predictor can alter sample prediction. We theoretically prove this intuition

Proposition 7. Suppose that h = hw is sampled with w ∼ N (ŵ, Iσ2). Then,

L(ĥ,x1) < L(ĥ,x2) ⇐⇒ P[h(x1) ̸= ĥ(x1)] > P[h(x2) ̸= ĥ(x2)].
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(a) (b)

Figure 6: Proof of Proposition 7.

Proof of Proposition 7. One important observation is that by the duality between w and x (Tong
& Chang, 2001), in R2, w is a point and x is represented by the hyperplane, lx = {w ∈ R2 :

sgn(xTw) = 0}. Suppose that h is sampled with w ∼ N (ŵ, Iσ2), and let θ̂ be the angle of ŵ, θx
be the angle between lx and positive x-axis, and Wŵ,x be the half-plane divided by lx which does
not contain ŵ:

Wŵ,x = {w′ ∈ W | h′(x) ̸= ĥ(x)}
as in Figure 6a. Then, L(ĥ,x) = |θx − θ̂|/π and P[h(x) ̸= ĥ(x)] = P[w ∈ Wŵ,x].

Let d1, d2 be the distances between ŵ and lx1
, lx2

respectively, and

W1 = Wŵ,x1 \Wŵ,x2 , W2 = Wŵ,x2 \Wŵ,x1

as in Figure 6b. Suppose that d1 < d2, then |θx1 − θ̂| < |θx2 − θ̂| since di = ∥ŵ∥ sin |θxi − θ̂|, and

P[w ∈ Wŵ,x1 ]− P[w ∈ Wŵ,x2 ] = P[w ∈ W1]− P[w ∈ W2] > 0

by the followings:

Wŵ,x1 = W1 ∪ (Wŵ,x1 ∩Wŵ,x2), Wŵ,x2 = W2 ∪ (Wŵ,x1 ∩Wŵ,x2)

where W1,W2, and Wŵ,x1 ∩ Wŵ,x2 are disjoint. Note that W1 and W2 are one-to-one mapped
by the symmetry at origin, but the probabilities are different by the biased location of ŵ, i.e,
ϕ(w1|ŵ, σ2) > ϕ(w2|ŵ, σ2) for all pairs of (w1,w2) ∈ W1 × W2 that are symmetric at the
origin. Here ϕ(·|ŵ, σ2) is the probability density function of the bivariate normal distribution with
mean ŵ and covariance Iσ2. Thus,

L(ĥ,x1) < L(ĥ,x2) ⇐⇒ d1 < d2 ⇐⇒ P[h(x1) ̸= ĥ(x1)] > P[h(x2) ̸= ĥ(x2)].

B.2 VARYING σ2 IN ALGORITHM 1

Recall from Section 2.2 that the intuition behind using multiple σ2 was that it controls the trade-off
between the probability of obtaining a hypothesis with a different prediction than that of ĥ and the
scale of ρ

S
(h, ĥ). Theoretically, we show the following for two-dimensional binary classification

with linear classifiers:
Proposition 8. Suppose that h is sampled with w ∼ N (ŵ, Iσ2) where w, ŵ ∈ W are parameters
of h, ĥ respectively, then E[ρ(h, ĥ)] is continuous and strictly increasing with σ.

We now empirically show that this intuition holds for general deep learning architectures. Figure 7
shows the relationship between E[ρ

S
(h, ĥ)] and log σ for MNIST, CIFAR10, SVNH, CIFAR100,

Tiny ImageNet, and FOOD101 datasets where h is sampled with w ∼ N (ŵ, Iσ2). The E[ρ
S
(h, ĥ)]

is monotonically increasing with log σ in all experimental settings.
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(a) (b) (c)

(d) (e) (f)

Figure 7: The relationship between the disagree metric and perturbation strength for MNIST (a),
CIFAR10 (b), SVHN (c), CIFAR100 (d), Tiny ImageNet (e), and FOOD101 (f) datasets. E[ρ

S
(h, ĥ)]

is monotonically increasing with the perturbation strength in all experimental settings.

Proof of Proposition 8. By the duality between w and x, in W , w is a point and x is represented
by the hyperplane, lx = {w ∈ W : sgn(xTw) = 0}. Let h be a sampled hypothesis with
w ∼ N (ŵ, Iσ2), θ̂ be the angle of ŵ = (ŵ1, ŵ2)

T, i.e., tan θ̂ = ŵ2/ŵ1, θ be the angle of
w = (w1, w2)

T, i.e., tan θ = w2/w1, and θx be the angle between lx and positive x-axis. Here,
θ, θx ∈ [−π + θ̂, π + θ̂] in convenience. When θx or π + θx is between θ and θ̂, h(x) ̸= ĥ(x),
otherwise h(x) = ĥ(x). Thus, ρ(h, ĥ) = |θ − θ̂|/π.

Using Box-Muller transform (Box & Muller, 1958), w can be generated by

w1 = ŵ1 + σ
√
−2 log u cos(2πv), w2 = ŵ2 + σ

√
−2 log u sin(2πv)

where u and v are independent uniform random variables on [0, 1]. Then, ∥w − ŵ∥ = σ
√
−2 log u

and (w2 − ŵ2)/(w1 − ŵ1) = tan(2πv), i.e., the angle of w − ŵ is 2πv. Here,

∥ŵ∥ sin(θ − θ̂) = σ
√

−2 log u sin(2πv − θ) (9)

by using the perpendicular line from ŵ to the line passing through the origin and w (see the Figure 8
for its geometry), and Eq. 9 is satisfied for all θ. For given u and v, θ is continuous and the derivative
of θ with respect to σ is

dθ

dσ
=

√
−2 log u sin2(2πv − θ)

∥ŵ∥ sin(2πv − θ̂)
,

thus {
dθ
dσ > 0, v ∈ ( θ̂

2π ,
π+θ̂
2π )

dθ
dσ < 0, v ∈ [0, 1] \ [ θ̂

2π ,
π+θ̂
2π ]

.

Then,
dρ(h, ĥ)

dσ
= sgn(θ − θ̂)

dθ

dσ
> 0 where v /∈

{ θ̂

2π
,
π + θ̂

2π

}
.

Thus, ρ(h, ĥ) is continuous and strictly increasing with σ when v ̸= θ̂/2π and v ̸= (π+ θ̂)/2π. Let
ρ(h, ĥ) = g(σ, u, v), then E[ρ(h, ĥ)] =

∫
g(σ, u, v)f(u)f(v)dudv where h(u) = I[0 < u < 1] and

h(v) = I[0 < v < 1]. For 0 < σ1 < σ2,

E[g(σ2, u, v)]− E[g(σ1, u, v)] =

∫
(g(σ2, u, v)− g(σ1, u, v)) f(u)f(v)dudv > 0
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(a) (b)

Figure 8: Proof of Proposition 8.

C DATASETS, NETWORKS AND EXPERIMENTAL SETTINGS

C.1 BENCHMARK DATASETS

MNIST (Lecun et al., 1998) is a handwritten digit dataset which has 60, 000 training samples and
10, 000 test samples in 10 classes. Each sample is a black and white image and 28× 28 in size.

CIFAR10 and CIFAR100 (Krizhevsky, 2009) are tiny image datasets which has 50, 000 training
samples and 10, 000 test samples in 10 and 100 classes respectively. Each sample is a color image
and 32× 32 in size.

SVHN (Netzer et al., 2011) is a real-world digit dataset which has 73, 257 training samples and
26, 032 test samples in 10 classes. Each sample is a color image and 32× 32 in size.

Tiny ImageNet (Le & Yang, 2015) is a subset of the ILSVRC (Russakovsky et al., 2015) dataset
which has 100, 000 samples in 200 classes. Each sample is a color image and 64 × 64 in size. In
experiments, Tiny ImageNet is split into two parts: 90, 000 samples for training and 10, 000 samples
for test.

Food101 (Bossard et al., 2014) is a fine-grained food image dataset which has 75, 750 training
samples and 25, 250 test samples in 101 classes. Each sample is a color image and resized to
75× 75.

All datasets are used without any preprocessing of images.

C.2 DEEP NETWORKS

S-CNN (Chollet et al., 2015) consists of [3×3×32 conv − 3×3× 64 conv − 2×2 maxpool −
dropout (0.25) − 128 dense − dropout (0.5) − # class dense − softmax] layers, and it is used for
MNIST.

K-CNN (Chollet et al., 2015) consists of [two 3×3×32 conv − 2×2 maxpool - dropout (0.25) −
two 3×3×64 conv − 2×2 maxpool - dropout (0.25) − 512 dense − dropout (0.5) − # class dense -
softmax] layers, and it is used for CIFAR10, SVHN, and CIFAR100.

WRN-16-8 (Zagoruyko & Komodakis, 2016) is a wide residual network that has 16 convolutional
layers and a widening factor 8, and it is used for CIFAR100 and Tiny ImageNet.

C.3 EXPERIMENTAL SETTINGS

Training settings regarding a number of epochs, batch size, optimizer, learning rate, and learning
rate schedule are summarized in Table 3. The model parameters are initialized with He normal
initialization (He et al., 2015) for all experimental settings. For all experiments, the initial labeled
samples for each repetition are randomly sampled according to the distribution of the training set.
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Table 3: Settings for training.

Dataset Model Epochs
Batch
size

Optimizer Learning Rate
Learning Rate Schedule
×decay [epoch schedule]

MNIST S-CNN 50 32 Adam 0.001 -
CIFAR10 K-CNN 150 64 Adam 0.0001 -

SVHN K-CNN 150 64 Adam 0.0001 -
CIFAR100 WRN-16-8 100 128 Nesterov 0.05 ×0.2 [60, 80]

Tiny ImageNet WRN-16-8 200 128 Nesterov 0.1 ×0.2 [60, 120, 160]
FOOD101 WRN-16-8 200 128 Nesterov 0.1 ×0.2 [60, 120, 160]

(a) (b)

Figure 9: Th number of sampled hypotheses (a) and the runtime (b) w.r.t. the stop condition for eval-
uating empirical LDM using Algorithm 1 of pool data (MNIST). Both are monotonically increasing
with the stop condition.

D ABLATION STUDY

D.1 STOP CONDITION

Figure 9 shows the number of sampled hypotheses and the runtime for evaluating empirical LDM of
pool data in MNIST, as the stop condition varies. Both are monotonically increasing with the stop
condition, which implies that large stop condition, although it may result in empirical LDM closer
to the true LDM, potentially requires huge computing power, which is very inefficient.

D.2 NEED FOR DIVERSITY IN BATCH ACTIVE LEARNING

In the batch selection setting where samples are selected in the order of the smallest empirical LDM,
there may be some overlap in the information of the selected samples’ features, thereby reducing
the performance. In other words, querying unlabeled samples with the smallest LDMs may not lead
to the best performance. To confirm this phenomenon, we query the kth batch of size q = 20 for
k ∈ [50] from MNIST sorted in ascending order of LDM and compare the improvements in test
accuracy. As shown in Figure 10a where 100 samples are labeled, the smallest LDM leads to the
best performance, whereas in Figure 10d where 300 samples are labeled, the smallest LDM does
not lead to the best performance. To see why this is the case, we’ve plotted the t-SNE plots (van der
Maaten & Hinton, 2008) of the first and eighth batches for each case. In the first case, as shown in
Figure 10b–10c, the samples of the first and eighth batches are all spread out, so there is no overlap
of information between the samples in each batch; taking a closer look, it seems that smaller LDM
leads to the samples being more spread out. However, in the second case, as shown in Figure 10e–
10f, the samples of the first batch are close to one another i.e. there is a significant overlap of
information between the samples in that batch. Surprisingly, this is not the case for the eighth batch,
which consists of samples of larger LDMs. From this, we conclude that in the batch selection setting,
even when using the LDM-based approach, diversity should be taken into consideration.

D.3 COMPARING WITH OTHER UNCERTAINTY METHODS WITH SEEDING

To clarify whether the gains of LDM-S over the standard uncertainty methods are due to weighted
seeding or due to the superiority of LDM, the performance of LDM-S is compared with those meth-
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(a) (b) (c)

(d) (e) (f)

Figure 10: The improved test accuracy by labeling the kth batch of size q from pool data sorted
in ascending order of LDM when the number of labeled samples is 100 (a) or 300 (d), and t-SNE
plots of the first and eighth batches for each case (b-c, e-f) on MNIST. There exists a case where the
smallest LDM does not lead to the best performance due to the overlap of information in the batch.

(a) (b)

(c) (d)

Figure 11: The performance comparison of LDM-S with the standard uncertainty methods to which
weighted seeding is applied on MNIST (a), CIFAR10 (b), SVHN (c), and CIFAR100 (d). Even if
weighted seeding is applied to the standard uncertainty methods, LDM-S performs better.

ods to which weighted seeding is applied. Figure 11 shows the test accuracy with respect to the
number of labeled samples on MNIST, CIFAR10, SVHN, and CIFAR100 datasets. Overall, even
when weighted seeding is applied to the standard uncertainty methods, LDM-S still performs better
on all datasets. Therefore, the performance gains of LDM-S can be attributed to LDM’s superiority
over the standard uncertainty measures.
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Table 4: The mean of runtime (min) for each algorithm and each dataset. The value in parentheses
is the ratio of runtime for each algorithm to that of Entropy. We observe that LDM-S operates as
fast as Entropy on almost all datasets.

MNIST CIFAR10 SVHN CIFAR100 T. ImageNet FOOD101
LDM-S 17.6 (170%) 106 (106%) 69 (106%) 406 (103%) 4,609 (103%) 4,465 (103%)
Entropy 10.4 (100%) 100 (100%) 65 (100%) 395 (100%) 4,466 (100%) 4,340 (100%)
Coreset 11.3 (109%) 106 (106%) 71 (109%) 430 (109%) 4,707 (105%) 4,476 (103%)
MC-BALD 12.1 (117%) 108 (108%) 106 (162%) 448 (113%) 4,829 (108%) 4,727 (109%)
ENS-VarR 49.6 (478%) 496 (496%) 325 (499%) 1,952 (494%) 19,356 (433%) 18,903 (436%)
BADGE 12.5 (120%) 102 (102%) 70 (108%) 445 (113%) 5,152 (115%) 4,704 (108%)

(a) (b) (c)

(d) (e) (f)

Figure 12: The test accuracy with respect to the number of labeled samples from initial to final step
for all experimental settings.

E ADDITIONAL RESULTS

E.1 RUNTIME

Table 4 present the mean of runtime (min) to perform active learning for each algorithm and each
dataset. The value in parentheses is the ratio of the runtime for each algorithm to that of Entropy.
Overall, the runtime of LDM-S increased by only 3 ∼ 6% compared to Entropy, and it is a little
faster than MC-BALD, Coreset, and BADGE. ENS-VarR requires about 5 times more computational
load than Entropy, as all networks in the ensemble are individually trained in that method. The only
exception is MNIST in which the runtime of LDM-S increases by 70% compared to Entropy; this
can be attributed to the relatively small training time compared to acquisition time, which is due to
the simplicity of MNIST.

E.2 RESULTS FOR TEST ACCURACY

Figure 12 shows the test accuracy with respect to the number of labeled samples from initial to final
step for all experimental settings.
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F EXTENDED RESULTS FOR EMPIRICAL LDMS

(a) (b)

Figure 13: The extended results for empirical LDMs of MNIST samples with a four-layered CNN.
The LDM of each sample tends to converge to a specific value.

Additional experiments are conducted for evaluating empirical LDMSs of MNIST samples with
s = {2000, 5000, 10000, 20000, 50000}. Due to the limitation of computing time, the number of
repetitions is to 10 or less, but the results are hardly fluctuated since the variance decreases as s
increases. Figure 13 shows that the LDM of each sample tends to converge to a specific value.
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