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Abstract

This paper addresses a gap in the current state of the art by providing a solution for model-1

ing causal relationships that evolve over time and occur at different time scales. Specifically,2

we introduce the multiscale non-stationary directed acyclic graph (MN-DAG), a framework3

for modeling multivariate time series data. Our contribution is twofold. Firstly, we expose4

a probabilistic generative model by leveraging results from spectral and causality theories.5

Our model allows sampling an MN-DAG according to user-specified priors on the time-6

dependence and multiscale properties of the causal graph. Secondly, we devise a Bayesian7

method named Multiscale Non-stationary Causal Structure Learner (MN-CASTLE) that8

uses stochastic variational inference to estimate MN-DAGs. The method also exploits infor-9

mation from the local partial correlation between time series over different time resolutions.10

The data generated from an MN-DAG reproduces well-known features of time series in dif-11

ferent domains, such as volatility clustering and serial correlation. Additionally, we show12

the superior performance of MN-CASTLE on synthetic data with different multiscale and13

non-stationary properties compared to baseline models. Finally, we apply MN-CASTLE to14

identify the drivers of the natural gas prices in the US market. Causal relationships have15

strengthened during the COVID-19 outbreak and the Russian invasion of Ukraine, a fact16

that baseline methods fail to capture. MN-CASTLE identifies the causal impact of critical17

economic drivers on natural gas prices, such as seasonal factors, economic uncertainty, oil18

prices, and gas storage deviations.19

1 Introduction20

A causal graph describes causal relationships among the constituents of a given system, and represents21

a powerful tool to analyze such a system under interventions and distribution changes. In general, causal22

graphs are unknown. Fortunately, it is possible to leverage causal structure learning approaches to unveil and23

quantify the causal relationships among variables. While randomized experiments are the gold standard for24

testing causal hypotheses (especially in medicine and the social sciences), in many cases such interventional25

approaches are unfeasible or unethical. Hence, great effort has been devoted to the development of methods26

able to retrieve causal structures from observational data (Glymour et al., 2019; Schölkopf et al., 2021).27

Regardless of the different causal structure learning methods, the most informative causal graph is a directed28

acyclic graph (DAG), where the nodes in V are the variables of the system, all possible edges eij ∈ E ⊆ V ×V29

are directed and represent direct causal effects, and feedback loops among nodes are forbidden (acyclicity30

requirement). A DAG can be associated with its functional representation, also known as structural equation31

model (SEM, Pearl 2009). Here each node of the causal graph is written as a function of the values of a set32

of parents nodes and of an endogenous latent noise (see Appendix A). In this work, we focus on the case in33

which such functions are linear and the latent noise is additive.34

Even though widely studied and applied, a linear SEM is not adequate to cope with causal relations that35

evolve over time and occur at different time scales, which are both common when dealing with time series.36

Indeed, a SEM assumes that (i) causal edges and their weights are stationary and (ii) there is only one time37

scale at which causal relations occur, i.e., the one associated with the frequency of observed data. However, in38
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practice, causal structures might be non-stationary (Zhang et al., 2021b; Raggad, 2021; D’Acunto et al., 2021)39

and often there is no prior knowledge about the temporal resolutions at which causal relations occur (Besserve40

et al., 2010; Gong et al., 2015; Runge et al., 2019; D’Acunto et al., 2022).41

To overcome these limits, we introduce multiscale non-stationary causal structures, namely MN-DAGs, that42

generalize linear DAGs to the time-frequency domain. In our work, the term multiscale means that we43

consider multiple time resolutions, i.e., frequency bands. Hence, we look for causal interactions among time44

series within each of those distinct frequency bands, and we simultaneously inspect the behaviour of these45

causal relationships along time. Throughout the paper, we use 2j to represent a certain temporal resolution,46

where j = {1, . . . , J} indicates the associated scale level and J ∈ N is the maximum level considered. To47

clarify the meaning of time scale, let us consider a data set X ∈ RN×T made by N time series of length48

T = 2J . The column X[t] = [X1[t], . . . , XN [t]]′ represents a sample collected at frequency ∆t. For example,49

let us say that the time series are observed at daily frequency, hence ∆t is equal to one day. The scale level50

j = 1 refers to the variations of the time series associated with the time scale of 21∆t, i.e., two consecutive51

days. Analogously, the scale level j = 2 refers to the variations of the time series associated with the temporal52

resolution of 22∆t, i.e., four consecutive days. And so on and so forth, until we reach the maximum level53

j = J . Additionally, the j-th time scale corresponds to the frequency band [1/2j+1, 1/2j ].54

In MN-DAGs each time scale is represented by a different graph page (akin to multi-layer networks). Then,55

the vertices within a certain page are associated with the multiscale representation of the N time series at56

the frequency band corresponding to that page. There exists a unique global causal ordering ‘≺’ shared by57

all graph pages, such that the possible parent set Pi,≺ for the i-th node Xi can include only those nodes Xj58

that precede it in the causal ordering (Xj ≺ Xi). Causal relationships among nodes, represented as directed59

edges, can vary smoothly over time and constitute acyclic structures within each time scale. So, throughout60

the paper, the term non-stationarity associated with causal structures refers to a smooth dependence on61

time, similarly to how it is defined by Huang et al. (2020).62

To achieve our goal, the main technical challenges we face are: (i) the definition of a probabilistic generative63

model that allows to sample an MN-DAG; (ii) the development of a learning method to estimate MN-DAGs64

from real-world data. Regarding the first point, we propose a probabilistic generative model over MN-DAGs65

having the causal ordering and the causal relationships as latent variables. The observables are N zero-66

mean time series of length T . Our model leverages linear SEM and multivariate locally stationary processes67

(MLSW, Park et al. 2014). In particular, MLSW is a mathematical framework to represent time series as68

a sum of contributions coming from different time scales (see Appendix C). Concerning the second point,69

we propose a Bayesian method, called MN-CASTLE, that uses stochastic variational inference (SVI, see70

Appendix D) for learning causal structures. MN-CASTLE is able to cope with multiscale data that features71

time-dependent variance. Our method relies upon observational data and the estimate of the inverse of the72

power spectrum at different temporal resolutions.73

Overall, our contributions can be summarized as follows:74

• We define a new type of causal structure for modeling causal relationships that evolve over time and75

occur at different time scales (MN-DAG).76

• We devise a probabilistic generative model that allows sampling an MN-DAG according to user-specified77

priors on the time-dependence and multiscale properties of the domain. Our model can be used to78

generate synthetic time series with real-world characteristics.79

• We design a Bayesian inference method, MN-CASTLE, for estimating MN-DAGs from real-world data.80

Our empirical assessment on synthetic datasets demonstrates that MN-CASTLE outperforms baseline81

methods in various experimental settings and is robust to model misspecification.82

• When applied to study what drives natural gas prices in the US market, MN-CASTLE succeeds where83

baselines fail. In fact, it is the only method able to capture the dynamic nature of the market and the84

impact of exogenous events such as COVID-19 and the Russian invasion of Ukraine.85

At a high level, this paper bridges the gap between multiscale modeling and machine learning-based causal86

structure learning methods.87
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Roadmap. This article is organized as follows. Section 2 relates our proposals to existing methods, highlight-88

ing differences and similarities. Then, the subsequent three sections deal with our first technical challenge.89

Specifically, Section 3 presents our probabilistic generative model, Section 4 details how an MN-DAG is90

sampled in our model, and Section 5 how to generate data from the sampled MN-DAG. At this point, we91

address our second challenge in Section 6, where we pose a Bayesian learning method developed according92

to the proposed probabilistic generative model. Next, Section 7 presents the empirical assessment of our93

model. In detail, Section 7.1 statistically describes data generated by the probabilistic generative model.94

Section 7.2 regards tests on synthetic datasets, by providing details concerning the experimental settings95

and introducing the considered baseline models. Subsequently, Section 8 analyses a real-world use case on96

natural gas prices in the US market. Finally, Section 9 concludes with an additional discussion concerning97

our findings, and outlines open questions and future research directions.98

2 Related Work99

Causal structure learning methods can be mainly classified into three categories, according to the approach100

used to infer the causal graph: (i) constraint-based approaches, which make use of conditional independence101

tests to establish the presence of a link between two variables (Spirtes et al., 2000; Huang et al., 2020); (ii)102

score-based methods, which use search procedures in order to optimize a certain score function (Heckerman103

et al., 1995; Chickering, 2002; Huang et al., 2018); (iii) functional causal models, which express a variable at104

a certain node as a function of its parents (Shimizu et al., 2006; Hoyer et al., 2008; Zhang & Hyvärinen, 2010;105

Shimizu et al., 2011; Peters et al., 2014; Bühlmann et al., 2014). Our approach fits into the latter category106

and aims to handle the presence of non-stationarity and different temporal resolutions in the underlying107

causal structure.108

Unlike the multiscale causal structure learning method proposed by D’Acunto et al. (2022), which estimates109

multiscale stationary causal relationships hinging on stationary wavelet transform (Nason & Silverman,110

1995) and non-convex optimization, our method applies a different learning scheme and is able to handle111

non-stationary relationships as well. Furthermore, the method we propose exploits the estimate of the112

decomposition of the inverse power spectrum at different time scales, whereas the algorithm proposed in the113

previous paper operates on the estimated wavelet detail vectors.114

In the past, several approaches have been developed that can infer causal structures in the presence of non-115

stationarity under certain assumptions (Song et al., 2009; Ghassami et al., 2018; Strobl, 2019; Perry et al.,116

2022). The main (implicit) assumption common to these approaches, concerns the time scale at which causal117

interactions occur, that is, it is assumed that this scale coincides with the frequency of observation of the118

data. The model we propose, relaxes this assumption, and allows time-dependent causal relationships to119

be investigated at different temporal resolutions. Another difference concerns the assumption regarding the120

existence of multiple domains, where causal dependencies between variables may vary but are assumed to be121

stationary within each domain, to exploit non-stationarity and distributional shifts to recover the underlying122

causal structure. Although in the context of time series, the dataset can be segmented into different domains123

through a sliding window approach, this procedure introduces discretionary choices such as (i) the choice of124

the splitting points and (ii) the size of the time window in which causal relationships should be stationary.125

However, in general, for real data there is no prior knowledge regarding the above issues: the causal structure126

might vary a lot even when windows are overlapping (D’Acunto et al., 2021). In contrast, our method aims127

to learn the causal structure and describe its temporal evolution, assuming that it is linear in the frequency128

domain and that the causal ordering is shared between the temporal resolutions considered.129

Our probabilistic generative model extends the works of Cundy et al. (2021); Charpentier et al. (2022), since130

it is suitable for time-series data and provides a causal structure that lives in the time-frequency domain.131

Even though our approach leverage Gumbel distributed variables for sampling the causal ordering as in the132

previous two works, the procedure we apply is different and requires a lower computational cost (Gadetsky133

et al., 2020). In addition, our inference model uses a gradient estimator with a data-dependent control134

variate strategy for learning the parameters of the causal ordering distribution, whereas existing models135

exploit differentiable relaxations of such a distribution. Our procedure uses the masking of distributions as136

well to optimize at each step only the causal relations compliant to a certain causal ordering. A similar137
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approach is also employed in Ke et al. (2019); Ng et al. (2022). However the masking used in those works138

aims at excluding all non-causal relations, not just those that do not conform to the causal ordering.139

Finally, we exploit recent developments in variational inference in order to approximate the posterior dis-140

tribution over MN-DAG parameters given data, in accordance with the MN-CASTLE probabilistic model.141

This general learning scheme is also exploited in other recent works (Cundy et al., 2021; Charpentier et al.,142

2022; Annadani et al., 2021; Lorch et al., 2022) to model the posterior distribution over the parameters of a143

DAG, as defined in the corresponding proposed probabilistic models.144

3 Probabilistic Generative Model145
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Figure 1: Examples of causal structures that can be sampled from the proposed probabilistic model according
to the specified values for non-stationarity and multiscale features. In the depicted quadrant, we have the
non-stationarity feature (associated with the parameter τ ∈ [0, 1]) on the x-axis in red, and the multiscale
feature (associated with the parameter µ ∈ [0, 1]) on the y-axis in yellow, respectively. Colors, edges shape
and number of graph layers highlight differences from the single-scale stationary DAG corresponding to the
origin of the quadrant (a). When we move horizontally, the temporal dependence of the causal coefficients
(edges in the causal graph) changes (b). Similarly, vertical shifts in the quadrant are associated to the change
in the number of time scales (pages of the causal graph) contributing to the sampled data (c). Finally, when
both τ and µ are different from zero, we sample data concerning a system driven by an underlying multiscale
non-stationary causal structure (MN-DAG).

The probabilistic generative model over MN-DAGs we put forth incorporates both the causal ordering and the146

causal relationships as latent variables. The observables consists of N zero-mean time series, each of length147

T . In our model, the underlying causal structure determines the transfer function matrix. Specifically, this148
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matrix is defined as a time-dependent mixing matrix that depends on the causal structure and the strength149

of causal relations at each time step and scale level. Furthermore, the transfer function matrix provides150

a measure of the local variance and cross-covariance between the time series, which is equivalent to the151

power spectral matrix (see Section 5). From a linear conditional dependence perspective, the inverse of the152

power spectral density is a concept extensively studied in spectral theory (Dahlhaus, 2000, and references153

therein). Indeed, the inverse of the power spectral density is a generalization of the precision matrix to154

the time-frequency domain. It provides information about the local linear dependence between two time155

series after removing the linear effects of the rest of the time series. Therefore, according to our model156

both the power spectral matrix and its inverse are driven by the multiscale time-dependent causal structure.157

This dependence on the causal structure implies that the power spectral matrix and its inverse are also158

time-dependent.159

The proposed probabilistic model takes as input (i) the number of nodes N ∈ N; (ii) the number of samples160

T ∈ N; (iii) a parameter µ ∈ [0, 1] associated with the multiscale feature; (iv) τ ∈ [0, 1] which describes the161

time dependence of causal relationships; (v) δ ∈ [0, 1] that manages the density of the MN-DAG.162

Figure 1 shows a (τ, µ)-quadrant along with examples of latent causal structures which determine the sampled163

data, according to the specified values of µ and τ . When µ = 0, we obtain the single-scale case depicted164

in Figure 1(a) and 1(b). Here, the MN-DAG has only one page. We assume that the power spectrum that165

describes the system is concentrated in the finest scale level j = 1. In addition, if also τ = 0, the causal166

links are stationary (Figure 1(a)). Starting from the origin, as we move to the right (τ → 1) the temporal167

dependence of causal connections increases. As we move upwards (µ → 1), the likelihood that the causal168

graph contains more pages increases (Figure 1(c) and 1(d)). Then, the overall power spectrum is spread over169

more temporal resolutions.170

The following Sections 4 and 5 delve into the sampling of the MN-DAG and the generation of data, respec-171

tively.172

4 Sampling an MN-DAG173

Figure 2 shows the three steps needed to sample an MN-DAG.174

Sample the time scales. The number of pages (time scales) of the MN-DAG is J = 1 + J ′, where J ′
175

is sampled from a binomial distribution J ′ ∼ B(log2(T ) − 1, µ). Here, the first parameter of the binomial176

distribution is the number of trials and µ represents the probability of success. Without loss of generality,177

we assume that temporal resolutions are consecutive, i.e., given the value of J , all the time scales 2j , j =178

{1, . . . , J}, are associated with a page in the causal graph. This assumption does not imply that causal179

relations occur within all the considered pages. Since the model is probabilistic and the user specifies a value180

for the density δ, we also might end up with a causal graph without edges.181

Sample the causal ordering. Within our probabilistic model, we assume that the causal ordering ≺ is
shared by all time scales. This property implies that, given ≺, the possible parent sets at each temporal
resolutions Pi,≺ for the i-th variable Xi are {Pi | Pi ≺ Xi}. The causal ordering ≺ can be thought as a
permutation of a vector of integers ≺′= [1, . . . , N ], thus we use the Plackett-Luce distribution (PL, Plackett
1975; Luce 2012) to sample it. PL represents a distribution over permutations, defined by a vector of scores
θ ∈ RN , which allows sampling permutations b ∈ SN in O(N logN), where b is a vector of N integers and
SN is the support of permutations of N elements. Thus, given θ, the probability of a permutation b is

p(b | θ) =
k∏

i=1

eθbi∑k
u=i e

θbu

.

A sample b from PL distribution can be thought as a sequence of samples from categorical distributions:
first b1 comes from the categorical distribution with logits θ; b2 from the categorical with logits θ − {θb1};
and so on. The mode of the PL is the descending order permutation of scores b0 = θb0

1
≥ θb0

2
≥ . . . ≥ θb0

N
.

The sampling procedure from a PL relies upon the fact that an order of a vector z ∈ RN ∼ Gum(θ, 1) is
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Figure 2: The figure shows the steps necessary to sample a MN-DAG. For the sake of readability, let us
consider the case where N=3 and T=4. Here the yellow color refers to time scales; red for non-stationarity.
(a) First, we sample the number of pages (time scales) of the MN-DAG. Given µ, the latter is given by
J = 1 + J ′, where J ′ ∼ B(log2(T ) − 1, µ). In the example, we instantiate three pages (J = 3). (b) Second,
we sample the causal ordering ≺∼ PL(θ) that is shared by all time scales and entails the permutation
tensor P ∈ {0, 1}J×T ×N×N . Here, PL(θ) indicates the Plackett-Luce distribution, defined by a score vector
θ ∈ RN , where θi ∼ U(0, N). The indexes are j for time scales, t for time steps, n for the considered nodes
and n′ for the positions within ≺. In the considered example, we have ≺= [3, 2, 1]′. Therefore, for each 3 × 3
slice of the tensor corresponding to a certain time scale j and time t, we have pn′n = 1 (blue square) if the
node n appears at index n′ within ≺. (c) Third, we build the tensor of causal coefficients as follows. With
regards indexes, j, t and n are the same as above, whereas m indicates the parents dimension. Here, we
first sample a full tensor of weights W ∈ RJ×T ×N×N made by three components: (i) a constant term W0;
(ii) Wµ that makes the magnitude of causal relationships different across time scales; (iii) Wτ that allows
causal coefficients to vary over time according to batched GP (0,K). Therefore, within each scale j, Wnm

are smooth functions varying over index t. To manage the density of the entailed MN-DAG, we multiply
element-wise W by a logical mask Π ∈ {0, 1}J×T ×N×N . The entries of the Π are distributed according to
a Bernoulli distribution, πnm ∼ B(δ). Finally, we obtain the causal tensor C that entails the MN-DAG on
the right by imposing the causal ordering sampled at step (b).

distributed as PL(θ), where Gum(θ, 1) is a Gumbel distribution with location parameter θ and scale equal
to one (Gadetsky et al., 2020). Therefore, we can sample b as follows:

zi = θi − log(− log(vi)), vi ∼ U(0, 1)
H(z) = argsort(z) .

We sample the causal ordering ≺∼ PL(θ) by using the procedure above, where we choose a uniform prior for182

the PL score vector, i.e., θi ∼ U(0, N). The causal ordering ≺ entails a permutation matrix P̂ ∈ {0, 1}N×N
183

such that pn′n = 1 iff the variable Xn occurs at position n′ within ≺; 0 otherwise. Finally, we derive a184

permutation tensor P ∈ RJ×T ×N×N by simply tiling P̂ along both multiscale and time dimensions.185
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Sample the causal tensor. Given J and τ , we build a tensor of weights W ∈ RJ×T ×N×N made by three186

building blocks. First, we sample Ŵ0 ∈ RN×N , whose entries are normally distributed, w0
nm ∼ N(0, 1).187

Starting from Ŵ0, we derive the first component W0 ∈ RJ×T ×N×N by simply expanding Ŵ0 along both188

multiscale and time dimensions. Then, this component can be thought as a constant term shared by all189

temporal resolutions and time steps.190

Second, we sample Ŵµ ∈ RJ×1×N×N , whose entries are distributed according to a Gaussian N(0, µ). By ex-191

panding Ŵµ along the time dimension, we obtain the second component Wµ ∈ RJ×T ×N×N . This component192

makes the magnitude of causal relationships different across scales and is stationary along t.193

Third, we sample Wτ ∈ RJ×T ×N×N where each tube along the time dimension follows a multivariate
Gaussian distribution MN(0,K). Here, the covariance matrix K = K(t, t′) represents a (combination of)
valid kernel(s) for Gaussian processes (GP, Bishop & Nasrabadi 2006), where the lengthscale is λ = 1/τ .
This component imposes the causal coefficient to evolve smoothly over time, according to τ . Indeed, as
τ → 0, the lengthscale of the kernel increases and consequently Wτ varies more slowly in time. Finally, the
tensor of weights is

W = W0 + Wµ + τ · Wτ . (1)

Now, to manage sparsity and ensure the acyclicity of causal connections, we generate a suitable logical mask194

Π̂ ∈ {0, 1}J×1×N×N . Indeed, we use this mask to obtain a tensor of causal relations from W, made of strictly195

lower triangular slices. The slices Π̂nm are strictly lower triangular and the entries are distributed according196

to a Bernoulli distribution, πnm ∼ B(δ). Then, we obtain the tensor of causal relations as Ĉ = Π ◦ W,197

whose slices Ĉnm are nilpotent1. Here Π ∈ {0, 1}J×T ×N×N is obtained by expanding Π̂ over time and ◦198

represents the Hadamard product.199

At this point, given P and Ĉ, we compute the causal tensor that entails the latent MN-DAG by means of200

the product C = P′ĈP, where P′ is obtained by transposing the two rightmost dimensions of P.201

5 Generate Data from the MN-DAG202

Having sampled an MN-DAG, we wish to use it to generate N zero-mean processes of length T , whose203

behaviour is determined by the evolution over time of a latent MN-DAG. Here, we build upon the SEM (Ap-204

pendix A) and the MLSW (Appendix C) theoretical frameworks. Mathematically, we model the multivariate205

time series as206

XT [t] =
J∑

j=1

+∞∑
k=−∞

Mj [ν]zj,kψj [t− k] . (2)

In Equation (2), (i) {ψj [t − k]} is a set of non-decimated wavelets (see Appendix B); (ii) {zj,k} is a set207

of random vectors zj,k ∼ N(0, IN×N ); (iii) Mj [ν] = (I − Cj [ν])−1 is a time-dependent mixing matrix208

that represents the transfer function matrix, where ν = k/T is the rescaled time (Dahlhaus, 1997) and209

Cj [ν] ∈ RN×N is the matrix of causal coefficients at time ν and scale j described in Section 4. In our210

model, the local variance and cross-covariance between the processes at a certain time ν and scale j, i.e.,211

the local wavelet spectral matrix (LWSM) Sj [ν] is determined by the MN-DAG structure. The same holds212

for the inverse of the LWSM, i.e., Oj [ν] = Sj [ν]−1, that provides information concerning the local linear213

dependence between two time series after having removed the linear effects of the rest of the time series.214

Thus, we can think of it as the equivalent of the precision matrix in the time-frequency domain. Then, the215

matrix Oj [ν] relates to partial correlations between time-series, a concept that has been extensively studied216

in spectral theory (Dahlhaus 2000, and references therein). Indeed, rescaling leads to the partial coherence217

Rj [ν] = −Dj [ν]Oj [ν]Dj [ν], with Dj [ν] being a diagonal matrix with entries [Oj [ν]]−1/2
nn , ∀n ∈ [N ]. Given218

its definition, the partial coherence between two time series provides a measure of local linear dependence219

as well and is bounded in [−1, 1]. The results below link the spectral properties of XT to the underlying220

multiscale causal structure.221

1A matrix A is said nilpotent if it is square and An̄ = 0 for all integers n̄ ≥ N̄ , where N̄ is known as the index of A.
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Lemma 5.1. The transfer function matrix is a permuted lower triangular matrix, Mj [ν] = P′(I−C̃j [ν])−1P,222

where P ∈ RN×N is a permutation matrix such that pn′n = 1 iff the node Xn occurs at position n′ within223

the causal ordering ≺, and C̃j [ν] is a strictly lower triangular matrix of causal coefficients.224

Proof. See Appendix E.225

Equipped with Lemma 5.1, we obtain the following.226

Lemma 5.2. The local wavelet spectral matrix and its inverse are given by Sj [ν] = P′(I − C̃j [ν])−1(I −227

C̃j [ν])−1′P and Oj [ν] = P′(I − C̃j [ν])′(I − C̃j [ν])P.228

Proof. See Appendix E.229

Lemma 5.2 provides us with the expressions of Sj [ν] and Oj [ν] in terms of the features of the MN-DAG,230

that are the causal ordering entailing the permutation matrix P and the matrix of causal coefficients. From231

a computational perspective, the expression Oj [ν] is more appealing than that of Sj [ν] since it does not232

involve any matrix inversion. Therefore in Section 6 we leverage Oj [ν], given its convenient form and the233

information that it provides.234

It is interesting to understand how the causal ordering and the order in which we observe the dimensions235

of XT impact the spectral properties of the process, i.e., the information contained in Sj [ν] and Oj [ν].236

Proposition 5.3 shows that any permutation of the causal matrix leaves the spectral properties unchanged.237

In addition, it proves that any re-ordering of the dimensions of XT results in a representation of the form in238

Equation (2) with the same spectral properties.239

Proposition 5.3. The spectral properties of the process XT are independent of both the causal ordering and240

the order in which the process dimensions are observed.241

Proof. See Appendix E.242

6 Two-Step Inference243

We expose a Bayesian method for the estimation of MN-DAGs, termed MN-CASTLE. It is implemented
by using Pyro (Bingham et al., 2019) a probabilistic programming language built on Python and Py-
Torch (Paszke et al., 2019). A probabilistic model is a stochastic function that generates data x according
to latent random variables z and parameters β∗, having as joint density function

pβ∗(x, z) = pβ∗(x | z)pβ∗(z) ,

where pβ∗(z) and pβ∗(x | z) are the prior and the likelihood, respectively. The goal is to learn the parameters244

of the model β∗ from data. As detailed in Appendix D, SVI offers a scheme to learn β∗ by approximating the245

usually intractable posterior distribution pβ∗(z | x) by means of a tractable family of variational distributions246

qϕ(z), called guides, parameterized by the variational parameters ϕ.247

Our task is as follows. We are given a dataset X = {XT [t]}T
t=1, XT [t] = [X1

T [t], . . . , XN
T [t]]′ and an estimate248

of the inverse LWSM Ôj at different time scales j. As an example, the inverse smoothed bias-corrected249

raw wavelet periodogram is a suitable non-parametric estimator (Park et al., 2014). Then, according to250

the probabilistic generative model in Section 5, we want to learn the following parameters given previous251

inputs by means of SVI: (i) the vector of scores θ of the Plackett-Luce distribution used to model the latent252

global causal ordering ≺; (ii) the mean and kernel parameters of the latent batched GPs used to model the253

entries of the hidden causal coefficients tensor C, i.e., C(n,m)
j ∼ GP (C̄(n,m)

j ,K(t, t′)). Here, we assume that254

functional form of the kernel K(t, t′) is shared by all causal the coefficients. In addition, by learning the255

kernel parameters, we obtain an estimate τ̂ of τ since we assume τ = 1/λ as in Section 4.256

In light of Lemma 5.2 and Proposition 5.3, we set the inference of the causal ordering apart from that of the257

causal coefficients. Indeed, our inference procedure is as follows:258
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• Step 1 : We estimate the parameter vector θ̂ of the PL distribution which determines the causal ordering259

by conditioning on the dataset X ;260

• Step 2 : We estimate the parameters of the kernels associated with the causal coefficients by conditioning261

on the estimate Ôj , while imposing the causal ordering from Step 1.262

≺

C0

XT

≺∼ Plackett-Luce
C0 ∼ Normal
XT ∼ Multivariate normal

index n

index m

index t

(a) Probababilistic model

≺

θ

C0

µC0

σC0

≺∼ Plackett-Luce
C0 ∼ Normal
θ ∈ RN

µC0 ∈ R
σC0 ∈ R+

index n

index m

(b) Guide

Figure 3: Graphical models associated with a the probabilistic model and b the parameterized variational
distribution for learning the causal ordering, along with variational parameters and their constraints.

Model and guide for causal ordering inference. Figures 3a and 3b provide a pictorial representation263

of the probabilistic model and the guide used in Step 1. In particular, we resort to graphical models to264

illustrate the corresponding joint distributions. Here, random variables are represented as circular nodes,265

where a blank node represents a latent variable while a grey one is associated with an observed variable.266

Deterministic variables are represented as rhomboid nodes, while variational parameters are printed outside267

of the nodes. Edges indicate dependence among variables and rectangles (plates) indicate conditionally268

independent dimensions, i.e., independent copies. In addition, Figure 3 provides the distributions (along269

with the constraints of parameters) of random variables and variational parameters.270

Figure 3 shows that model and guide share the same latent variables. Indeed, since the guide is used to271

approximate the true posterior, it needs to provide a valid probability density over all hidden variables.272

More in detail, we have two latent variables: (i) the causal ordering, which is global since it does not depend273

on any other variable and is modeled within the guide as a PL(θ); (ii) a stationary single-scale causal274

structure C0 ∈ RN×N , where each entry C0
nm is independent of the others and is modeled in the guide with275

a Gaussian. Since we assume the causal ordering (i) shared by all time scales and (ii) stationary; we infer276

it from observed data XT , without any additional information concerning the variance decomposition and277

its evolution over different temporal resolutions (provided by a given estimate of Ŝj). For this reason, to278

learn θ, we resort to the SEM formulation given in Equation (4), where we set C0 = P′Ĉ0P (see Section 4).279

As a consequence, the causal tensor C0 in Figure 3 depends on ≺. According to the probabilistic model280

in Figure 3a, at each time-step we observe the vector XT [t] by using a multivariate normal likelihood,281

precisely MN(0,MM′). Indeed, with constant causal coefficients and normally distributed noises, we have:282

(i) E[XT [t]] = M · E[Z[t]] = M · 0 = 0; (ii) Var[XT [t]] = Var[MZ] = MIM′ = MM′.283

Model and guide for batched GPs inference. Figures 4a and 4b depict the probabilistic model and the284

guide used in Step 2. Here we exploit the result from Step 1. We compute the mode of the PL distribution285

≺0= argsort(−θ̂), and then build the permutation matrix P as described in Section 4. Since known, we286

represent ≺0 with a rhomboid node.287

To model each latent causal coefficient at a certain temporal resolution level j as a smoothly varying function
f ∼ GP (C̄(n,m)

j ,K(t, t′)), we exploit a variational formulation of Gaussian processes (Hensman et al., 2015).
Accordingly, we consider a set of inducing points ζ = {ζt̃}T̃

t̃=1 optimised over the training set, where T̃ ≤ T ,
and latent inducing function variables u (a subset of f) over these inducing points. Thus, the method relies
upon the introduction of a joint variational distribution q(f ,u), such that it factorises as p(f | u)q(u) (Titsias,
2009). This allows to avoid the computation of K−1

ff within the inference procedure. Here, to approximate
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fu Ô

u ∼ Multivariate normal
f ∼ Normal
Ô ∼ Normal

index t

index j

(a) Probababilistic model

fu

ζ

µq(u)

Σq(u)

C̄0

σK

λK
≺0

u ∼ Multivariate normal
f ∼ Normal
ζ ∈ RT̃

µq(u) ∈ RT̃

Σq(u) ∈ RT̃ ×T̃

C̄0 ∈ R
σK ∈ R
λK ∈ R

index n

index m

index t

index j

(b) Guide

Figure 4: Graphical models associated with a the probabilistic model and b the parameterized variational
distribution for learning batched GPs, along with variational parameters and their constraints.

the true GP prior p(u) over the inducing points, we choose q(u) to be a Cholesky variational distribution,
i.e., a multivariate normal with positive definite covariance matrix MN(µq(u),Σq(u)). This variational
approach allows to reduce the computational burden of GP estimation while avoiding overfitting at the same
time (Bauer et al., 2016). In detail, in our work the usage of T̄ inducing points lowers the computational
cost of each GP from O(T 3) to O(T̄ 3) (Hensman et al., 2015). As a consequence, in both Figures 4a and 4b
we have two latent variables: u associated with inducing functions and f associated with GP prior values.
Here, we use batched GP to model causal coefficients, consequently they are independent both within and
among time scales (rectangles in Figure 4). Since the joint distributions within the model and the guide
q(f ,u) factorise as;

p(f ,u) = p(f | u)p(u); q(f ,u) = p(f | u)q(u) ,
we also draw edges from u to f . The variational parameters, along with their constraints, are shown in288

Figure 4b.289

Now, let us consider a lower triangular matrix of ones L, having size N×N . Furthermore, define R̄j ∈ RN×N
290

such that the entries are [R̄j ]nn′ = ∥[Rj ]nn′∥2 = (
∑T

k′=1[Rj ]nn′ [k′/T ]2)1/2. Hence, we mask the distribution291

of the hidden functions with Bj = (P′LP) ◦ R̄j to take into account and update only the relationships292

conforming to ≺0 and associated with nonzero partial correlation, where ◦ represents the Hadamard product.293

In practice, since it is difficult to exactly estimate zero partial correlation, before constructing the mask it is294

possible to hard-threshold the values of R̄j at a certain value ρ ∈ [0, 1]. In our experiments we set ρ = 0.05.295

At this point, we observe the estimated Ôj by using a Gaussian likelihood N((I − Cj)′(I − Cj), σ), where296

the scale σ ∈ R+ is fixed (here we use 0.05). In particular, the mean value of the latter Gaussian is set297

in accordance with Lemma 5.2. To implement these probabilistic model and guide, we combine Pyro and298

GPyTorch (Gardner et al., 2018), an efficient Python library for GP inference built on PyTorch.299

Inference. We optimize the variational parameters above by using SVI, and adopting as optimizer
Adam (Kingma & Ba, 2014) along with learning rate decay and gradient clipping (Goodfellow et al., 2016).
These tricks are useful to avoid bouncing around local optima when you are close to them and to prevent the
gradient from becoming too large. In Step 1, we optimize w.r.t. θ to approximate the likelihood of ≺ given
XT . Unfortunately, the latent variable ≺ is non-reparameterizable. Therefore, we use the REINFORCE
estimator (Williams, 1992), which is suitable for getting Monte-Carlo estimates of a certain cost function
fϕ(z). According to REINFORCE, we have

∇ϕEqϕ(z)[fϕ(z)] = Eqϕ(z)[(∇ϕ logϕ(z))fϕ(z) + ∇ϕfϕ(z)] . (3)

Although unbiased, this estimator is known to have high variance. A way for reducing this variance is by300

means of control variate strategies, i.e., by adding a function within the expectation operator in Equation (3)301
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that depends on the chosen values for z but is constant w.r.t. ϕ. So, the additional term does not affect302

the mean of the gradient estimator. Here, we resort to a data dependent baseline (Mnih & Gregor, 2014).303

The rationale behind the usage of baselines, is to reduce the variance by tracking the mean value of fϕ(z).304

Thus, we add a running average of fϕ(z), namely fϕ(z), for predicting the value of fϕ(z) at each step. On305

the contrary, in Step 2 we exploit the reparameterization trick (see Appendix D), to the benefit of learning.306

Finally, we return the learned variational parameters once the maximum number of iterations is reached.307

7 Results308

In this section we present the empirical assessment of our proposal. We first dive in the statistical analysis of309

the time series generated by the proposed model in Section 7.1. Then, Section 7.2 presents results regarding310

the inference of MN-DAGs from synthetic data.311

7.1 Probabilistic Model over MN-DAGs312

We start by illustrating the output of the proposed probabilistic generative model by means of an example.313

We consider N = 3 nodes (time series), T = 512 time steps, multiscale level µ = 0.5, non-stationarity level314

τ = 0.5, and density of causal interactions δ = 0.5.315
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Figure 5: The figure depicts the latent MN-DAG sampled by using the proposed probabilistic generative
model, where we set the number of nodes N = 3, number of time steps T = 512, multiscale level µ = 0.5,
non-stationarity level τ = 0.5, and density parameter δ = 0.5. The resulting MN-DAG has (i) 3 nodes; (ii)
J = 3 pages (yellow rectangles), (iii) non-stationary causal interactions (red directed arrows, values shown
as time series in the insets) that follow a Gaussian process with kernel K = KPeriodic +KLinear ×KMatern3/2 ;
(iv) global causal ordering ≺= [1, 3, 2]. Within each scale, we also plot the evolution of causal relations over
time. Kernel variances are σLinear = σPeriodic = σMatern3/2 = 1; the lengthscales λPeriodic = λMatern3/2 = 1/τ ,
and the period ρPeriodic = 1/τ . Given the kernel shape, the causal coefficients are locally periodic functions
with increasing variation.

First, Figure 5 displays the underlying MN-DAG, sampled as detailed in Section 4, along with the evolution316

over time of causal relationships. We obtain an MN-DAG composed of three pages, corresponding to temporal317

resolutions 2j , j = {1, 2, 3}. The sampled causal ordering is ≺= [1, 3, 2], and all causal relations, here locally318

periodic functions with increasing variations, are compliant with ≺. Indeed, we can only observe directed319

edges from time series n to m, where n ≺ m.320

Now, given the sampled MN-DAG, we generate data according to Equation (2), where we use non-decimated321

Haar wavelet (Nason et al., 2000) as oscillatory function ψj [t−k]. Figure 6 depicts the generated time series322

along with descriptive statistics.323

On the first row, we have the behaviour over time of synthetic data. Here, we resort to the augmented Dickey-324

Fuller test (ADF, Dickey & Fuller 1979) to assess stationarity. According to the test, the null hypothesis325

H0 indicates that the process has a unit root (i.e., is non-stationary). The resulting p-values prove that326

the generated processes are (weakly) stationary (we reject H0). Indeed, they have zero mean, while their327
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Figure 6: The figure shows the generated time series, along with descriptive statistics, where each process
is associated with a different column. (i) Starting from the top, we have the synthetic data obeying to the
underlying MN-DAG, where we provide the p-values of an ADF test. (ii) On the second row, we have the
histograms of observed values, along with the p-values of a JB test, skewness, and kurtosis. (iii) The third
row shows time series autocorrelations (with lag l = {1, . . . , 40}). The light blue bands show 95% CIs. (iv)
The last row shows the autocorrelations of absolute values of the processes.
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dispersion looks different. On the one hand, the variance of X1 (which occur at first position in ≺) is328

stationary, on the other hand those of X2 and X3 vary over time. Furthermore, X2, that has incoming329

causal edges at all temporal resolutions, displays the largest swings.330

On the second row we provide the histograms of the data, where we employ a Jarque-Bera test (JB, Jarque331

& Bera 1987) to assess normality. In particular, the null hypothesis H0 is that the process is normally332

distributed. The resulting p-values suggest that X1 is normally distributed, while we reject H0 for both X2333

and X3. Indeed, the associated distributions are leptokurtic, with X3 having a more pronounced negative334

fat tail.335

Looking at the autocorrelation (with lag l ∈ [1, 40]) plotted on the third row, we see that all the generated336

time series show serial correlation, statistically significant at 95% level (light blue bands). This result is in337

accordance with the multiscale nature of the time series. In addition, the autocorrelation is driven by the338

local wavelet spectral matrix Sj (see Appendix C), that in our model is determined by the causal structure.339

Finally, the autocorrelation of absolute values of the processes prove that large swings in X2 and X3, either340

negative or positive, tend to be followed by other large swings. This effect is also known as volatility341

clustering, a key-feature of financial time series (Mandelbrot, 1967; Ding & Granger, 1996). Here, large342

movements in the series are driven by the increase of causal coefficients modulus, shown in Figure 5.343

7.2 Causal Structure Learning from Multiscale Data with Time-dependent Variance344

We next report a comparison between our method, MN-CASTLE, the algorithm for multiscale causal struc-345

ture learning introduced by D’Acunto et al. (2022), MSCASTLE, and state-of-the-art algorithms for learning346

Equation (4). For this comparison we use baselines belonging to different families, and synthetic data gener-347

ated by the proposed probabilistic generative model. The goal is to assess the gain, in terms of performance,348

as we deviate from the single-scale stationary case, i.e., τ = µ = 0, which is the closest to Equation (4).349

Additionally, we report results concerning the inferred causal ordering.350

Settings. We run our experiments according to four main different configurations. First, to evaluate the351

methods as we move within the (τ, µ)-quadrant, we generate the data by setting N = 5 and T = 100, while352

the entries of the PL score vector are drawn from a uniform distribution θi ∼ U(0, N). We test three values353

each for the multiscale and non-stationarity parameters, thus giving raise to configurations of none, medium,354

and high values for each parameter. For each possible combination (τ, µ) ∈ {0.0, 0.5, 0.9}×{0.0, 0.5, 0.9}, we355

generate 20 datasets that contain N time series each of length T . With regards the causal structure density,356

we use δ = 0.5.357

Second, to measure the sensitivity of the performances w.r.t. network density, we set (N,T, τ, µ) equal to358

(5, 100, 0.5, 0.5) and let δ varies in {0.25, 0.5, 0.75}. For each possible combination, we generate 20 datasets.359

Third, to measure the sensitivity of the performances w.r.t. network size, we set (T, τ, µ, δ) equal to360

(100, 0.5, 0.5, 0.25) and let N varies in {5, 10, 15, 20}. Thus, in this experimental context we go from a361

configuration in which the number of observations T is greater than the number of relationships possible362

in a complete single-scale DAG, i.e., N · (N − 1)/2, to one in which it is much less. Also in this case, we363

generate 20 datasets for each combination.364

Fourth, we look at the performances of MN-CASTLE under generative model misspecification, i.e., when the365

assumptions underlying Equation (2) are violated. Here, we consider two kinds of violations. First, we set366

(N,T, τ, µ) equal to (5, 100, 0.5, 0.5) and violate the Gaussianity assumption of the latent noise zj,k. Indeed,367

we generate 20 datasets for the case in which zj,k ∼ L(0, 1) and 20 for that where zj,k ∼ U(0, 1), being368

L(0, 1) the Laplace distribution with zero mean and unit scale and U(0, 1) the uniform distribution over the369

unit interval. Second, we run MN-CASTLE on downsampled data, meaning that the frequency associated370

with the observational task is lower than that at which causal interactions occur. In detail, we generate 20371

datasets by setting (N,T, τ, µ) equal to (5, 256, 0.5, 0.5). Then, we subsample the observations to T = 128372

and run MN-CASTLE on these decimated datasets. This way, our model cannot exploit the information373

related to the scale level j = 1, and consequently cannot infer the causal structure at that time resolution.374
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Hence, we test whether the lack of such information affects the performances of MN-CASTLE in retrieving375

the causal relationships at coarser time resolutions.376

Finally, in case τ ̸= 0, for the GP we use the radial basis function kernel KRBF with variance σRBF = 0.1377

and lengthscale λRBF = 1/τ .378

Baselines. We test MN-CASTLE against the following four baseline models. First we consider MSCAS-379

TLE, a multiscale causal structure learning model which exploits multiresolution analysis and non-convex380

continuous optimization to retrieve stationary causal relationships. Next, we have DirectLiNGAM (Shimizu381

et al., 2011), a method belonging to the family of non-Gaussian models. Algorithms within this class assume382

that the noise Z is non-normally distributed. Indeed, in this case the causal structure has shown to be fully383

identifiable (Shimizu et al., 2006). Then, DirectLiNGAM returns an estimation of both causal ordering and384

causal coefficients. Second, we have CD-NOD (Huang et al., 2020), which belongs to the family of constraint-385

based methods. In particular, it has been developed to deal with heterogeneous (no assumptions on data386

distributions and causal relations) and non-stationary data as well. GOLEM (Ng et al., 2020) lives at the387

intersection of score-based and gradient-based methods. It solves an unconstrained optimization problem388

where the objective function is given by a likelihood function (as in score-based methods), penalized by389

regularization terms for sparsity and acyclicity.390

As already mentioned, the concept of multiscale, non-stationary causal graphs is an understudied topic.391

Since none of the previous baseline models have been developed to infer causal graphs from data obeying to392

an underlying MN-DAG, our results provide information regarding the robustness of the previous algorithms393

with respect to the presence of multiple time scales and non-stationarity. In the following experiments,394

we use the code of MSCASTLE developed by D’Acunto et al. (2022); we exploit the implementations of395

DirectLiNGAM and GOLEM provided by gCastle2 (Zhang et al., 2021a), whereas we resort to causallearn3
396

for the implementation of CD-NOD. The configuration for each baseline is provided in Appendix F.397

Differently from MN-CASTLE, baseline models are non-probabilistic. While our model provides an ap-398

proximate predictive posterior distribution over MN-DAGs, baseline models return a point estimate of an399

acyclic causal structure. In order to compare the algorithms, we retain all causal coefficients identified by400

MN-CASTLE that are in modulus significantly greater than 0.1 at 99% level.401
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Figure 7: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to F1 score. Higher F1 indicates better performance. Each model is associated to a different
color. For every (τ, µ) setting and every model, we represent the values attained over the 20 synthetic datasets
through a box plot. Within the latter, we overlay the performances obtained for each dataset (points).

Performance in the estimation of the adjacency tensor. Retrieving the adjacency tensor means402

identifying the presence of causal relations disregarding their intensity. Appendix G provides an example403

of the evolving causal relations inferred by MN-CASTLE, while Appendix H gives insights concerning the404

estimate of the non-stationarity parameter. Figure 7 refers to the first configuration described above, and405

shows the F1 score (the higher the better) for the considered models. The definition of the considered metrics406

are given in Appendix I. Appendix J also reports the values for additional evaluation scores and the fraction407

of undirected edges for MN-CASTLE.408

2https://github.com/huawei-noah/trustworthyAI
3https://github.com/cmu-phil/causal-learn
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Given a (τ, µ) setting, for each model we have 20 values of F1. We use the box plot in order to visualize the409

inter-quartile range (IQR). In addition, within the box plot we overlay the F1 scores attained for each of410

the 20 datasets, plotted as points. For each value of τ , we provide the performances of each algorithm as µ411

varies. In case µ ̸= 0, we return the performance of GOLEM as well. In particular, because ≺ is global, we412

replicate the causal structure retrieved by the latter for each time scale. This way, we obtain an additional413

baseline method also for multiscale datasets.414

Overall, MN-CASTLE outperforms the baseline models in each case. When µ = 0, the performances of415

MSCASTLE and GOLEM is very similar to that of our method. In contrast, as µ increases, we observe that416

the gap between MN-CASTLE and the other models widens and that, in general, the two multiscale models417

outperform GOLEM. In addition, MN-CASTLE performance remains stable as τ increases, and when µ418

increases the IQR tightens.419
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Figure 8: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to F1 score, along (a) δ and (b) N , and (c) under generative model misspecification. In the
latter setting, to ease the comparison we also report the performances for the case without violation. Higher
F1 indicates better performance. Each model is associated to a different color. We represent the values
attained over the 20 synthetic datasets through box plots, where we overlay the performances obtained for
each dataset (points).

Figure 8a depicts the performances of the models as we vary the density of the underlying MN-DAG (second420

setting). Since here we use µ = 0.5, we only retain MN-CASTLE, MSCASTLE and GOLEM. MN-CASTLE421

outperforms the baseline models along δ. In addition, the larger δ, the better the performances of our model.422

Figure 8b provides the performances of the methods as we vary the size of the underlying MN-DAG (third423

setting). Since µ = 0.5, we only compare MN-CASTLE, MSCASTLE and GOLEM also here. MN-CASTLE424

consistently outperforms the baseline models along N . The overall downtrend in the performances of the425

considered methods stems from the growth of the dimensionality of the problem while the number of obser-426

vations is kept fixed.427

15



Under review as submission to TMLR

Last but not least, Figure 8c depicts the performances of MN-CASTLE under model misspecification. The428

results prove that our model behaves as good as the case with no violation in every scenario.429
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Figure 9: The figure depicts box plots along with quartiles reference lines (dashed lines) for normalized
discounted cumulative gain (nDCG) at 3. MN-CASTLE is given in blue while a random baseline model in
orange. For every dataset generated according to a given (τ, µ) setting (i) we sample 1×103 causal orderings
≺̂ ∼ PL(θ̂), where θ̂ is the estimated vector of scores; (ii) we draw 1 × 103 random causal orderings
≺̄ ∼ PL(θ̄), where θ̄i ∼ U(0, N), i = 1, . . . , N . Afterwards, we evaluate nDCG@3 by using the sampled
causal orderings and ≺ for both models. Thus, each box plot is made by 2 × 104 points.

Performance in the estimation of θ. Figure 9 provides results concerning the goodness of the inferred430

vector of scores θ̂ of PL distribution for the first experimental configuration, as measured by normalized431

discounted cumulative gain (nDCG) at 3, w.r.t. the ground truth causal ordering ≺. Appendix I provides432

insights concerning the computation of this metric, whereas Appendix J shows the results for Kendall-τ433

statistics, Spearman’s rank correlation and nDCG at 5. To represent the results, we use box plots. For each434

of the 20 synthetic datasets, generated according to specific a pair (τ, µ), we obtain an estimated θ̂. Then, we435

sample 103 causal orderings ≺̂ from PL(θ̂). Now, for each drawn causal ordering, we evaluate the monitored436

metric w.r.t. ≺. As vector of scores for a baseline model, we use θ̄, where θ̄i ∼ U(0, N), i = 1, . . . , N .437

Afterwards, we obtain 103 random causal orderings ≺̄ by sampling from the PL distribution parameterized438

by θ̄. As for MN-CASTLE, we evaluate the metric w.r.t. ≺. Therefore, for each model, every box plot is439

built by using 2 × 104 points. Overall, according to the monitored metric, MN-CASTLE outperforms the440

baseline model. In addition, the performances do not deteriorate as τ grows and improve as µ increases.441

0.25 0.5 0.75
δ

0.0

0.2

0.4

0.6

0.8

1.0

nD
C

G
@

(0
.6

N
)

5 10 15 20
N

Laplace Uniform Subsampling
Violation

MN-CASTLE

Random

Figure 10: The figure depicts box plots for the normalized discounted cumulative gain (nDCG) at 0.6N .
MN-CASTLE is given in blue while a random baseline model in orange. Box plots on the left refer to
the second experimental configuration, i.e., when we vary δ while keeping fixed the values of the others
parameters, as described above. Box plots on the center concern the third experimental setting, where we
study the sensitivity of the estimation accuracy w.r.t. the network size N . Box plots on the right relate the
fourth experimental setting, where we study MN-CASTLE under generative model misspecification. Notice
that in the left and right plots N = 5.

We apply the same approach to evaluate the sensitivity of the estimation accuracy for θ with respect to442

the density and number of nodes of the underlying MN-DAG and under generative model misspecification.443
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Figure 10 shows the results obtained on the synthetic data generated according to the second, third, and444

fourth experimental settings, described above.445

Overall, the accuracy of MN-CASTLE in retrieving θ grows along with δ: the IQR of the monitored metric446

reach higher values. In addition, the performance of MN-CASTLE in recovering the causal ordering is447

high and shows no dependence on N . Notice that the nDCG score depends on the value of N . Thus, the448

comparison is meaningful because it considers the same fraction of nodes for each combination. Finally, the449

performance of MN-CASTLE does not degrade under model violations.450

8 Analysis of Natural Gas Prices in the US Market451

In this section, we examine the key drivers of natural gas prices in the US market during the period spanning452

from January 1, 2018, to December 31, 2022. Our analysis considers several variables, including the price of453

natural gas (NG), crude oil (CO), deviations in gas storage (SD), rig counts targeting gas (RC), deviations454

from seasonal average values of gas consumption for cooling (CDD) and heating (HDD) environments, the455

crack spread between heating oil and crude oil (CS), and the economic uncertainty index (UI, Baker et al.,456

2016). We collected the data on a weekly basis, and we analyze time scales ranging from 1 to 5, corresponding457

to resolutions ranging from 2-4 (scale 1) to 32-64 (scale 5) weeks. Please refer to Appendix K for further458

details on data sources and the pre-processing of the time series data.459

The algorithms used for this dataset are GOLEM, MSCASTLE, and MN-CASTLE. GOLEM identifies460

stationary instantaneous interactions between variables, meaning relationships that occur at a frequency461

higher than weekly and remain constant over time. It does not establish any causal relationship with NG,462

as the only interaction detected is SD→HDD.463

Figure 11: The figure depicts the multiscale DAG retrieved by MSCASTLE

MSCASTLE is capable of detecting causal interactions between the time series on the 5 considered time464

scales. However, these interactions are assumed to be stationary over time. Figure 11 shows the multiscale465

causal networks learned by MSCASTLE. The edges associated with a positive causal coefficient are repre-466

sented in green, while those with a negative coefficient are represented in pink. The thickness of the edge is467

directly proportional to the absolute value of the causal coefficient. Unlike GOLEM, the multiscale analysis468

allows MSCASTLE to detect interactions that occur at longer time resolutions. The method suggests that469

NG causes CO on both scale 1 and 2, with positive causal coefficient. While it is known from the literature470

that the price of CO drives the price of NG due to the substitution processes of NG with petroleum prod-471

ucts, the NG→CO relationship represents a novel element difficult to justify in light of the interchangeable472
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relationships between CO and NG. Like GOLEM, MSCASTLE detects a negative causal interaction from473

SD to HDD, which occurs on the first, third and fourth scales. On the contrary, on the second scale the474

relationship is reversed. Overall, the interactions between SD and HDD are the larger in magnitude.475
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Figure 12: The figure depicts the relationships inferred by MN-CASTLE which involve NG at the considered
scales, and the estimated causal ordering ≺0.

MN-CASTLE can detect causal relationships between variables at different temporal resolutions, allowing476

for more nuanced insights into how the variables interact over time. The behavior of the causal coefficients477

learned by MN-CASTLE is illustrated in Figure 12. For readability, here we only report the coefficients478

involving NG, which is the focus of our analysis. The full MN-DAG is given in Appendix L. Overall, the479

information provided by our method is richer and more detailed than the baselines. This is due to the480

ability of our method to track the temporal evolution of causal connections and detect relationships that are481

activated in a limited period of time and that may change sign. As a result, MN-CASTLE suggests denser482

causal structures, thus providing a more comprehensive understanding of how the variables are related.483

Interestingly, many of the causal relationships inferred by MN-CASTLE intensify during two specific periods:484

the early months of 2020 and 2022. These time windows correspond to significant events that put pressure485

on the energy market: the outbreak of COVID-19 and the Russian invasion of Ukraine. The fact that486

MN-CASTLE can detect these changes in causal relationships highlights its ability to capture the dynamic487

nature of the market and the impact of exogenous events.488

Concerning the causal ordering, in Figure 12 we observe that SD, CO, and UI occupy the first three positions,489

whereas NG and CS occupy the last ones. Our method is the only one able to detect that the price of NG490

is causally influenced by seasonal factors, economic uncertainty, oil price, and deviations in gas reserves.491

These relationships occur at larger temporal resolutions of 4 weeks, indicating that short-term fluctuations492

have a limited impact on NG prices. Our findings are consistent with the literature (Brown & Yucel, 2008;493

Nick & Thoenes, 2014; Ji et al., 2018), which highlights the relevance of economic and environmental factors494

in shaping energy markets. In line with the estimated causal ordering, MN-CASTLE does not propose the495

NG→CO interaction returned by MSCASTLE. Furthermore, the absence of interactions at lower scales is in496

line with the fact that GOLEM does not detect any connection regarding gas and underlines the superiority497

of multiscale methods. Regarding the impact of SD on NG, we see that at scales 2 and 3, an increase/decrease498

in SD causes a decrease/increase in NG prices, thus suggesting that supply shocks in the mid term can affect499

NG prices. On the contrary, on scale 5, we observe a positive relationship around the years 2018-2019.500

This relationship can be explained by the fact that the demand for NG increased in that period (also due501

to exports) thus causing an increase in the price of NG, while gas reserves increased due to the record502

production of NG in the US.503
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MN-CASTLE detects the causal interaction of CO→NG at different time scales and highlights changes in504

sign over the analyzed period. Specifically, scales 3 and 4 show that in 2021, the increase in CO prices causes505

a corresponding increase in NG prices. However, in 2022, scales 2 and 4 indicate a negative relationship,506

possibly due to geopolitical tensions and speculative phenomena.507

In addition, we observe that the prices of NG tend to be higher during periods with greater deviations in508

HDD and CDD, which represent unusual weather events.509

9 Conclusions and Future Research Directions510

This paper deals with multiscale non-stationary causal analysis, filling a gap in the literature. Indeed, the511

bulk of previous work assumes that the only relevant temporal resolution for causal relations is the frequency512

of observed data. We drop such assumption. In addition, we also allow the causal relations to vary over513

time. Since in general there is no prior knowledge about the relevant time scales of causal interactions nor514

about their temporal dependencies, the proposed framework of MN-DAGs represents an important step in515

such direction.516

Generative model. We propose a probabilistic model to generate time series data obeying to an underlying517

MN-DAG, in accordance with the specified values for multiscale and non-stationary features, µ and τ ,518

respectively. Our model leverages the well established mathematical theory of multivariate locally stationary519

wavelet processes and linear structural equation model. The causal ordering is modeled by means of Plackett-520

Luce distribution while the causal interactions evolve over time according to the specified kernel of a Gaussian521

process. Statistical analysis of generated data proves the exposed model to be able to reproduce well-known522

features of time series. Therefore, it represents a suitable framework for testing the robustness of causal523

structure learning methodologies on datasets generated from different points of the (τ, µ)-quadrant shown524

in Figure 1.525

We stress the importance of providing both researchers and practitioners with synthetic data generators526

capable of replicating phenomena characterizing data from different application domains.527

Future work should aim to overcome some limitations related to the framework adopted to manage different528

time resolutions and the modeling of the causal tensor. In particular, multivariate locally stationary wavelet529

processes formulation relies upon wavelets, that are known to suffer from limited joint time-frequency reso-530

lution (Heisenberg uncertainty principle). Indeed, wavelets divide the frequency space into non-overlapping531

bands, i.e., octave bands. Furthermore, since the auto/cross-correlation structure of generated data depends532

on both the power spectrum decomposition across temporal scales and the auto-correlation wavelet, the533

usage of diverse wavelet families might lead to different results. Then, the usage of alternative methods to534

wavelet transform might improve the proposed generative model. With regards the causal tensor, structural535

breaks such as sudden deletion/addition of causal edges might be added within Equation (1).536

From a theoretical point of view, an interesting research direction is to study the assumptions that make537

the model described in Eq. (2) identifiable. Even though some class of linear structural equation models538

have been proved identifiable under different types of restrictions (Shimizu et al., 2006; Peters & Bühlmann,539

2014; Loh & Bühlmann, 2014; Park & Kim, 2020), the case of MN-DAG needs to be carefully investigated.540

Indeed, the presence of the non-decimated wavelet transform; the unobservability of the contributions to the541

process coming from each time resolution; the linearity of the model in the frequency domain are some of542

the points that distinguish the MN-DAG case from those currently studied.543

Bayesian causal structure learning method. In addition, we expose a Bayesian method for learning544

MN-DAGs from time series data, termed MN-CASTLE. The latter relies upon observed time series data545

and an estimate for the inverse power spectrum at each scale level. We implement the latter by using a546

two-step approach. In the first step we optimize w.r.t. the Plackett-Luce vector of scores θ, by using the547

values of time series at time t. Then, we keep the causal ordering fixed to the mode of the Plackett-Luce548

distribution, i.e., ≺0, and we estimate the rest of variational parameters related to the causal coefficient549

tensor by exploiting the provided estimation for the inverse power spectrum.550
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Our findings show that MN-CASTLE compares favorably to baseline models in the retrieval of the adjacency551

tensor of the causal graph. We test the models on synthetic datasets generated according to different (τ, µ)552

configurations, from the single-scale stationary to highly multiscale non-stationary case. We observe that553

the performance of MN-CASTLE, depicted in Figure 7, is not sensitive to the value of non-stationarity554

parameter. On the contrary, the growth of the multiscale parameter is associated with an improvement in555

the quality of the results returned by our method since the IQR tightens. The improvement in performances556

along µ is also shown in Figure 9, that concerns the goodness of the estimated vector of scores for Plackett-557

Luce distribution. On one hand, we think that when non-stationarity and multiscale parameters are different558

from zero, MN-CASTLE might benefit of greater differences among time series distributions. On the other559

hand, we believe that the large variance shown (especially in the single scale case) is an effect due to the560

low cardinality of the edge set. In fact, even though the monitored metric is normalized, on average in561

the single scale case we only have five causal links. So, a single error weighs more. We emphasize that562

MN-CASTLE, being a fully Bayesian approach, by definition takes into account uncertainty. Consequently,563

we might sample MN-DAGs from the approximate posterior distribution in accordance with the confidence564

of the model.565

Furthermore, we study the behaviour of our model w.r.t. the density δ of the underlying MN-DAG. We566

observe that the performance of MN-CASTLE improves as δ increases and that our method outperforms the567

other models in all cases. This improvement is also manifest in the value of the metric used to evaluate the568

estimated causal ordering. We also provide supplementary results on additional synthetic data to test the569

capabilities of the monitored methods when the MN-DAG size N increases, keeping the other parameters570

fixed. Also in this settings, MN-CASTLE outperforms the baselines. In addition, the ability of MN-CASTLE571

in estimating causal ordering does not deteriorate as N increases. Last but not least, MN-CASTLE keeps572

performing well under model misspecification, thus highlighting the robustness of our method.573

In our case study, we have applied MN-CASTLE to analyze the drivers of natural gas in the US market574

and have compared the results of our method with those of GOLEM and MSCASTLE. While we cannot575

determine the ground-truth, we have found that MN-CASTLE provides richer information than the baselines,576

as it can track the evolution of causal relationships across different scales over time. Our study has revealed577

that causal relationships have strengthened during the outbreak of COVID-19 and at the beginning of the578

Russian invasion of Ukraine. Additionally, by accounting for non-stationarity, MN-CASTLE has detected579

more relationships than the baselines. Furthermore, our method is the only one capable of detecting the580

causal impact of seasonal factors, economic uncertainty, oil prices, and deviations in gas storage on natural581

gas prices, which are crucial drivers in the Economics literature.582
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Appendix A Linear Structural Equation Models and DAGs742

Mathematically, a DAG is formulated as a SEM. Given a dataset X := (x1, . . . , xN ) of N random variables,
a SEM is a collection of N structural assignments

xi := fi(Pi, zi), i = 1, . . . , N ,

where Pi represents the set of direct causes (parents) of node xi, zi is a noise variable satisfying zi ⊥ zj if
j ̸= i, and fi(·) is a generic functional form. In this paper, we focus on linear functional forms, therefore, by
exploiting matrix form, the equation above becomes:

X = CX + Z ,

where C ∈ RN×N is the matrix of causal coefficients satisfying (i) cii = 0 ∀i ∈ {1, . . . , N}; (ii) cij ̸= 0 ⇐⇒
xj ∈ Pi; (iii) diag(Cn) = 0, ∀n ∈ N (acyclicity property). Since I − C is an invertible matrix (see Lemma
Appendix E.1), we can rewrite the latter equation as

X = MZ , (4)

with M = (I − C)−1 being a mixing matrix. According to Equation (4), observed data is a mixing of743

independent latent noises. Here, causal relations are stationary, instantaneous and are supposed to occur at744

the frequency of observed data.745

Appendix B Locally Stationary Wavelet Process746

In the univariate case, locally stationary wavelet process (LSW, Nason et al. 2000) is a suitable modeling
framework to represent a non-stationary process xT of length T = 2J , J ∈ N, by means of a triangular
multiscale representation

xT [t] =
J∑

j=1

+∞∑
k=−∞

vj [k/T ]zj,kψj [t− k] . (5)

The building blocks of Equation (5) are: (i) the random amplitude vj [k/T ]zj,k composed by a time-varying
amplitude vj [k/T ] and a normal noise variable zj,k such that cov(zj,k, zj′,k′) = δ̃j,j′ δ̃k,k′ , where δ̃j,j′ represents
the Kronecker delta; (ii) discrete, real valued and compactly-supported oscillatory functions ψj [t−k], namely
non-decimated wavelets. At each time only some values contribute to xT [t], and the time-dependence is
managed by the index k. Local stationarity means that the statistical properties of the process vary slowly
over time. This feature is essential in order to make learning possible (Nason et al., 2000). Within the LSW
framework, local stationarity is formalized by means of a smoothness assumption concerning the time-varying
amplitudes vj [k/T ] (Fryzlewicz et al., 2003). Indeed, the latter quantity provides a measure of the time-
dependent contribution to the variance at a certain time scale level j ≤ J , namely the evolutionary wavelet
spectrum (EWS), defined as Sj [ν] = |vj [ν]|2, with ν = k/T being the rescaled time (Dahlhaus, 1997). For
a stationary process, EWS is constant ∀j ≤ J . As an example, consider the MA(1) = 1/

√
2(ϵ[t] − ϵ[t− 1]).

We obtain it by setting in Equation (5) the following values for the previous components: (i) zj,k = ϵ[t]; (ii)
Sj = 1 if j = 1 and zero otherwise; ψ1 = [1/

√
2,−1/

√
2] as the Haar wavelet. Because S1 is constant and

different from zero only for j = 1, we obtain a stationary amplitude w1[ν] = 1 only for the first scale level.
Then, it follows that

xT [t] =
J∑

j=1

+∞∑
k=−∞

vj [k/T ]zj,kψj [t− k]

=
+∞∑

k=−∞

1 · ϵ1,kψ1[t− k]

= 1√
2

(ϵ[t] − ϵ[t− 1]) .
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Appendix C Multivariate Locally Stationary Wavelet Process747

The MLSW framework generalizes locally stationary wavelet process (LSW, Nason et al. 2000; see Appendix
B) to model N zero-mean processes XT [t] = [X1[t], . . . , XN [t]]′, each of length T , as follows:

XT [t] =
J∑

j=1

+∞∑
k=−∞

Vj [k/T ]zj,kψj [t− k] . (6)

In Equation (6), (i) {ψj [t−k]} is a set of non-decimated wavelets; (ii) {zj,k} is a set of random vectors zj,k ∼748

N(0, IN×N ); (iii) Vj [k/T ] ∈ RN×N is the transfer function matrix, assumed to be lower triangular and with749

entries being Lipschitz continuous functions associated with Lipschitz constants L(n,m)
j , n ∈ {1, . . . , N}, m ∈750

{1, . . . , N}, such that
∑

j L
(n,m)
j < ∞. Local stationarity means that the statistical properties of the process751

vary slowly over time. This feature is essential in order to make learning possible (Nason et al., 2000),752

and within MLSW coincides with the Lipschitzianity assumption above. Here, the transfer function matrix753

Vj [ν], with ν = k/T being the rescaled time (Dahlhaus, 1997), provides a measure of the local variance and754

cross-covariance between the processes at a certain time ν and scale j, i.e., the local wavelet spectral matrix755

(LWSM) Sj [ν] = Vj [ν]V′
j [ν].756

By construction, LWSM is symmetric and positive at each time ν and scale j. Within LWSM, diagonal757

elements Sj
nn[ν] represents the spectra of of the processes, whereas Sj

nm[ν] provides the cross-spectra between758

them. In addition, the local auto and cross-covariance functions, namely cnn(ν, l) and cnm(ν, l) (with l being759

a certain lag), admit a formulation in terms of the LWSM (see Park et al. 2014 for further details).760

Appendix D Overview of SVI761

Stochastic variational inference (Hoffman et al., 2013; Kingma & Welling, 2013) is an algorithm that combines
variational inference (VI, Blei et al. 2017) and stochastic optimization (Spall, 2005). SVI approximates the
posterior distribution of complex probabilistic models that involves hidden variables, and can handle large
datasets. Consider a dataset X = {x(i)}T

i=1 of T i.i.d. samples of either a continuous or discrete variable x.
Suppose that X is generated according to a latent continuous random variable z, The latter is governed by
a vector of parameters β∗ endowed with a prior distribution p(β∗) , i.e., z(i) ∼ pβ∗(z). Thus, we have data
are generated according to a conditional distribution, i.e., x(i) ∼ pβ∗(x | z). Both the prior pβ∗(z) and the
conditional distribution pβ∗(x | z) belong to parametric families of distributions pβ(z) and pβ(x | z) whose
PDFs are differentiable w.r.t. β and z. Our goal is to compute the likelihood of the hidden variable given
the observations, i.e., the posterior

pβ(z | x) = pβ(x, z)∫
pβ(x, z) dz

. (7)

Since the denominator of Equation (7), also known as evidence, is usually intractable to compute, a well-762

known solution is to approximate the target posterior. Within approximate posterior inference methodolo-763

gies, VI casts learning as an optimization problem. More in details, VI involves the introduction of a family764

of variational distributions qϕ(z | x), parameterized by a variational parameters ϕ. Then, VI optimzes those765

parameters to find qϕ∗(z | x), i.e., the member of the variational distributions family that is closest to the766

posterior distribution. Here closeness is measured according to Kullback-Leibler divergence (KL).767

The objective of SVI is the evidence lower bound (ELBO), that is equal to the negative KL divergence up
to a term that does not depend on q

ELBO = Eqϕ(z|x)[log pβ(x, z) − log qϕ(z | x)]
= −DKL(qϕ(z | x(i))∥pβ(z | x(i))) + log pβ(x(i))
= −DKL(qϕ(z | x(i))∥pβ(z)) + Eqϕ(z|x(i))[log pβ(x(i) | z)] .

(8)

Since KL is a non-negative measure of closeness between distributions, then log pβ(x) ≥ ELBO for all β
and ϕ. Therefore, the maximization of the ELBO is equivalent to the minimization of the distance between
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qϕ(z) and pβ(x | z). Observations x(i) are conditionally independent given the latent, thus the log likelihood
term in Equation (8) can be written as

T∑
i=1

log p(x(i) | z) ≈ T

T ′

∑
i∈IT ′

log p(x(i) | z) ,

where IT ′ is a set of indexes of size T ′ ≤ T . One way to subsample indexes is, for example, to randomly768

select T ′ data points among the observations Thus, in case of large datasets, we can run SVI while exploiting769

mini-batch optimization.770

In order to compute the gradient of the ELBO w.r.t. ϕ, SVI relies upon the reparameterization trick.
The continuous random variable z can be expressed in terms of a deterministic function z = gϕ(ϵ,x), where
ϵ ∼ q(ϵ) is independent of z. This procedure is useful to move all the dependence on ϕ inside the expectation
operator

Eqϕ(z|x(i))[fϕ(z)] = Eq(ϵ)[fϕ(gϕ(ϵ,x(i)))] ,
where fϕ(z) represents a general cost function. Now, the gradient can be computed as

∇ϕEq(ϵ)[fϕ(gϕ(ϵ,x(i)))] = Eq(ϵ)[∇ϕfϕ(gϕ(ϵ,x(i)))]

≈ 1
L

L∑
l=1

f(gϕ(ϵ(i,l),x(i))) ,

where L is the number of samples per data point. Then, we obtain an unbiased estimate of the gradient by771

means of Monte-Carlo estimates of this expectation.772

Appendix E Proofs773

Lemma Appendix E.1. The inverse of I − C exists and consists of a finite sum of powers of C.774

Proof. To prove invertibility of I − C, C ∈ RN×N , let us rewrite C = P′C̃P. Here, P ∈ RN×N is a775

permutation matrix entailed by the causal ordering ≺, such that pn′n = 1 iff the node Xn occurs at position776

n′ within ≺, and C̃ is a strictly lower triangular matrix, computed by ordering the rows of C according to777

≺. Now, for permutation matrices it holds P−1 = P′. In addition, since strictly lower triangular matrices778

are nilpotent, there exists an integer N̄ such that C̃n̄ = 0, ∀n̄ ≥ N̄ . Then it follows that C is similar to C̃779

and, consequently, nilpotent too:780

CN̄ = (P′C̃P)N̄

= (P−1C̃P)N̄

= (P−1C̃P)(P−1C̃P) . . . (P−1C̃P)

= P−1C̃(PP−1)C̃(PP−1) . . . (PP−1)C̃P

= P−1C̃N̄ P
= 0 .

At this point, exploiting the geometric series representation (nilpotent matrices have eigenvalues equal to781

zero and then are convergent), we have that782

(I − C)−1 =
∞∑

n̄=0
Cn̄

=
N̄−1∑
n̄=0

Cn̄ .
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Therefore, the inverse exists and is given by a finite sum of powers of C.783

Lemma 5.1. The transfer function matrix is a permuted lower triangular matrix, Mj [ν] = P′(I−C̃j [ν])−1P,784

where P ∈ RN×N is a permutation matrix such that pn′n = 1 iff the node Xn occurs at position n′ within785

the causal ordering ≺, and C̃j [ν] is a strictly lower triangular matrix of causal coefficients.786

Proof. Starting from the representation of Cj [ν] = P′C̃j [ν]P, we have:

Mj [ν] = (I − P′C̃j [ν]P)−1

= (P−1P − P′C̃j [ν]P)−1

= (P′P − P′C̃j [ν]P)−1

= (P′(I − C̃j [ν])P)−1

= P−1(I − C̃j [ν])−1P−′

= P′(I − C̃j [ν])−1P;

where (I−C̃j [ν])−1 admits a representation in terms of the geometric series for Lemma Appendix E.1, which787

in this case consists in a sum of lower triangular matrices.788

Lemma 5.2. The local wavelet spectral matrix and its inverse are given by Sj [ν] = P′(I − C̃j [ν])−1(I −789

C̃j [ν])−1′P and Oj [ν] = P′(I − C̃j [ν])′(I − C̃j [ν])P.790

Proof. For real-valued invertible matrix A the Gramian AA′ is semi-positive definite, hence Sj [ν] =791

Mj [ν]Mj [ν]′ analogously to Definition 2 in Park et al. (2014).792

Then, by pluggin in the expression of Mj [ν] given by Lemma 5.1, we get:793

Sj [ν] = (P′(I − C̃j [ν])−1P)(P′(I − C̃j [ν])−1P)′

= P′(I − C̃j [ν])−1(I − C̃j [ν])−1′
P;

where we exploit the fact properties P′ = P−1. By following the same rationale and remembering that794

(BA)−1 = A−1B−1, we obtain Oj [ν] = P′(I − C̃j [ν])′(I − C̃j [ν])P795

Proposition 5.3. The spectral properties of the process XT are independent of both the causal ordering and796

the order in which the process dimensions are observed.797

Proof. Let us consider a causal matrix Cj [ν] and its causally ordered form C̃j [ν], such that Cj [ν] =798

P′C̃j [ν]P. Now, let us consider S̃j [ν] = (I − C̃j [ν])−1(I − C̃j [ν])−1′ and Õj [ν] = (I − C̃j [ν])′(I − C̃j [ν]).799

From Lemma 5.2 it directly follows that Sj [ν] = (I − Cj [ν])−1(I − Cj [ν])−1′ = P′S̃j [ν]P and Oj [ν] =800

(I − Cj [ν])′(I − Cj [ν]) = P′Õj [ν]P. This proves independence from the causal ordering.801

Now, let us consider a process XT admitting a representation of the form of Equation (2). Consider also802

a permuted version of XT , i.e., X̂T = QXT with Q being an arbitrary permutation matrix of size N × N .803

By multiplying both sides of Equation (2) by Q, we get that M̂j [ν] = QMj [ν]. Hence, we have that804

Ŝj [ν] = QSj [ν]Q′ and Ôj [ν] = QOj [ν]Q′, where Sj [ν] = Mj [ν]Mj [ν]′ and Oj [ν] = Sj [ν]−1. This proves805

independence from the ordering of the dimensions of the process.806

Appendix F Models Configuration807

Below we report the models hyper-parameters used during the test phase:808
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• MN-CASTLE: fraction of inducing points equal to 64%; K = KRBF; in case τ = 0 (the estimated Ôj809

is constant) we use as prior for λK a normal N(1. × 103, 1. × 10−3); ρ = 0.05; number of iterations810

iter= 6.× 102 with 10 particles;811

• MSCASTLE: ℓ1− penalty parameter λ = 1.×10−1; pruning threshold γ = 5.×10−2; Daubechies wavelet812

with filter length equal to 2; maximum value for dagness function htol = 1.× 10−8;813

• GOLEM: pruning threshold γ = 5.× 10−2; number of iterations iter= 1.× 104;814

• DirectLiNGAM: pruning threshold γ = 5.× 10−2;815

• CDNOD: independence test = Fisher’s Z; significance level α = 95%.816

Appendix G Evolution over Time of the Estimated Causal Relations817

We apply MN-CASTLE over a synthetic dataset constituted by N = 5 time series of length T = 100 each.818

To generate the data, we use the exposed probabilistic model over MN-DAGs, where we set τ = µ = δ = 0.5819

and we use as K = KRBF. In this case, we obtain J = 3 scale levels. The configuration of MN-CASTLE is820

the same as Appendix F.821
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Figure 13: The figure depicts the evolution over time (ν = t/T ) of estimated causal coefficients (blue) vs the
ground truth latent coefficients (dashed orange), for the three temporal resolutions. Shaded bands refer to
99% confidence level.

Figure 13 depicts the estimated causal relations and their evolution over time. MN-CASTLE correctly tracks822

the behaviour of latent causal coefficients in all cases. As given in Section 6, in the second inference step823

we use the mode of PL distribution ≺̂0 to mask the distribution of hidden functions f . Consequently, only824

those relations that conform to the estimated causal ordering show tight 99% CIs.825

Appendix H Estimate of τ826

In the results below we obtain the estimate τ̂ by means of the estimated GP kernel lengthscale, i.e., τ̂ =827

1/λ̂RBF. In our experimental assessment, data are generated by using a RBF kernel. Then we can evaluate828

the goodness of τ̂ . However, this assumption might be too restrictive in real-world scenarios, and we might829

want to use a combination of kernels in the inference procedure. Therefore, the capability of computing ˆtau830

might be impaired since we might not have a single lengthscale resulting from the kernel combination or831

even we use a kernel that does not involve any lengthscale in its formulation. Having said that, below we832

provide some insights concerning th estimation of the non-stationarity parameter τ , coming from all the four833

experimental settings (see Section 7.2).834

Figure 14 depicts the inferred values τ̂ for the non-stationarity parameter in the first experimental setting.835

Here red dashed lines refer to the ground truth value of τ . Our model tends to slightly overestimate the836

non-stationarity parameter. As the value of µ increases, the estimate approaches the ground truth.837
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Figure 14: The figure illustrates the box-plots concerning the estimated values τ̂ for the non-stationarity
parameter. Red dashed lines refer to the ground truth value of τ .
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Figure 15: The figure illustrates the box plots concerning the estimated values τ̂ for the non-stationarity
parameter. Red dashed lines refer to the ground truth value of τ . On the left, we have the results for the
second experimental setting, on the center are those for the third, and on the right are those for the fourth.

In addition, Figure 15 provides the results for the second, third and fourth settings. Overall, we do not ap-838

preciate any trend along δ, N , and generative model violations. Indeed, MN-CASTLE tends to overestimate839

the non-stationarity as in the first setting.840

Appendix I Definitions of the Performance Metrics841

In this section we describe the metrics used to evaluate the goodness of the estimated adjacency tensor of842

the causal graph and the retrieved causal ordering.843

Adjacency. For the predicted adjacency tensor, we monitor both accuracy and structural scores.844

With regards to accuracy measures, we look at the true positive rate (TPR, recall), the false discovery rate845

(FDR, 1-precision) and the F1-score. The first is defined as TP/P , where TP is the number of predicted846

edges that exist in the ground truth with the same direction and P (condition positive) is the number of847

links in the ground truth. The second given by FP/(FP + TP ). Here, FP is the number of edges that848

do not exist in the skeleton of the ground truth, i.e., in the undirected adjacency. Finally, the F1-score is849

computed as the harmonic mean between TPR and 1 − FDR (precision).850

Concerning structural metrics, first we consider the structural Hamming distance (SHD), that represents851

the number of modifications (added, removed, reversed edges) needed to retrieve the ground truth starting852

from the estimated network. Then, we also monitor the ratio between the number of predicted edges and the853

condition positive, given by NNZ/P , where NNZ represents the sum of directed (D) and undirected (U)854

estimated edges. Finally, we have the fraction of predicted undirected edges, computed as FU = U/NNZ.855

Causal Ordering. To compare the estimated causal ordering with the ground truth, we consider three856

metrics able to provide a measure of the association strength between two rankings.857
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First, we look at Kendall-τ , which is a measure of ordinal correspondence between two rankings, bounded
between −1 (low correspondence) and 1 (strong correspondence). Given two orderings ≺̂ and ≺, the statistics
is defined as:

Kendall-τ = (P −Q)/
√

((P +Q+ T ) · (P +Q+ U)) ,
where here P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties858

only in ≺̂, and U the number of ties only in ≺;859

Second, we employ a measure of ranking quality widely applied in information retrieval, the normalized
discounted cumulative gain (nDCG). Consider a ground truth ordering ≺ of lengthN and suppose to associate
items with descending scores s, from N to 1. Then, consider an other ordering ≺̂ over the same set of elements
in ≺. Now, define the discounted cumulative gain (DCG) as:

DCG =
N∑

i=1

si

log2(i+ 1) ,

and let the ideal discounted cumulative gain (IDCG) to be the DCG of ≺. Therefore, the nDCG is defined860

as the ratio by the DCG and the IDCG. This score is bounded between the nDCG of the worst ordering of861

scores s̄, i.e., s sorted in ascending order, and 1. In our analysis we use a min-max scaling to map nDCG to862

the unit interval. To evaluate the capability of a method in providing high-score items at first positions k,863

we compute the nDCG@k by considering only the first k elements of ≺̂.864

Finally, we consider Spearman’s rank correlation ρS , that provides a non-parametric correlation coefficient
between two series. Here, differently from Pearson correlation, data is not assumed to be normally dis-
tributed. Thus, as Kendall-τ , this statistics is bounded between −1 and 1. Since in our case we have two
score vectors, namely ≺̂ and ≺, made by distinct values, this metrics can be computed as:

ρS = 1 −
6

∑
i(≺̂i− ≺i)

N(N2 − 1) .

Appendix J Additional Monitored Metrics865

In this section we provide additional analysis to better understand the behaviour of the considered methods866

when (i) we navigate the (τ, µ)-quadrant keeping the other parameters fixed, (ii) we vary the density of the867

MN-DAG at a point in the quadrant, (iii) we change the size of the MN-DAG at a point in the quadrant,868

and (iv) we violate the assumptions of the generative model. Figure 16a, where SHD has been normalized869

by the number of edges present in the ground truth, refers to the first experimental setting and shows870

that MN-CASTLE provides the better performances in all settings. Additionally, Figure 16b shows that871

MN-CASTLE reduces the number of false discoveries returned by baseline models, especially when µ ̸= 0.872

On the contrary, in the single-scale stationary case, best FDR values are provided by GOLEM. Figure 16c873

tells us that MN-CASTLE is the best in the retrieval of true positives in almost all cases. Furthermore,874

the estimated to true edge set ratio given in Figure 16d shows that our model is the more accurate in the875

number of causal connections. Finally, we plot the fractions of undirected connections given by our model876

to check aciclicity of the retrieved structure.877

With regards to causal ordering estimation, Figure 17 provides results also for Kendall-τ (Figure 17a),878

Spearman’s rank (Figure 17b) and nDCG@5 (Figure 17c) statistics. Here, the methodology used is the same879

as in Section 7.2. According to these metrics, MN-CASTLE outperforms the random baseline model in all880

cases. In addition, the values of the monitored metrics do not lower as τ grows and improve as µ increases.881

Hence, Figures 18 to 20 depict the resulting values for the same metrics above, obtained in the second , third,882

and fourth experimental settings, respectively. Overall, when the density of the network grows, the metrics883

improve for all methods. Also, MN-CASTLE provides the best performance for all values of δ. When we884

vary the network size, our method outperforms the baselines as well. The overall worsening in method’s885

performance is due to the fact that here the dimensionality of the problem grows, while the number of886

observations is kept fixed, T = 100. In addition, the performance of our method remains good even under887

generative model misspecification.888
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Figure 16: The figure depicts results returned by additional monitored metrics for the considered (τ, µ)
settings. Here we use box plots, where we overlay the values of the metric, plotted as points.
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Figure 17: The figure depicts box plots along with quartiles reference lines (dashed lines) for (a) for Kendall-τ
metric, (b) Spearman’s rank correlation, and (c) normalized discounted cumulative gain (nDCG) at 5. MN-
CASTLE is given in blue while a random baseline model in orange. For every dataset generated according
to a given (τ, µ) setting (i) we sample 1 × 103 causal orderings ≺̂ ∼ PL(θ̂), where θ̂ is the estimated vector
of scores; (ii) we draw 1 × 103 random causal orderings ≺̄ ∼ PL(θ̄), where θ̄i ∼ U(0, N), i = 1, . . . , N .
Afterwards, we evaluate the three monitored metrics by using the sampled causal orderings and ≺ for both
models. Thus, each box plot is made by 2 × 104 points.
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Figure 18: The figure depicts results returned by additional monitored metrics for different MN-DAG den-
sities δ. Here we use box plots, where we overlay the values of the metrics, plotted as points.
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Figure 19: The figure depicts results returned by additional monitored metrics for different number of nodes
N . Here we use box plots, where we overlay the values of the metrics, plotted as points.
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Figure 20: The figure depicts results returned by additional monitored metrics for different kind of generative
model misspecification. Here we use box plots, where we overlay the values of the metrics, plotted as points.
To ease the comparison, we also provide the case without any violation.
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Figure 21: The figure depicts box plots for (a) Kendall-τ , (b) Spearman’s rank correlation, and (c) the
normalized discounted cumulative gain (nDCG) at N . MN-CASTLE is given in blue while a random baseline
model in orange. Box plots on the left refer to the second experimental configuration, i.e., when we vary δ
while keeping fixed the values of the others parameters, as described in Section 7.2. Box plots on the center
concern the third experimental setting, where we study the sensitivity of the estimation accuracy w.r.t. the
network size N . Box plots on the right relate the fourth experimental setting, where we study MN-CASTLE
under generative model misspecification. Notice that in the left and right plots N = 5.
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Finally, Figure 21 depicts the results for Kendall-τ statistics, the Spearman’s rank correlation, and the nDCG889

at N related to causal ordering estimation. Here, we see that MN-CASTLE performance grows along with890

δ, does not show dependence (in mean terms) on the size of the underlying MN-DAG, and does not decrease891

under generative model violation.892

Appendix K Data sources, Pre-processing and Inference Details893

We obtained data on a weekly basis from January 1, 2018 to December 31, 2022. In detail, we downloaded894

Henry Hub natural gas futures prices (NG), WTI futures prices for crude oil (CO), New York Harbor895

No. 2 Heating Oil futures prices (HO), and US natural gas storage (ST) data from the website of the US896

Energy Information Administration (EIA). The crack spread was calculated as the difference between HO897

and CO, with HO being converted to dollars per barrel. The deviation of storage from the norm (SDD) was898

determined by comparing the ST value for a given week to the average value for the same week over the899

previous five years. We also downloaded rig counts (RC) data from Baker Hughes, and extracted deviations900

from seasonal average values of gas consumption for cooling (CDD) and heating (HDD) environments from901

the National Oceanic and Atmospheric Administration website. Finally, the economic uncertainty index902

(UI) was downloaded from the Federal Reserve Economic Data repository.903

We have checked for non-stationarity in the time series using the ADF test at a 99% level of significance.904

We have found evidence of a unit root in all time series except CDD and HDD. Therefore, we have taken905

the first differences of the non-stationary time series. Finally, to account for differences in scale among the906

time series, we have standardized each time series.907

After the preprocessing, we have obtained an estimate of Sj by using the R package mvLSW ((Taylor et al.,908

2019)). The wavelet transform has been performed using Daubechies wavelet with filter length equal to 8.909

In addition, the smoothing of the periodogram has been performed using the rectangular kernel, also known910

Daniell window, of width 16. Finally the smoothed periodogram has been corrected for the bias by using the911

inverted autocorrelation wavelet ((Eckley & Nason, 2005)) and regularized to ensure positive definiteness912

((Schnabel & Eskow, 1999)). At this point, we have obtained an estimate of Oj by means of inversion for913

the first 5 finer scales. Indeed, the values for the estimate Ŝj were not negligible over these 5 scales.914

In order to estimate the mode of the PL distribution ≺0, we have proceeded as follows. We have run the915

first step of the inference procedure n = 1000 times, and we have obtained n estimates θ̂i, i ∈ [n]. Then, we916

have computed the estimate θ̂ by calculating the median over the previous n estimates. At this point, we917

have obtained ≺0= argsort(−θ̂). Indeed, since our model is probabilistic, we may have obtained different918

estimates of θ̂ at each run.919

Finally, to infer the causal coefficients we have used a combination of kernels, specifically K = KPeriodic +920

KLinear ×KMatern3/2 and we have set ρ = 0.05 for hard-thresholding the partial coherence (see Section 6).921
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Appendix L Complete MN-DAG of the Real-world Application922
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Figure 22: The figure depicts the multiscale DAG retrieved by MN-CASTLE, where nodes are sorted ac-
cording to the estimate ≺0.
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