
Explainable Framework for Time-series Analysis via
Topological Data Analysis

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose an explainable framework for TDA-based time-series analysis, which1

characterizes time-series signals through time-delay embedding and persistent2

diagrams. Given the persistence diagram corresponding to a target class, our3

method continuously deforms an input signal into a signal whose diagram is close4

to the target diagram. We formulate this problem as a minimization of Wasserstein5

distance between persistence diagrams. The potential of this method is illustrated6

on some synthetic and real examples.7

1 Introduction8

Machine learning has been widely applied in many domains such as healthcare, finance, and social9

science, where there is increasing interest in explainability so that the users can better understand10

and trust the results of the algorithms. Several explainable techniques have been proposed, such as11

visualization of feature contribution to a model’s prediction [1, 6].12

In this paper, we focus on explainable frameworks for time-series analysis. Time-series data com-13

monly appear and play an important role in many real world applications. According to the previous14

study [11], practical explainable frameworks for time-series analysis is required to give information15

not only about which parts in a given time-series contribute to the output, but also about how it16

differs from signals in another class. To provide such information, Karlsson et al. [11] proposed the17

following problem: given a classifier and a signal, find a transformation of signals that changes the18

predicted class to a desired one with minimal distortion.19

For time-series analysis, Topological Data Analysis (TDA) has been successfully used in the past20

decade [15, 16, 18, 19]. Here, TDA is a topic in data analysis, which characterizes the shape of data21

such as high dimensional point clouds. When TDA is applied to time-series analysis, a time-series22

signal is converted into a point cloud through time-delay embedding and then into a persistence23

diagram. With persistence diagrams, we can effectively apply machine learning methods to chaotic24

time-series signals [16, 18].25

In this work, we focus on TDA for time-series analysis and propose a novel explainable framework.26

To show how a given time-series signal differs from one in another class, we consider deforming the27

input signal continuously so that the resultant persistent diagram is close to a target diagram. For this28

purpose, we propose to minimize the 2-Wasserstein distance between persistence diagrams, which29

can be solved by gradient-based method.30
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Notation31

In this work, a time-series signal is represented as a sequence of length N : {xt}N−1
t=0 , xt ∈ R. For32

this time-series, we define a point cloud e({xt}t) embedded in an E-dimensional space as33

e({xt}t) = {u0, u1, . . . , un−1},
ui =

[
xi, . . . , xi+(E−1)τ

]
∈ RE ,

(1)

where E is a positive integer and τ is the time-delay parameter. This point set e({xt}t) is called34

the time-delay embedding of the signal {xt}t. With the right choice of E and τ it is possible to35

reconstruct the phase space of a dynamical system according to Takens’ embedding theorem [17].36

The correspondence from {xt}t to e({xt}t) can be regarded as a linear map e : RN → RL, where37

L = n · E. Constructing the associated VR-filtration or DTM-filtration [2], we can compute the38

persistence diagram D({xt}t) from the time-delay embedding e({xt}t).39

2 Methodology40

Now we present our method in a more formal way. Given an input signal {xt}t and a target persistence41

diagram Dtgt, our aim is to continuously deform {xt}t so that the persistence diagram of the resulting42

signal is close to Dtgt. We formulate this goal in the form of the following optimization problem:43

minimize
{wt}N−1

t=0 ,wt∈R
W 2

2 (D({wt}t), Dtgt), (2)

where W 2
2 is the squared 2-Wasserstein distance and we initialize the problem with {xt}t. The44

definition of W 2
2 is shown in Appendix.45

Since, the correspondence from a time-series to its persistence diagram {wt}t 7→ D({wt}t) is46

piecewise differentiable, the objective function W 2
2 (D({w}t), Dtgt) is piecewise differentiable. How-47

ever, it rarely happens that a point generated by an iterative method lands exactly on a non-smooth48

configuration due to limited numerical precision [8]. Therefore, we can apply gradient-based methods49

to the problem (2). The piecewise differentiability of the objective function is described in Appendix.50

See also [5, 8, 12] for the differentiability of persistence maps.51

Our approach can be used for any input signal and any target persistence diagram. In the context52

of explainability for time-series analysis, a target persistence diagram Dtgt needs to be defined in a53

suitable way. The target is expected to represent the desired behavior. One possible way is to define54

the target to be the persistence diagram of any signal that belongs to the desired class. Another way is55

to define the target by modifying the persistence diagram of an input signal according to our purpose.56

For example, we modify a persistence diagram according to a rule related to a TDA-based algorithm57

whose results we would like to analyze.58

3 Experimental results59

In this section, we show the usefulness of our algorithm based on both artificial and real-world60

time-series datasets. In each experiment, the algorithm continuously deformed a given time-series by61

solving the problem (2) with some target diagram. In the experiment with an artificial dataset, we set62

a target diagram by a rule associated with a classifier. For EEG and motion sensor datasets, we set63

our target diagram to be the diagram of a reference time-series in each case. We compared the input64

and the deformed signals to understand which behavior contributes to the difference.65

Throughout our experiments, we set the embedding dimension E = 3 and the delay parameter66

τ = 1. The algorithm was implemented in Python with the use of the GUDHI package [13], which67

is available at [9]. In order to minimize the optimal transport based cost in Equation (2), we used68

the fast implementation given in [10]. Also, we used the sequential quadratic programming (SQP)69

solver [14], which is available in SCIPY.70

3.1 Artificial datasets71

First we show some results for an artificial dataset. We considered two types of anomalous time-series72

as show in Figure 1: (a) mean shifts, (b) spike noise, where the normal signal was generated from a73

Gaussian with standard derivation 0.5.74
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(a) mean shift
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(b) spike noise

Figure 1: Examples of anomalous signals

To define a target diagram for each signal, we set a classification rule that detects anomaly based on75

the persistence diagram of a given signal. More concretely, we regarded a signal as anomalous if76

there is a point in its persistence diagram outside the region {(b, d) ∈ R2 | b ≤ 1.4, d− b ≤ 0.3} (see77

Figure 1). According to this classification rule, we set a target diagram as follows. For a point (b, d)78

in the persistence diagram of an input signal with b ≤ 1, d− b > 0.3 we replaced it by (b, b+ 0.3),79

and for a point (b, d) with b > 1.4 we replaced it by (1.4, 1.4), to obtain Dtgt. Here, we used the80

DTM-filtration with DTM parameter k = 20 to obtain a persistence diagram.81

By solving the optimization problem given in Equation (2), we generated a new signal, which can82

be compared with the anomalous signal. Figure 2 (resp. Figure 3) shows a result for a signal with83

mean shifts (with spike noise) and its persistence diagram. In Figures 2 and 3, we could see that84

the generated signals exhibited normal behavior, while still being close to the input signals. By85

comparing the new signal with the anomalous signal, we could better understand how the TDA-based86

algorithm recognized anomalies.87

In such applications, constant offsets could appear in the deformed signal, as we see in Figure 2. This88

is because two signals which differ by a constant offset could still have time-delay embedded point89

clouds of the same shape.90
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Figure 2: Result for a signal with mean shifts
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Figure 3: Result for a signal with spike noise

3.2 Real datasets91

In this experiment, we use two real datasets: an electroencephalogram (EEG) dataset [3] and the92

daily and sports activities dataset [4].93

EEG dataset contains two types of EEG signals, one is for the state of eyes open and the other is for94

the state of eyes closed. We set k in the DTM-filtration to be 5 and defined Dtgt to be the persistence95

diagram of a signal when eyes are closed and deformed a signal when eyes are open. Figure 4 shows96

the original signal, the target signal, the deformed signal, and their persistence diagrams. In the97

results shown in Figure 4, we noticed that the output signal behaved like one where eyes are closed.98
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By this result, we could see that the amplitude and frequency made the difference between the states99

of eyes open and closed, which agreed with a widely-accepted theory. Note that our framework100

deformed the signal by only referring to the target persistence diagram that corresponds to a signal101

obtained when eyes are closed.102

Next we present a result for the daily and sports activities dataset [4]. We created an input time-series,103

where the first and third parts correspond to walking, while the middle part corresponds to running.104

The reference time-series consisted of walking only. Note that the walking samples were taken from105

different time windows. In the experiment, we set k in the DTM-filtration to be 10, and applied our106

algorithm to the input signal and the persistence diagram of the reference signal. From the results107

shown in Figure 5, we can see that the amplitude of the part corresponding to running was deformed108

towards that of walking. Thus, our framework succeeded in showing how the part corresponding to109

running differs from that of walking.110
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Figure 4: Result for a signal in the EEG dataset [3]
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Figure 5: Result for a signal in the dataset [4]

Through these experiments, we verified that our proposed algorithm could bridge the difference111

between persistence diagrams into that between time-series, which can explain how two classes differ112

as time-series data. Each of the broad range of situations described so far could be addressed by113

dedicated methods derived from a priori knowledge. However, an advantage of our approach is that it114

can work without requiring special knowledge about a given problem.115

4 Conclusion116

In this paper, we have proposed a TDA-based explainable framework to better understand the output117

of a machine learning algorithm for time-series data. Our proposed method can continuously deform118

an input signal so that the persistence diagram of the resulting signal is close to a target one that119

describes behavior of a specific class. This gives further information about which behavior of the120

signal led to it being classified in a particular way. We have formulated the problem of finding such a121

deformation as a minimization problem of the distance between persistence diagrams, which can be122

solved by a gradient-based approach. With artificial and real-world datasets, we have experimentally123

shown that our method could explain the difference between two classes of time-series data through124

the difference in their persistence diagrams.125

To the best of our knowledge, our work is the first application of a TDA-based method towards126

explainability for time-series data. We believe that our method provides a new fundamental tool for127

time-series analysis. For further research, defining a desired target persistence diagram is one of the128

interesting topics.129
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A Persistence diagram and Wasserstein distance180

In this section, we explain how to construct a persistence diagram from a given point cloud. We also181

recall the Wasserstein distance on the space of persistence diagrams.182

Let P be a point cloud in RE : P = {ui ∈ RE | i = 1, . . . , n}. We regard a subset of P as a simplex,183

for example, a point, a line segment connecting two points, a triangle, and so on. For r ∈ R≥0, we184

define a set of simplices or a simplicial complex Σ(r) by185

σ ∈ Σ(r)⇐⇒ r ≥ rui,uj for any ui, uj ∈ σ,

where rui,uj
=

1

2
‖ui − uj‖.

(3)

In other words, the value rσ when a simplex σ appears in Σ(r) is equal to maxui,uj∈σ rui,uj
. By186

considering increasing values of r, we obtain a series of simplicial complexes {Σ(r)}r, which is187

called a filtration. The above definition leads to the Vietoris-Rips filtration.188

Defining rσ in other ways could give us other filtrations. Here we present DTM-filtration [2], which189

is base on the k-nearest neighbors structure around each point and proven to be more robust to noise.190

We fix a positive integer k and define the DTM-function f : P → R≥0 on the point cloud P as191

follows,192

f(ui) =

√√√√1

k

∑
u∈NN(ui,k)

‖u− ui‖2, (4)

where NN(ui, k) denotes the set of k-nearest neighbors of ui. By replacing rui,uj
in (3) with193

rui,uj =
1

2
(‖ui − uj‖+ f(ui) + f(uj)) , (5)

we obtain the DTM-filtration. Note that in the case k = 1 the DTM-filtration is equivalent to the194

Vietoris-Rips filtration.195

As r increases, more and more simplices appear in Σ(r) and the topology of the resulting simplicial196

complex would change. Changing topology takes the form of birth or death of various topological197

features. Here, 0-dimensional topological features are connected components, 1-dimensional ones198

are loops, 2-dimensional ones are voids, etc. Each `-dimensional topological feature appears (resp.199

vanishes) by the introduction of a particular simplex and the value r which leads to the creation of the200

simplex is called the birth (resp. death) time of the feature. The pair of the birth and death times of an201

`-dimensional feature can be described as a point (b, d) in R̄2, where R̄ = R∪{∞}. Here if a feature202

never vanishes, its death time is considered to be∞. For each dimension `, the collection of such203

points forms a multiset D`(P ) of R̄2 and is called the `th persistence diagram. In our application,204

we simultaneously consider persistence diagrams corresponding to more than one dimension. Hence,205

it is useful to introduce the notion of a total persistence diagram: D(P ) := {D`(P )}`=0,1,2,....206

A distance based on optimal transport, such as the bottleneck distance or the p-Wasserstein distance,207

endows the space of persistence diagrams with a partial matching metric [7]. For p ≥ 1, the208

p-Wasserstein metric between two `th persistence diagrams D1
` and D2

` is defined as209

Wp(D
1
` , D

2
` ) :=

(
inf

γ∈Γ
(
D1

` ,D
2
`

) ∑
q∈D1

`

‖q − γ(q)‖pp

) 1
p

(6)

where D = D ∪ ∆, ∆ being the diagonal {(x, x) ∈ R̄2 | x ∈ R̄} with infinite multiplicity, and210

Γ
(
D1
` , D

2
`

)
is the set of all bijections γ : D1

` → D2
` . This means that a point in one persistence211

diagram can be either matched to another point in the other diagram or its own projection to the212

diagonal. In this paper, we work with p = 2. Moreover, for two total persistence diagrams D1 and213

D2, we define the squared 2-Wasserstein distance between them by214

W 2
2 (D1, D2) :=

∑
`≥0

(
W2(D1

` , D
2
` )
)2
. (7)

In practical use of the DTM-filtration [2], points in 0th persistence diagrams could be close to the215

diagonal. When we minimize the 2-Wasserstein distance between two 0th persistence diagrams,216
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a point could get matched to its own projection on the diagonal, instead of to a point in the other217

diagram. Thus, we will not be able to move the input persistence diagram towards the target diagram,218

when we try to minimize the objective in Equation (2). To overcome this problem, under the condition219

that two 0th persistence diagrams have the same number of points, we will use complete matching220

instead of partial matching. That is, for 0th persistence diagrams D1
0 and D2

0 with the same number221

of points, we compute222

W2(D1
0, D

2
0) :=

(
inf

γ∈Γ(D1
0 ,D

2
0)

∑
q∈D1

0

‖q − γ(q)‖22

) 1
2

, (8)

where unlike Equation (6), Γ
(
D1

0, D
2
0

)
is the set of bijections betweenD1

0 andD2
0 . In our applications,223

the assumption on the number of points in 0th persistence diagrams is satisfied and we use (8) for224

the 0th part in the squared Wasserstein distance (7). In case the target 0th persistence diagram has a225

different number of points compared to the input 0th diagram, we can interpolate and resample the226

input signal, so that this condition is satisfied. This will encourage points in the input diagram to227

move towards those in the target.228

B Piecewise differentiability of the objective function229

In this section, we explain the piecewise differentiability of the objective function.230

We identify {ui ∈ RE | i = 1, . . . , n} with the vector u ∈ RL, L = n · E obtained by stacking231

the points ui. For u ∈ RL, we obtain the persistence diagram D(u) of the corresponding point232

cloud, through the Vietoris-Rips filtration or the DTM-filtration [2]. We can represent the persistence233

diagram D(u) as a vector, by ordering the birth-death pairs as described in [8], for example. It can be234

aligned as the following form:235

D(u) = (b1, d1, . . . , bm′ , dm′ , bm′+1, . . . , bm′+n′) ∈ RM , (9)

where M = 2m′ + n′. Note that the dimension M depends on the configuration of a point cloud u.236

One can prove that there exists a decomposition RL = S tO1 t · · · tOm satisfying237

1. S is of measure zero and each Oi is an open subset,238

2. on each Oi the dimension M of D(u) is constant, and239

3. the correspondence Oi 3 u 7→ D(u) ∈ RM is diffentiable.240

Each element of D(u) is of the filtration value rσ associated with some simplex σ, which is explicitly241

written as a function of u. Thus on eachOi, we can compute the derivative of the map u 7→ D(u) with242

respect to u. This leads to a piecewise differentiable map that assigns a point cloud to a persistence243

diagram, which is called the persistence map.244

By composing the persistence map with the time-delay embedding map e, we obtain a piecewise245

differentiable map from a time-series to its persistence diagram, whose derivative can be computed by246

the chain rule. As a result, the objective function W 2
2 (D({wt}t), Dtgt) is a piecewise differentiable247

function with respect to {wt}t ∈ RN and its gradient can be explicitly computed.248
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