
Under review as submission to TMLR

Supervised Feature Selection with Neuron Evolution in Sparse
Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Feature selection that selects an informative subset of variables from data not only enhances
the model interpretability and performance but also alleviates the resource demands. In
recent years, research into feature selection in neural networks, which are computationally
demanding and black-box models, has become popular. However, existing methods usually
suffer from high computational costs when applied to high-dimensional datasets. In this
paper, inspired by evolution processes, we propose a novel resource-efficient supervised
feature selection method using sparse neural networks, named “NeuroFS”. By gradually
pruning the unimportant features from the input layer of a sparse neural network trained
from scratch, NeuroFS derives an informative subset of features efficiently. By performing
several experiments on 11 low and high-dimensional real-world benchmarks of different
types, we demonstrate that NeuroFS achieves the highest ranking-based score among the
considered state-of-the-art supervised feature selection models. We will make the code
publicly available on GitHub after acceptance of the paper.

1 Introduction

Feature selection has been gaining increasing importance due to the growing amount of big data. The high
dimensionality of data can give rise to issues such as the curse of dimensionality, over-fitting, and high
memory and computation demands Li et al. (2018). By removing the irrelevant and redundant attributes
in a dataset, feature selection combats these issues while increasing data interpretability and potentially
improving the accuracy Chandrashekar & Sahin (2014).

The literature on feature selection can be stratified into three major categories: filter, wrapper, and embedded
methods Chandrashekar & Sahin (2014). Unlike filter methods that perform feature selection before the
learning task and wrapper methods that use a learning algorithm to evaluate a subset of the features,
embedded methods use learning algorithms to determine the informative features Zhang et al. (2019). Since
embedded methods combine feature selection and the learning task into a unified problem, they perform
more efficiently than the other two categories Han et al. (2018); Balın et al. (2019). Therefore, this paper
focuses on embedded feature selection due to its efficiency.

In recent years, there has been a growing interest in using artificial neural networks (ANNs) to perform embed-
ded feature selection. This is due to their favorable characteristic of automatically exploring non-linear depen-
dencies among input features, which is often neglected in traditional embedded feature selection methods Tibshi-
rani (1996). In addition, the performance of ANNs scales with the dataset size Hestness et al. (2017), while most
feature selection methods do not scale well on large datasets Li et al. (2018). Moreover, many works have demon-
strated the efficacy of neural network-based feature selection in both supervised Lu et al. (2018); Lemhadri
et al. (2021); Yamada et al. (2020); Singh & Yamada (2020); Wojtas & Chen (2020) and unsupervised Han et al.
(2018); Chandra & Sharma (2015); Balın et al. (2019); Doquet & Sebag (2019); Atashgahi et al. (2021) settings.

However, while being effective in terms of the quality of the selected features, feature selection with ANNs is
still a challenging task. Over-parameterization of neural networks results in high-computational and memory
costs, which make their deployment and training on low-resource devices infeasible Hoefler et al. (2021). Only
very few works have tried to increase the scalability of feature selection using neural networks on low-resource

1

Under review as submission to TMLR

Weight GrowingWeight Pruning

 Epoch i

Updating
Input Layer

Updating
Hidden
Layers

Feed-forward
and Back-

propagation

 Initialization Epoch i+1 Converged

Weight GrowingNeuron Pruning Weight Pruning Neuron Regrowth

Updating Input Layer Updating Hidden Layers

1.1

0.8
1.9

1.5

0.7
0.9

2.1

0.5

0.8

0.1

1.4

1. Network Training 2. Feature Selection

Active Neuron

Selected Neuron/Feature

Inactive Neuron

Neuron Pruned

Neuron to grow

Figure 1: Overview of “NeuroFS”. During training, a large fraction of unimportant neurons are gradually
dropped while giving a chance to the removed neurons for regrowth. After convergence, NeuroFS selects the
corresponding features to K active neurons with the highest strength.

devices. E.g., Atashgahi et al. (2021) proposes, for the first time, that sparse neural networks Hoefler et al.
(2021) can be exploited to perform efficient feature selection. The proposed method, QuickSelection, which is
designed for unsupervised feature selection, trains a sparse neural network from scratch to derive the ranking
of the features using the information of the corresponding neurons in the neural network.

In this paper, by introducing dynamic input neurons evolution into the training of a sparse neural network,
we propose for the first time to use the sparse neural networks to perform supervised feature selection
and introduce an efficient feature selection method, named Feature Selection with Neuron Evolution
(NeuroFS). Our contributions can be summarized as follows:

• We introduce dynamic neuron pruning and regrowing in the input layer of sparse neural networks
during training.

• Based on the newly introduced dynamic neuron updating process, we propose a novel efficient
supervised feature selection algorithm named “NeuroFS”.

• We evaluate NeuroFS on 11 real-world benchmarks for feature selection and demonstrate that
NeuroFS achieves the highest average ranking among the considered feature selection methods on
low and high-dimensional datasets.

2 Background

In this section, we provide background information on feature selection and sparse neural networks.

2.1 Feature Selection

2.1.1 Problem Formulation

In this section, we first describe the general supervised feature selection problem. Consider a dataset X
containing m samples (x(i), y(i)), where x(i) ∈ Rd is the i-th sample in data matrix X ∈ Rm×d, d is the
dimensionality of the dataset or the number of the features, and y(i) is the corresponding label for supervised
learning. Feature selection aims to select a subset of the most discriminative and informative features of
X as Fs ⊂ F such that |Fs| = K, where F is the original feature set, and K is a hyperparameter of the
algorithm which indicates the number of features to be selected.

Objective function: In supervised feature selection, we seek to optimize:

F∗
s = arg min

Fs⊂F,|Fs|=k

m∑
i=0

J(f(x(i)
Fs

; θ), y(i)), (1)

where F∗
s is the final selected feature set, J is a desired loss function, and f(x(i)

Fs
; θ) is a classification function

parameterized by θ aiming at estimating the target for the i-th sample using a subset of features x
(i)
Fs

.

2

Under review as submission to TMLR

Solving this optimization problem can be a challenging task. As the choice of feature subset Fs grows
exponentially with increasing number of features d, solving Equation 1 is a NP-hard problem. Additionally, it
is important that function f that can learn a fruitful representation and complex data dependencies Lemhadri
et al. (2021). We choose artificial neural networks due to their high expressive power; a simple one-hidden
layer feed-forward neural network is known to be a universal approximator Goodfellow et al. (2016). Finally,
as we aim to select features in a computationally efficient manner, in this paper, we choose sparse neural
networks to represent the data and perform feature selection.

2.1.2 Related Work

Feature selection methods are classified into three main categories: filter, wrapper, and embedded methods.
Filter methods use criteria such as correlation Guyon & Elisseeff (2003), mutual information Chandrashekar
& Sahin (2014), Laplacian score He et al. (2006), to rank the features independently from the learning task,
which makes them fast and efficient. However, they are prone to selecting redundant features Chandrashekar
& Sahin (2014). Wrapper methods find a subset of features that maximize an objective function Zhang
et al. (2019) using various search strategies such as tree structures Kohavi & John (1997) and evolutionary
algorithms Liu et al. (1996). However, these methods are costly in terms of computation. Embedded
methods aim to address the drawbacks of the filter and wrapper approaches by integrating feature selection
and training tasks to optimize the subset of features. Various approaches have been used to perform
embedded feature selection including, mutual information Battiti (1994); Peng et al. (2005), the SVM
classifier Guyon et al. (2002), and neural networks Setiono & Liu (1997).

Recently, neural network-based feature selection in both supervised Lu et al. (2018); Lemhadri et al. (2021);
Yamada et al. (2020); Singh & Yamada (2020); Wojtas & Chen (2020) and unsupervised Atashgahi et al. (2021);
Balın et al. (2019); Han et al. (2018); Chandra & Sharma (2015); Doquet & Sebag (2019) settings have gained
increasing attention due to their favorable advantages of capturing non-linear dependencies and showing good
performance on large datasets. However, most of these methods suffer from over-parameterization, which leads
to high computational costs, particularly on high-dimensional datasets. QuickSelection Atashgahi et al. (2021)
addresses this issue by exploiting sparse neural networks; however, due to the random growth of connections
in its topology update stage, it might not be able to detect fastly enough the informative features on high-
dimensional datasets due to the large search space. As we show in the following sections, we address this issue
by gradually pruning uninformative input neurons and exploiting gradients to speed up the learning process.

2.2 Sparse Neural Networks

Sparse neural networks have been proposed to address the high computational costs of dense neural networks
Hoefler et al. (2021). They aim to reduce the parameters of a dense neural network while preserving a decent
level of performance on the task of interest.

There are two main approaches to obtain a sparse neural network: dense-to-sparse and sparse-to-sparse
methods Mocanu et al. (2021).
Dense-to-sparse algorithms start with a dense network and prune the unimportant connections to obtain
a sparse network LeCun et al. (1990); Hassibi & Stork (1993); Han et al. (2015); Lee et al. (2019); Frankle
& Carbin (2018); Molchanov et al. (2017; 2019); Gale et al. (2019). As they start with a dense network, they
need the memory and computational resources to fit and train the dense network for at least a couple of
iterations. Therefore, they are mostly efficient during the inference phase.
Sparse-to-sparse algorithms aim to bring computational efficiency both during the training and inference.
These methods use a static Mocanu et al. (2016) or dynamic Mocanu et al. (2018); Bellec et al. (2018) sparsity
pattern during training. In the following, we will elaborate on sparse training with dynamic sparsity (or started
to be known in the literature as dynamic sparse training (DST)), which usually outperforms the static approach.

2.2.1 Dynamic Sparse Training (DST)

DST is a class of methods to train sparse neural networks sparsely from scratch. DST methods aim at
optimizing the sparse connectivity of a sparse neural network during training, such that they never use dense
network matrices during training Mocanu et al. (2021). Formally, DST methods start with a sparse neural

3

Under review as submission to TMLR

network f(x, θs) with sparsity level of S. We have S = 1 − ∥θs∥0
∥θ∥0

, where θs is a subset of parameters of the
equivalent dense network parameterized by θ, ∥θs∥0 and ∥θ∥0 are the number of parameters of the sparse
and dense network, respectively. They aim to optimize the following problem:

θ∗
s = arg min

θs∈R∥θ∥0 , ∥θs∥0=D∥θ∥0

1
m

m∑
i=1

J(f(x(i); θs), y(i)), (2)

where D = 1 − S is called density level. During training, DST methods periodically update the sparse
connectivity of the network; e.g., in Mocanu et al. (2018); Evci et al. (2020) authors remove a fraction ζ of
the parameters θs and add the same number of parameters to the network to keep the sparsity level fixed. In
the literature, usually, weight magnitude has been used as a criterion for dropping the connections. However,
there exists various approaches for weight regrowth including, random Mocanu et al. (2018); Mostafa &
Wang (2019), gradient-based Evci et al. (2020); Dai et al. (2019); Dettmers & Zettlemoyer (2019); Jayakumar
et al. (2020), locality-based Hoefler et al. (2021), and similarity-based Atashgahi et al. (2019). It has been
shown that in many cases, they can match or even outperform their dense counterparts Frankle & Carbin
(2018); Mocanu et al. (2018); Liu et al. (2021a;b). In this paper, we exploit sparse neural network training
from scratch to design an efficient supervised feature selection method.

3 Proposed Method

In this section, we present our proposed methodology for feature selection using sparse neural networks,
named Feature Selection with Neuron evolution (NeuroFS). We start by describing our proposed sparse
training algorithm. Then, we explain how the introduced sparse training algorithm can be used to perform
feature selection.

3.1 Dynamic Neuron Evolution

We introduce dynamic neuron evolution in the framework of DST to perform efficient feature selection.
While existing DST methods update only the connections or the hidden neurons Dai et al. (2019) to evolve
the topology of sparse neural networks, we propose to update also the input neurons of the network to
dynamically derive a set of relevant features of the given input data.

Our proposed neuron evolution process has two steps. Consider a network in which only a fraction of input
neurons have non-zero connections. We periodically update the input layer connectivity by first dropping
a fraction of unimportant neurons (neuron removal) and then adding a number of unconnected neurons
back to the network (neuron regrowth):

Neuron Removal. The criterion used for dropping the neurons is strength, which is introduced in Atashgahi
et al. (2021). Strength is the summation of the absolute weights of existing connections for an input neuron.
A higher strength of a neuron indicates that the corresponding input feature has higher importance in the
data. Therefore, we drop a fraction of low-strength neurons at each epoch. We call the neurons with at
least one non-zero weight connection, active, and the neurons without any non-zero connections, inactive.

Neuron Regrowth. After removing unimportant neurons, we explore the inactive neurons. We activate
a number of neurons with the highest potential to enhance the learned data representation. We exploit the
gradient magnitude of the non-existing connections for each neuron as a criterion to choose the most important
inactive neurons. It has been shown in Evci et al. (2020) that adding the zero-connections with the largest gra-
dients magnitude in the DST process accelerates the learning and improves the accuracy. We hypothesize that
adding inactive neurons connected to the zero-connections with the highest gradient magnitude to the network
would improve the data representation and increase the likelihood of finding an informative set of features.

Dynamic neuron evolution is loosely inspired by evolutionary algorithms Stanley & Miikkulainen (2002). Still,
due to the large search space, the latter cannot be directly applied to our problem without significantly increased
computational time. To alleviate this, we seek inspiration in the dynamics of the evolution process from the bio-
logical brain at the epigenetic level, which performs cellular changes (seconds to days time scale) Kowaliw et al.
(2014), and not at the phylogenic level (generations time scale) as it is usually performed in evolutionary comput-

4

Under review as submission to TMLR

ing. Accordingly, NeuroFS removes and regrows neurons in the input layer of a sparsely trained neural network
based on chosen criteria at each epoch until a reduced optimal set of input neurons remains active in the network.
In the next section, we will explain how NeuroFS uses dynamic neuron evolution to perform feature selection.

3.2 NeuroFS

Our proposed algorithm is briefly sketched in Figure 1. In short, NeuroFS aims at efficiently selecting a
subset of features that can learn an effective representation of the input data in a sparse neural network.
In the following, we describe the algorithm in more detail.

3.2.1 Problem Setup

We first start by describing the network structure and problem setup.

Network Architecture. We exploit a supervised deep neural network, Multi-Layer Perceptron (MLP).
We initialize a sparse MLP f(x, θs), with L layers and sparsity level of S.

Initialization. The sparse connectivity is initialized randomly as an Erdos-Renyi random graph Mocanu
et al. (2018). Sparsity level S is determined by a hyperparameter of the model, named ε, such that the density
of layer l is ε(n(l−1)+n(l))/(n(l−1)×n(l)), and the total number of parameters is equal to ∥θs∥0=

∑L

l=1 ∥θ(l)
s ∥0

, where
l ∈ {1, 2, ..., L} is the layer index and n(l) is number of neurons at layer l. The number of connections at
each layer is computed as ∥θ(l)

s ∥0
=ε(n(l−1)+n(l)).

3.2.2 Training

After initializing the network, we start the training process. In summary, we start with a sparse neural
network and aim to optimize the topology of the network and the selected subset of features simultaneously.
During training, we gradually remove the input neurons while giving a chance for the inactive neurons to
be re-added to the network. Finally, when the training is finished, we select the important features from
a limited number of active neurons. In the following, we describe the training algorithm in more detail.

At each training epoch, NeuroFS performs the following three steps:

1. Feed-forward and Back-propagation. At each epoch, first, standard feed-forward and back-propagation are
performed to train the weights of the sparse neural network.

2. Updating Input Layer. After each training epoch, we update the input layer. The novelty of our proposed
algorithm lies mainly in updating the input layer. During training, NeuroFS gradually decreases the number
of active input features. In short, at epoch t, it gradually prunes a number of input neurons (c(t)

prune) and
regrows a number of unconnected neurons (c(t)

grow) back to the network. Updating the input layer in NeuroFS
consists of two phases:

• Removal Phase. From the beginning of the training until tremoval, updating the input layer is at
the removal phase. In this phase, the total number of active neurons decreases at each epoch such that
c

(t)
prune > c

(t)
grow, if t ⩽ tremoval. We have tremoval = ⌈αtmax⌉, where 0 < α < 1 is a hyperparameter

of NeuroFS determining the neuron removal phase duration, ⌈⌉ is the ceiling function, and tmax is
the total number of epochs.

• Update Phase. From tremoval until the end of training, the number of connected neurons remains
fixed in the network and only a fraction of neurons are updated. In other words, c

(t)
prune = c

(t)
grow, if t >

tremoval.

Formally, we compute c
(t)
prune at epoch (t) as follows:

c(t)
prune =

{
c

(t)
remove + c

(t)
grow, t ⩽ tremoval

c
(t)
grow, otherwise

. (3)

5

Under review as submission to TMLR

c
(t)
prune in the removal phase consists of two parts: c

(t)
remove and c

(t)
grow. As the overall number of active neurons

is decreasing in this phase, c
(t)
remove extra neurons to the updated ones will be removed at each epoch. c

(t)
remove

is computed as:

c(t)
remove = ⌈ R − R(t)

tremoval − t
⌉, (4)

R(t) =
t−1∑
i=1

c(i)
remove, (5)

R = ⌈(1 − ζin)d − K⌉, (6)
where R(t) is the total number of inactive neurons at epoch t, R is the total number of neurons to be removed
in the removal phase, and ζin ∈ R, 0 < ζin < 1 is the update fraction of the input layer. In other words, the
total number of active neurons after the removal phase is ζind+K. We keep ζind neurons extra to the number
of selected features K, so that the update phase does not disturb the already found important features.

Finally, the number of neurons to grow at epoch t is computed as:

c(t)
grow = ⌈ζin(1 − t

tmax
)R(t)⌉. (7)

In other words, at each epoch, we add a fraction ζin of the inactive neurons back to the network. However, as the
number of inactive neurons increases during training, the number of updated neurons will increase consequently.
A large number of updated neurons might diverge the network training. Therefore, we decrease the update
fraction linearly during training. At epoch t, we update ζin(1 − t

tmax
) proportion of the total inactive neurons.

After computing c
(t)
prune and c

(t)
grow, the input layer is updated as follows:

1. Neuron pruning: c
(t)
prune neurons with lowest strength are dropped from the input layer. The

strength of input neuron i is computed as si =
∥∥w(i)

∥∥
1, where w(i) is the weights vector of neuron i.

2. Weight pruning: a fraction ζin of connections with the lowest magnitudes are dropped from the
active input features.

Algorithm 1 NeuroFS
Input: Dataset X, sparsity hyperparameter ε, drop fractions ζin and ζh, neuron removal phase duration
hyperparameter α, number of training epochs tmax, number of features to select K.
Initialization: Initialize the network with sparsity level S determined by ε (Section 3.2.1)
for t ∈ {1, . . . , #tmax} do

I. Standard feed-forward and back-propagation
II. Update Input Layer:

0. Compute c
(t)
prune (Equation 3) and c

(t)
grow (Equation 7).

1. Drop c
(t)
prune neurons with the lowest strength.

2. Drop a fraction ζin of connections with the lowest magnitude.
3. Select c

(t)
grow inactive neurons (that have connections with the highest gradient magnitude), to

be activated.
4. Regrow as many connections as have been removed to the active neurons.

III. Update Hidden Layers:
for l ∈ {1, . . . , L} do

1. Drop a fraction ζh of connections with the lowest magnitude from layer hl.
2. Regrow as many connections as have been removed in layer hl.

end for
end for
Feature Selection:

Select K features corresponding to the active neurons with the highest strength in the input layer.

6

Under review as submission to TMLR

Table 1: Datasets characteristics.

Dataset Type # Features # Samples # Train # Test # Classes

COIL-20
Image

1024 1440 1152 288 20
USPS 256 9298 7438 1860 10

MNIST 784 70000 60000 10000 10
Fashion-MNIST 784 70000 60000 10000 10

Isolet Speech 617 7737 6237 1560 26

HAR Time Series 561 10299 7352 2947 6

BASEHOCK Text 4862 1993 1594 399 2

Arcene Mass Spectrometry 10000 200 160 40 2

Prostate_GE
Biological

5966 102 81 21 2
SMK-CAN-187 19993 187 149 38 2
GLA-BRA-180 49151 180 144 36 4

3. Neuron regrowth: c
(t)
grow neurons are selected for being activated and added to the network. As

discussed in Section 3.1, these neurons are the ones connected to the connections with the largest
absolute gradient among all non-existing connections of inactive neurons.

4. Weight growing: the same number as the number of removed connections will be added to the
network so that the sparsity remains fixed during training. These connections are the ones with the
largest absolute gradient among all non-existing connections of the active neurons at the current
epoch.

3. Updating Hidden Layers. Hidden layers will be updated by updating the sparse connectivity, which is the
standard approach in the DST process. We use gradients for weight regrowth Evci et al. (2020). For each
hidden layer h(l), NeuroFS performs the following two steps:

1. Weight pruning: a fraction ζh of connections with the lowest magnitude are dropped from layer
h(l).

2. Weight growing: the same number as the number of removed connections will be added to layer h(l).
These connections are the ones with the largest absolute gradient among all non-existing connections.

3.2.3 Feature Selection

After the training process is finished, we perform feature selection. We select K neurons with the highest
strength out of the ζind + K remained active neurons. The corresponding feature to these K neurons are the
most informative and relevant features in our dataset. NeuroFS is schematically described in Figure 1 and
the corresponding pseudocode is available at Algorithm 1.

4 Experiments and Results

In this section, we first describe the experimental settings and then analyze the performance of NeuroFS
and compare it with several state-of-the-art feature selection methods.

4.1 Settings

This section describes the experimental settings, including, datasets, compared methods, hyperparameters,
implementation, and the evaluation metric.

Datasets. We evaluate the effectiveness of NeuroFS on eleven datasets1 described in Table 1.

Comparison. We have selected seven state-of-the-art feature selection methods for comparison as follows:

Embedded methods: LassoNet Lemhadri et al. (2021) exploits a neural network with residual connections
to the input layer and solves a two-component (linear and non-linear) optimization problem to find the
feature importance. STG Yamada et al. (2020) exploits a continuous relaxation of Bernoulli distribution
in a neural network to perform feature selection. QuickSelection Atashgahi et al. (2021) (denoted as QS
in the Figures) selects features using the strength of input neurons of a sparse neural network. RFS Nie et al.
(2010) employs a joint ℓ2,1-norm minimization on the loss function and regularization to select features.

Filter methods: Fisher_score Gu et al. (2011) selects features that maximizes similarity of feature values
among the same class. CIFE Lin & Tang (2006) maximizes the conditional redundancy between unselected

1Available at https://jundongl.github.io/scikit-feature/datasets.html

7

https://jundongl.github.io/scikit-feature/datasets.html

Under review as submission to TMLR

Table 2: Supervised feature selection comparison (average classification accuracy over various K values (%)).
Empty entries show that the corresponding experiments exceeded the time limit (12 hours). Bold and italic
fonts indicate the best and second-best performer, respectively.

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 98.79±0.22 95.48 ± 0.3495.48 ± 0.3495.48 ± 0.34 85.03 ± 0.1585.03 ± 0.1585.03 ± 0.15 96.68 ± 0.1696.68 ± 0.1696.68 ± 0.16 93.22 ± 0.1193.22 ± 0.1193.22 ± 0.11 92.74±0.23 90.42±0.80 89.70 ± 0.72 78.00 ± 1.7878.00 ± 1.7878.00 ± 1.78 82.36 ± 0.9882.36 ± 0.9882.36 ± 0.98 80.46 ± 0.9980.46 ± 0.9980.46 ± 0.99
LassoNet 98.03 ± 0.31 94.80±0.23 83.81±0.12 96.41 ± 0.05 89.31 ± 0.13 94.63 ± 0.1094.63 ± 0.1094.63 ± 0.10 89.77 ± 0.56 89.86±0.78 71.33 ± 1.94 78.67 ± 2.09 77.70±1.84

STG 99.30 ± 0.3199.30 ± 0.3199.30 ± 0.31 94.16 ± 0.47 83.74 ± 0.41 96.55±0.17 89.13 ± 1.43 91.87 ± 0.63 85.48 ± 0.78 85.41 ± 2.72 73.75 ± 2.78 81.34 ± 2.68 71.19 ± 2.33
QuickSelection 97.23 ± 1.34 94.57 ± 0.35 82.69 ± 0.24 96.22 ± 0.20 90.20±1.23 92.70 ± 0.57 87.93 ± 0.40 76.39 ± 7.44 77.08±1.56 82.01±2.69 72.91 ± 0.69

Fisher_score 70.02 ± 0.00 86.95 ± 0.00 73.85 ± 0.00 93.12 ± 0.00 75.58 ± 0.00 82.10 ± 0.00 89.72 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 66.25 ± 0.00 75.85 ± 0.00 63.43 ± 0.00
CIFE 64.18 ± 0.00 92.07 ± 0.00 70.27 ± 0.00 73.90 ± 0.00 74.15 ± 0.00 84.38 ± 0.00 76.85 ± 0.00 63.48 ± 0.00 61.67 ± 0.00 80.27 ± 0.00 63.40 ± 0.00
ICAP 98.67 ± 0.00 92.00 ± 0.00 70.12 ± 0.00 94.75 ± 0.00 80.72 ± 0.00 90.20 ± 0.00 92.30 ± 0.0092.30 ± 0.0092.30 ± 0.00 50.00 ± 0.00 76.67 ± 0.00 74.57 ± 0.00 70.80 ± 0.00

RFS 71.35 ± 0.00 - - 95.07 ± 0.00 84.02 ± 0.00 89.13 ± 0.00 77.55 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 70.83 ± 0.00 74.13 ± 0.00 -

and selected features given the class labels. Finally, ICAP Jakulin (2005) iteratively selects features
maximizing the mutual information with the class labels given the selected features.

Hyperparameters. The architecture of the network used in the experiments is a 3-layer sparse MLP with
1000 neurons in each hidden layer. The activation function used for the hidden layers is Tanh (except for Isolet
dataset where Relu is used), and the output layer activation function is Softmax. The values for the hyperparam-
eters were found through a grid search among a small set of values. We have used stochastic gradient descent
(SGD) with a momentum of 0.9 as the optimizer. The parameters for training neural network-based methods,
including batch size, learning rate, and the number of epochs (tmax), have been set to 100, 0.01, and 100,
respectively. However, the batch size for datasets with few samples (m ≤ 200) was set to 20. The hyperparame-
ter determining the sparsity level ε is set to 30. Update fraction for the input layer ζin and hidden layer ζh have
been set to 0.2 and 0.3 respectively. Neuron removal duration hyperparameter α is set to 0.65. ζin and α are the
only hyperparameters particular to NeuroFS. We use min-max scaling for data preprocessing for all methods
except for the BASEHOCK dataset, where we perform standard scaling with zero mean and unit variance.

Implementation. We implemented our proposed method using Keras Chollet et al. (2015). The starting
point of our implementation is based on the sparse evolutionary training introduced as SET in Mocanu
et al. (2018)2 to which we added the gradient-based connections growth proposed in RigL Evci et al. (2020).
For evaluating the methods, we have used the implementations provided by the Scikit-Feature library Li et al.
(2018)3 and used similar hyperparameters for each method. We implemented QuickSelection Atashgahi et al.
(2021) in our code; we adapted it to supervised feature selection, as this was not done in the paper proposing
QuickSelection. We have used a similar structure and sparsity level to our method for a fair comparison.
For STG and LassoNet, we used the implementation provided by the authors45. For STG, we used a 3-layer
MLP with 1000 hidden neurons in each layer. For LassoNet, we used a 1-layer MLP (as suggested by the
authors) with 1000 hidden neurons. We consider a 12 hours limit on the running time of each experiment.
The results of the experiments that exceed this limit are discarded. We used a Dell R730 processor to run
the experiments. We run neural network-based methods using Tesla-P100 GPU with 16G memory.

Evaluation Metrics. For evaluating the methods, we use classification accuracy of a SVM classifier
Keerthi et al. (2001). As some of the compared methods do not exploit neural networks to perform feature
selection, we intentionally use a non-neural network-based classifier to ensure that the evaluation process
is objective and does not take advantage of the same underlying mechanisms as our method. We first find
the K important features using each method. Then, we train a SVM classifier on the selected features subset
of the training set. We report the classification accuracy on the test set as a measure of performance. We
have considered classification accuracy using all features as the baseline method.

4.2 Feature Selection Evaluation

In this section, we evaluate the performance of NeuroFS and compare it with several feature selection
algorithms. We run all the methods on the datasets described in Section 4.1 and for several values of
K ∈ {25, 50, 75, 100, 150, 200}. Then, we evaluate the quality of the selected set of features by measuring
the classification accuracy on an unseen test set as described in Section 4.1. The results are an average
of five different seeds. The detailed results for low and high-dimensional dataset, including accuracy for

2https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
3https://jundongl.github.io/scikit-feature/
4https://github.com/lasso-net/lassonet
5https://github.com/runopti/stg

8

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
https://jundongl.github.io/scikit-feature/
 https://github.com/lasso-net/lassonet
https://github.com/runopti/stg

Under review as submission to TMLR

70 80 90
Average accuracy (%)

CIFE F_score RFS QSLassoNet ICAP NeuroFS STG

COIL-20

88 90 92 94
Average accuracy (%)

F_score ICAP CIFE STG QSLassoNet NeuroFS

MNIST

72.5 75.0 77.5 80.0 82.5 85.0
Average accuracy (%)

ICAP CIFE F_score QS STGLassoNet NeuroFS

Fashion-MNIST

75 80 85 90 95
Average accuracy (%)

CIFE F_score ICAP RFS QSLassoNet STG NeuroFS

USPS

75 80 85 90
Average accuracy (%)

CIFE F_score ICAP RFS STGLassoNet QS NeuroFS

Isolet

82.5 85.0 87.5 90.0 92.5
Average accuracy (%)

F_score CIFE RFS ICAP STG QS NeuroFSLassoNet

HAR

25 50 75 100 150 200
K

40

60

80

100

Ac
cu

ra
cy

 (%
)

25 50 75 100 150 200
K

80

90

25 50 75 100 150 200
K

50

60

70

80

25 50 75 100 150 200
K

60

80

25 50 75 100 150 200
K

60

70

80

90

25 50 75 100 150 200
K

80

85

90

95

(a) Low-dimensional datasets

80 85 90
Average accuracy (%)

CIFE RFS STG QS F_scoreLassoNet NeuroFS ICAP

BASEHOCK

50 60 70 80 90
Average accuracy (%)

ICAP CIFE QS STG NeuroFSLassoNet F_score RFS

Prostate_GE

65 70 75
Average accuracy (%)

CIFE F_score RFSLassoNet STG ICAP QS NeuroFS

Arcene

76 78 80 82
Average accuracy (%)

RFS ICAP F_score LassoNet CIFE STG QS NeuroFS

SMK

65 70 75 80
Average accuracy (%)

CIFE F_score ICAP STG QS LassoNet NeuroFS

GLA-BRA-180

25 50 75 100 150 200
K

80

90

Ac
cu

ra
cy

 (%
)

25 50 75 100 150 200
K

60

80

25 50 75 100 150 200
K

60

70

80

NeuroFS LassoNet STG QS F_score CIFE ICAP RFS Baseline

25 50 75 100 150 200
K

70

80

25 50 75 100 150 200
K

60

70

80

(b) high-dimensional datasets

Figure 2: Supervised feature selection comparison for low (a) and high-dimensional (b) datasets, including
accuracy for various values of K (below) and average accuracy over K (above).

various values of K (below) and average accuracy over K (above), are demonstrated in Figure 2. We have
also presented the detailed results for each value of K in Table 5 in Appendix B. To summarize the results
and have a general overview of the performance of each method independent of a particular K value, we
have shown the average accuracy over the different values of K in Table 2.

As presented in Figure 2 and Table 2, NeuroFS is the best performer in 7 datasets out of 11 considered
datasets in terms of average accuracy, while performing closely to the best performer in the remaining cases.
Filter methods, such as ICAP, CIFE, and F-score, have been outperformed by embedded methods on most
datasets considered, as they select features independently from the learning task. Among these methods,
ICAP performs well on the text dataset (BASEHOCK); this can show that mutual information is informative
in feature selection from the text datasets. Among the considered embedded methods, RFS fails to find
the informative features on datasets with a high number of samples (e.g., MNIST, Fashion-MNIST) or
dimensions (e.g., GLA-BRA-180) within the considered time limit.

By looking into the results of all considered methods, it can be observed that neural network-based feature
selection methods outperform classical feature selection methods in most cases. Therefore, it can be
concluded that the complex non-linear dependencies extracted by the neural network are beneficial for
the feature selection task. However, as will be discussed in Section 5.2, the over-parameterization in dense
neural networks, as used for STG and LassoNet, leads to high computational costs and memory requirements,
particularly on high-dimensional datasets. NeuroFS and QuickSelection address this issue by exploiting
sparse layers instead of dense ones.

NeuroFS outperforms QuickSelection, which is the sparse competitor of NeuroFS, in terms of average accuracy,
particularly on the high-dimensional datasets. This is because, for high-dimensional datasets, QuickSelection
needs more training time to find the optimal topology in the large connections search space due to the random
search. NeuroFS alleviate this problem by exploiting the gradient of the connections to find the informative
paths in the network while removing the uninformative neurons gradually to reduce the search space.

To summarize the results and have a general overview of the methods’ performance, we use a ranking-based
score. For each dataset and value of K, we rank the methods based on their classification accuracy and give a
score of 0 to the worst performer, and the highest score (#methods−1) to the best performer. For each method,

1 2 3 4 5 6 7

8. CIFE
7. F_score

6. RFS
5. ICAP

4. STG
3. QS

2. LassoNet
1. NeuroFS

(a) Low-dimensional dataset

1 2 3 4 5 6

8. CIFE
7. RFS

6. F_score
5. STG

4. ICAP
3. QS

2. LassoNet
1. NeuroFS

(b) high-dimensional dataset

Figure 3: Average ranking score over all datasets and K values.

9

Under review as submission to TMLR

0 5 10 15 20 25

0
5

10
15
20
25

Initialization

0 5 10 15 20 25

Epoch 5

0 5 10 15 20 25

Epoch 10

0 5 10 15 20 25

Epoch 20

0 5 10 15 20 25

Epoch 50

0 5 10 15 20 25

Epoch 99

0

5

10

Figure 4: Feature importance visualization on the MNIST dataset (number of selected features K=50).

we compute the average score for different values of K and different datasets. The results are summarized
in Figure 3. NeuroFS achieves the highest average ranking on both low and high-dimensional datasets.

Overall, it can be concluded that inspired by the evolutionary process, NeuroFS can find an effective subset
of features by dynamically changing the sparsity pattern in both input neurons and connections. By dropping
the unimportant input neurons (based on magnitude) and adding new neurons based on the incoming
gradient, it can mostly outperform its direct competitors, LassoNet, STG, and QuickSelection, in terms
of accuracy while being efficient by using sparse layers instead of dense over-parameterized layers.

4.3 Feature Importance Visualization

In order to gain a better understanding of the NeuroFS algorithms, in this section, we analyze the feature
importance during the training of the network. We run NeuroFS on the MNIST dataset and for K = 50
and visualize the strength of input neurons as a heat-map at several epochs in Figure 4.

As shown in Figure 4, at the initialization, all the neurons have very close strength/importance. This stems
from the random initialization of the weights to a small random value. During training, the number of active
neurons gradually decreases. The removed neurons are mostly located towards the edges of this picture.
This pattern is similar to the MNIST digits dataset, where most digits appear in the middle of the image.
Finally, at the last epoch, a limited number of neurons have remained active. We select the most important
features out of the active features. In conclusion, this experiment shows that NeuroFS can determine the
most important region in the features accurately.

5 Discussion

In this section, we present the results of several analyses on the performance of NeuroFS, including robustness
evaluation and hyperparameter’s effect. We have also analyzed weight/neuron growth policy in Appendix A.

5.1 Robustness Evaluation: Topology Variation

In this section, we analyze the robustness of NeuroFS to variation in the topology. We aim to explore
if different runs of NeuroFS converge to similar or distant topologies and whether NeuroFS performance
remains stable for these different topologies.

To achieve this aim, we conduct two experiments. In the first experiment, we analyze the topology of five
networks that are trained and initialized with different random seeds. In other words, they start with
different sparse connectivities at initialization and have different training paths. In the second experiment,

N0

N1

N2

N3

N4In
pu

t l
ay

er

Initialization Epoch 1 Epoch 10 Epoch 25 Epoch 50 Epoch 99

0.0

0.5

1.0
N0

N1

N2

N3

N4In
pu

t l
ay

er

Initialization Epoch 1 Epoch 5 Epoch 10 Epoch 25 Epoch 50 Epoch 99

0.0

0.5

1.0

N0

N1

N2

N3

N4

h
1

0.0

0.5

1.0
N0

N1

N2

N3

N4

h
1

0.0

0.5

1.0

N
0

N
1

N
2

N
3

N
4

N0

N1

N2

N3

N4

h
2

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

0.0

0.5

1.0

(a) Different initial sparse connectivity

N
0

N
1

N
2

N
3

N
4

N0

N1

N2

N3

N4

h
2

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

N
0

N
1

N
2

N
3

N
4

0.0

0.5

1.0

(b) Similar initial sparse connectivity

Figure 5: Topology distance of five MLPs with (a) different and (b) similar initial sparse connectivity
(topology). Input layers converge to relatively similar topologies in both cases, while hidden layers remain
distant. Ni refers to the network trained with ith random seed.

10

Under review as submission to TMLR

Table 3: NeuroFS Classification Accuracy (%) on the MNIST dataset for five networks (K = 50).

N0 N1 N2 N3 N4

NeuroFS (Different initial sparse connectivity) 95.6 95.3 95.5 94.6 95.2
NeuroFS (Similar initial sparse connectivity) 95.6 94.4 96.2 95.4 95.8

we analyze the topology of five networks initialized with the same sparse connectivity (using a similar random
seed) and trained with different random seeds. For both experiments, we measure the topology distance
among networks using a metric introduced in Liu et al. (2020), called NNSTD. It measures the distance of
two sparse networks; NNSTD of 0 means that two networks are identical, and 1 means completely different.

We perform both experiments on the MNIST dataset to find the K = 50 most important features. The
topology distance of the networks at different epochs are depicted in Figure 5 as 2d heatmaps. Each row
depicts the distances for one layer of different networks. Each tile in the heatmaps refers to the distance
between two layers of two networks. In these figures, Ni refers to the network trained with ith random seed.
The corresponding accuracies are shown in Table 3.

In Figure 5a, the networks are very distant at the beginning as their sparse connectivity (topology) initialized
differently. During training, while their hidden layers remain distant, their input layers become more similar.
Considering these figures and comparing them with the results in Table 3, it can be observed that while
the feature selection remains almost the same, the network topologies do not. This indicates that NeuroFS
can find several well-performing networks.

The similarity of the network topologies in Figure 5b almost match the pattern of Figure 5a. While the
networks start from the same sparse connectivity, they become distant at the next epoch when they start
training with different random seeds. This indicates that NeuroFS explores various connectivities during
training. Interestingly, in the end, the converged input layers are more similar to each other than the
experiment 1, due to the similar sparse connectivity at initialization. As shown in Table 3, the corresponding
accuracies are close together. Experiment 2 confirms the observations in experiment 1, where NeuroFS finds
distant topologies with very close feature selection performance.

To conclude, NeuroFS is robust to changes in topology. While it finds very different topologies overall, the
input layers converge to relatively similar topologies, resulting in close feature selection performance.

5.2 Computational Efficiency of NeuroFS

In this section, we analyze the computational efficiency of NeuroFS. We present the number of training
FLOPs and the number of parameters of NeuroFS and compare it with its neural network-based competitors.

Estimating the FLOPs (floating-point operations) and parameter count is a commonly used approach to
analyze the efficiency gained by a sparse neural network compared to its dense equivalent network Evci
et al. (2020); Sokar et al. (2021). Number of parameters indicates the size of the model, which directly affects
the memory consumption and also computational complexity. FLOPs estimates the time complexity of an
algorithm independently of its implementation. In addition, since existing deep learning hardware is not
optimized for sparse matrix computations, most methods for obtaining sparse neural networks only simulate
sparsity using a binary mask over the weights. Consequently, the running time of these methods does not
reflect their efficiency. Besides, developing proper pure sparse implementations for sparse neural networks
is currently a highly researched topic pursued by the community Hooker (2021). Thus, as our paper is, in
its essence, theoretical, we decided to let this engineering research aspect for future work. Therefore, we
also use parameter and FLOPs count to analyze efficiency.

To give an intuitive overview of the efficiency of NeuroFS, we compare NeuroFS with its neural network-based
competitors. We compute the FLOPs and number of parameters of two dense MLPs with one (Dense1) and
three hidden layers (Dense3). These are the architectures used by LassoNet and STG, respectively. It should
be noted that LassoNet might require several rounds of training the dense model; therefore, as we compute
the computational cost for one round of training the neural network, this is the minimum computational
cost of this method. In addition, as the computational cost of QuickSelection is similar to our method, we
refer to both NeuroFS and QuickSelection as Sparse.

11

Under review as submission to TMLR

Table 4: Number of parameters (×105) and Number of training FLOPs (×1012) of NeuroFS (Sparse) and
the equivalent dense MLPs on different datasets.

#parameters (×105) #FLOPs (×1012)
Dataset Density Sparse Dense1 Dense3 Sparse Dense1 Dense3

COIL-20 6.29% 1.91 10.34 30.34 0.13 0.72 2.10
MNIST 6.57% 1.84 7.94 27.94 6.66 28.60 100.64

Fashion-MNIST 6.57% 1.84 7.94 27.94 6.66 28.60 100.64
USPS 7.40% 1.68 2.66 22.66 0.76 1.19 10.12
Isolet 7.36% 1.95 6.43 26.43 0.73 2.41 9.90
HAR 6.73% 1.73 5.67 25.67 0.77 2.50 11.33

BASEHOCK 4.34% 2.98 48.64 68.64 0.36 5.82 8.21
Arcene 3.77% 4.52 100.02 120.02 0.05 1.20 1.44

Prostate_GE 4.15% 3.31 59.68 79.68 0.02 0.37 0.49
SMK-CAN-187 3.42% 7.52 199.95 219.95 0.07 1.79 1.97
GLA-BRA-180 3.18% 16.29 491.55 511.55 0.18 5.31 5.52

As explained in Section 3.2.1, the sparsity/density level is determined by the ε. The density level of the network
(D), the number of parameters and FLOP count of NeuroFS, and the compared methods are shown in Table 4.
We estimate the FLOP count for the considered methods, using the implementation provided by Evci et al..

As can be seen from Table 4, NeuroFS and QuickSelection (Sparse) have the least number of parameters
and FLOPs among the considered architectures on all considered datasets, particularly on high-dimensional
datasets. In addition, as discussed in Section 4.2, NeuroFS outperforms LassoNet, STG, and QuickSelection,
in terms of accuracy on most cases considered. In short, NeuroFS is efficient in terms of memory requirements
and computational costs while finding the most informative subset of the features on real-world benchmarks,
including low and high-dimensional datasets.

5.3 Hyperparameters Effect

In this section, we analyze the effect of hyperparameters of NeuroFS on the quality of the selected features. The
hyperparameters include neuron removal duration fraction α, hyperparameter determining sparsity level ε, and
the update fraction of the input layer ζin. We try different sets of values for each of these hyperparameters and
measure the performance of NeuroFS when selecting K = 100 features. The results are presented in Figure 6.

The results of most datasets are stable for different sets of hyperparameter values. However, high-dimensional
datasets with few samples (d ≥ 10000 and m ≤ 200) are sensitive to the sparsity level hyperparameter. The
feature selection performance decreases for higher densities; this might come from over-fitting of the network
for large parameter count and a low number of training samples. We select α = 0.65, ε = 30, and ζin = 0.2
as the final values for the other experiments.

6 Conclusion

This paper proposes a novel supervised feature selection method named NeuroFS. NeuroFS introduces
dynamic neuron evolution in the training process of a sparse neural network to find an informative set of
features. By evaluating NeuroFS on real-world benchmark datasets, we demonstrated that it outperforms
state-of-the-art supervised feature selection methods in 7 out of 11 considered benchmarks while having
comparable performance to the best-performer in the other cases. However, due to the general lack of
knowledge on optimally implementing sparse neural networks during training, NeuroFS does not take full
advantage of its theoretical high computational and memory advantages. We let the development of this
challenging research direction for future work, hopefully, in a greater joint effort of the community.

0.50 0.65 0.80 0.9570

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Neuron removal duration

10 20 30 50 70 10070

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Sparsity level hyperparameter

COIL-20
BASEHOCK

MNIST
Prostate_GE

Fashion-MNIST
Arcene

USPS
SMK

Isolet
GLA-BRA-180

HAR

0.05 0.10 0.20 0.30
in

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Update fraction

Figure 6: Effect of hyperparameters on the performance of the algorithm (K = 100).

12

Under review as submission to TMLR

References
Zahra Atashgahi, Joost Pieterse, Shiwei Liu, Decebal Constantin Mocanu, Raymond Veldhuis, and Mykola

Pechenizkiy. A brain-inspired algorithm for training highly sparse neural networks. arXiv preprint
arXiv:1903.07138, 2019.

Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Raymond
Veldhuis, and Mykola Pechenizkiy. Quick and robust feature selection: the strength of energy-efficient
sparse training for autoencoders. Machine Learning, pp. 1–38, 2021.

Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable feature
selection and reconstruction. In International Conference on Machine Learning, pp. 444–453, 2019.

Roberto Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE
Transactions on neural networks, 5(4):537–550, 1994.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training very
sparse deep networks. In International Conference on Learning Representations, 2018.

B Chandra and Rajesh K Sharma. Exploring autoencoders for unsupervised feature selection. In 2015
International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE, 2015.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers & Electrical
Engineering, 40(1):16–28, 2014.

François Chollet et al. Keras. https://keras.io, 2015.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a grow-and-prune
paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

Guillaume Doquet and Michèle Sebag. Agnostic feature selection. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 343–358. Springer, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized fisher score for feature selection. In 27th Conference
on Uncertainty in Artificial Intelligence, UAI 2011, pp. 266–273, 2011.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of machine
learning research, 3(Mar):1157–1182, 2003.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer classification
using support vector machines. Machine learning, 46(1):389–422, 2002.

Kai Han, Yunhe Wang, Chao Zhang, Chao Li, and Chao Xu. Autoencoder inspired unsupervised feature
selection. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 2941–2945. IEEE, 2018.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pp. 1135–1143, 2015.

13

https://keras.io

Under review as submission to TMLR

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain surgeon. In
Advances in neural information processing systems, pp. 164–171, 1993.

Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection. In Advances in neural
information processing systems, pp. 507–514, 2006.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md Pat-
wary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable, empirically. arXiv
preprint arXiv:1712.00409, 2017.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research, 2021.

Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, 2021.

Aleks Jakulin. Machine learning based on attribute interactions. PhD thesis, University of Ljubljana, 2005.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-k always
sparse training. Advances in Neural Information Processing Systems, 33:20744–20754, 2020.

S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Karuturi Radha Krishna Murthy.
Improvements to platt’s smo algorithm for svm classifier design. Neural computation, 13(3):637–649, 2001.

Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial intelligence, 97(1-2):273–324,
1997.

Taras Kowaliw, Nicolas Bredeche, Sylvain Chevallier, and René Doursat. Artificial neurogenesis: An
introduction and selective review. Growing Adaptive Machines, pp. 1–60, 2014.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information
processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based on
connection sensitivity. In International Conference on Learning Representations, 2019.

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural network with
feature sparsity. Journal of Machine Learning Research, 22(127):1–29, 2021.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu.
Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):94, 2018.

Dahua Lin and Xiaoou Tang. Conditional infomax learning: An integrated framework for feature extraction
and fusion. In European conference on computer vision, pp. 68–82. Springer, 2006.

Huan Liu, Rudy Setiono, et al. A probabilistic approach to feature selection-a filter solution. In ICML,
volume 96, pp. 319–327. Citeseer, 1996.

Shiwei Liu, Tim van der Lee, Anil Yaman, Zahra Atashgahi, Davide Ferraro, Ghada Sokar, Mykola Pechenizkiy,
and Decebal Constantin Mocanu. Topological insights into sparse neural networks. In Proceedings of
the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD) 2020., 2020.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting pruning
plasticity with neuroregeneration. Advances in Neural Information Processing Systems (NeurIPS 2021),
2021a.

14

Under review as submission to TMLR

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need dense over-
parameterization? in-time over-parameterization in sparse training. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 6989–7000.
PMLR, 18–24 Jul 2021b.

Yang Lu, Yingying Fan, Jinchi Lv, and William Stafford Noble. Deeppink: reproducible feature selection in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 8676–8686, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Phuong H Nguyen, Madeleine Gibescu, and Antonio Liotta. A
topological insight into restricted boltzmann machines. Machine Learning, 104(2-3):243–270, 2016.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network
science. Nature communications, 9(1):2383, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Tiago Pinto, Selima Curci, Phuong H Nguyen, Madeleine
Gibescu, Damien Ernst, and Zita A Vale. Sparse training theory for scalable and efficient agents. In
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp.
34–38, 2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural
networks for resource efficient inference. International Conference on Learning Representations, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4646–4655. PMLR, 09–15 Jun 2019.

Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. Efficient and robust feature selection via joint l2,
1-norms minimization. Advances in neural information processing systems, 23, 2010.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine
intelligence, 27(8):1226–1238, 2005.

Rudy Setiono and Huan Liu. Neural-network feature selector. IEEE transactions on neural networks, 8(3):
654–662, 1997.

Dinesh Singh and Makoto Yamada. Fsnet: Feature selection network on high-dimensional biological data.
arXiv preprint arXiv:2001.08322, 2020.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone. Dynamic
sparse training for deep reinforcement learning. arXiv preprint arXiv:2106.04217, 2021.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996.

Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep learning. Advances in Neural
Information Processing Systems, 33:5105–5114, 2020.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using stochastic
gates. In International Conference on Machine Learning, pp. 10648–10659. PMLR, 2020.

Rui Zhang, Feiping Nie, Xuelong Li, and Xian Wei. Feature selection with multi-view data: A survey.
Information Fusion, 50:158–167, 2019.

15

Under review as submission to TMLR

A Ablation Study: Gradient vs Random Policy for Weight and Neuron Selection

This Appendix discusses the effect of gradient-based weights and neuron selection in NeuroFS by performing
an ablation study. We use random growth instead of the gradient to measure the importance of weights and
neurons. We call this method NeuroFS[w/oGradient]. The settings of this experiment is similar to Section
4.2. The results are presented in Figure 7.

In Figure 7, NeuroFS outperforms NeuroFS[w/oGradient] in most cases. While the results of these
methods are relatively close on some datasets, on the Coil-20, SMK, GLA-BRA-180, and Arcene datasets,
there is a large gap between the results. It can be concluded that NeuroFS performs more stable than
NeuroFS[w/oGradient]. While random growth of weights and neurons might lead to better results in some
cases, it can not ensure a stable performance across different datasets.

25 50 75 100 150 200
K

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

NeuroFS

COIL-20
BASEHOCK

MNIST
Prostate_GE

Fashion-MNIST
Arcene

USPS
SMK

Isolet
GLA-BRA-180

HAR

25 50 75 100 150 200
K

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

NeuroFS[w/oGradient]

Figure 7: Gradient (left) vs. random (right) weight and neuron growth policy comparison.

B Comparison Results

16

Under review as submission to TMLR

Table 5: Supervised feature selection comparison (classification accuracy for various K values (%)). Empty
entries show that the corresponding experiments exceeded the time limit (12 hours). Bold and italic fonts
indicate the best and second-best performer, respectively.

(a) K = 25

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 95.86±1.31 87.86 ± 1.7787.86 ± 1.7787.86 ± 1.77 79.38 ± 0.9679.38 ± 0.9679.38 ± 0.96 93.98±0.87 86.22 ± 0.8486.22 ± 0.8486.22 ± 0.84 87.46 ± 0.79 83.86 ± 3.38 88.58±2.35 63.00 ± 4.85 78.92±1.68 73.88±3.80
LassoNet 92.72 ± 0.85 86.40±1.26 78.68±0.55 94.04 ± 0.3894.04 ± 0.3894.04 ± 0.38 76.48 ± 0.39 93.00 ± 0.3193.00 ± 0.3193.00 ± 0.31 84.48 ± 0.86 88.58±2.35 69.00 ± 2.55 76.84 ± 5.34 76.12 ± 4.1976.12 ± 4.1976.12 ± 4.19

STG 97.02 ± 1.4197.02 ± 1.4197.02 ± 1.41 85.24 ± 1.89 77.44 ± 0.53 94.04 ± 0.4694.04 ± 0.4694.04 ± 0.46 77.16±4.34 87.48±0.80 82.38 ± 1.36 85.72 ± 3.00 69.00 ± 5.15 77.38 ± 3.57 67.22 ± 4.78
QS 91.00 ± 4.21 85.25 ± 1.47 71.57 ± 1.97 93.00 ± 0.81 72.56 ± 6.53 87.14 ± 1.74 83.80 ± 1.61 71.43 ± 12.16 73.75±8.20 76.97 ± 7.52 69.45 ± 2.75

Fisher_score 24.70 ± 0.00 74.40 ± 0.00 53.10 ± 0.00 82.00 ± 0.00 57.40 ± 0.00 77.10 ± 0.00 85.50±0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 65.00 ± 0.00 68.40 ± 0.00 58.30 ± 0.00
CIFE 50.70 ± 0.00 80.90 ± 0.00 63.40 ± 0.00 50.20 ± 0.00 56.00 ± 0.00 80.20 ± 0.00 76.20 ± 0.00 61.90 ± 0.00 67.50 ± 0.00 81.60 ± 0.0081.60 ± 0.0081.60 ± 0.00 61.10 ± 0.00
ICAP 94.40 ± 0.00 81.60 ± 0.00 50.10 ± 0.00 89.90 ± 0.00 67.10 ± 0.00 84.50 ± 0.00 89.20 ± 0.0089.20 ± 0.0089.20 ± 0.00 47.60 ± 0.00 77.50 ± 0.0077.50 ± 0.0077.50 ± 0.00 78.90 ± 0.00 69.40 ± 0.00

RFS 34.70 ± 0.00 - - 87.40 ± 0.00 66.50 ± 0.00 84.20 ± 0.00 73.90 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 62.50 ± 0.00 78.90 ± 0.00 -

(b) K = 50

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 98.78 ± 0.29 95.30 ± 0.4195.30 ± 0.4195.30 ± 0.41 83.78 ± 0.6483.78 ± 0.6483.78 ± 0.64 96.78 ± 0.1796.78 ± 0.1796.78 ± 0.17 92.62 ± 0.4092.62 ± 0.4092.62 ± 0.40 91.46 ± 0.72 89.06±2.46 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 76.50 ± 2.5576.50 ± 2.5576.50 ± 2.55 81.58±1.68 80.54 ± 4.9680.54 ± 4.9680.54 ± 4.96
LassoNet 97.16 ± 1.06 94.46±0.21 82.58±0.10 95.94 ± 0.15 84.90 ± 0.22 93.74 ± 0.3993.74 ± 0.3993.74 ± 0.39 87.18 ± 0.58 88.58±2.35 71.00 ± 2.00 80.52 ± 2.69 74.46±4.78

STG 99.32 ± 0.4099.32 ± 0.4099.32 ± 0.40 93.20 ± 0.62 82.36 ± 0.52 96.62±0.34 85.82 ± 2.83 91.22 ± 1.23 85.12 ± 1.86 84.78 ± 3.55 71.00 ± 2.55 80.25 ± 2.95 70.00 ± 4.08
QS 96.52 ± 1.53 93.62 ± 0.49 80.82 ± 0.51 95.52 ± 0.27 89.78±1.80 91.96±1.04 87.22 ± 1.22 76.20 ± 7.53 74.38±4.80 80.90 ± 2.20 72.20 ± 2.80

Fisher_score 74.00 ± 0.00 81.90 ± 0.00 67.80 ± 0.00 91.00 ± 0.00 67.40 ± 0.00 79.80 ± 0.00 90.20 ± 0.0090.20 ± 0.0090.20 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 67.50 ± 0.00 73.70 ± 0.00 63.90 ± 0.00
CIFE 59.40 ± 0.00 89.30 ± 0.00 66.90 ± 0.00 61.30 ± 0.00 59.80 ± 0.00 84.20 ± 0.00 77.40 ± 0.00 47.60 ± 0.00 52.50 ± 0.00 81.60 ± 0.0081.60 ± 0.0081.60 ± 0.00 58.30 ± 0.00
ICAP 99.30±0.00 89.00 ± 0.00 59.50 ± 0.00 95.20 ± 0.00 75.10 ± 0.00 88.70 ± 0.00 90.20 ± 0.0090.20 ± 0.0090.20 ± 0.00 57.10 ± 0.00 70.00 ± 0.00 73.70 ± 0.00 72.20 ± 0.00

RFS 66.30 ± 0.00 - - 95.30 ± 0.00 77.30 ± 0.00 88.20 ± 0.00 74.20 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 62.50 ± 0.00 76.30 ± 0.00 -

(c) K = 75

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 99.06 ± 0.12 96.76 ± 0.2296.76 ± 0.2296.76 ± 0.22 85.70 ± 0.2885.70 ± 0.2885.70 ± 0.28 97.06 ± 0.1597.06 ± 0.1597.06 ± 0.15 94.04 ± 0.3494.04 ± 0.3494.04 ± 0.34 93.16 ± 0.79 90.64±2.35 89.54±1.92 82.00 ± 4.0082.00 ± 4.0082.00 ± 4.00 82.62 ± 2.1282.62 ± 2.1282.62 ± 2.12 82.24 ± 3.3182.24 ± 3.3182.24 ± 3.31
LassoNet 99.46±0.35 96.00±0.09 83.92 ± 0.13 96.36 ± 0.08 91.00 ± 0.62 94.62 ± 0.1794.62 ± 0.1794.62 ± 0.17 90.52 ± 0.27 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 70.50 ± 2.45 78.94 ± 3.72 76.64±5.44

STG 99.68 ± 0.2299.68 ± 0.2299.68 ± 0.22 95.52 ± 0.22 84.14±0.43 96.88±0.23 90.10 ± 2.17 92.42 ± 1.11 85.52 ± 1.22 84.78 ± 3.55 75.00 ± 2.74 81.04 ± 4.21 71.08 ± 1.37
QS 98.17 ± 1.16 95.98 ± 0.33 83.80 ± 0.53 96.85 ± 0.05 93.04±0.46 93.50±0.77 87.55 ± 1.30 72.62 ± 9.78 76.88±2.72 82.22±2.86 73.60 ± 1.40

Fisher_score 76.00 ± 0.00 87.10 ± 0.00 74.30 ± 0.00 94.40 ± 0.00 76.00 ± 0.00 81.70 ± 0.00 89.00 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 70.00 ± 0.00 76.30 ± 0.00 66.70 ± 0.00
CIFE 63.20 ± 0.00 92.70 ± 0.00 67.70 ± 0.00 68.00 ± 0.00 74.30 ± 0.00 84.80 ± 0.00 74.70 ± 0.00 47.60 ± 0.00 72.50 ± 0.00 76.30 ± 0.00 58.30 ± 0.00
ICAP 99.00 ± 0.00 92.40 ± 0.00 67.20 ± 0.00 95.30 ± 0.00 79.70 ± 0.00 89.20 ± 0.00 93.50 ± 0.0093.50 ± 0.0093.50 ± 0.00 57.10 ± 0.00 72.50 ± 0.00 71.10 ± 0.00 72.20 ± 0.00

RFS 72.20 ± 0.00 - - 96.50 ± 0.00 85.10 ± 0.00 88.50 ± 0.00 77.40 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 70.00 ± 0.00 76.30 ± 0.00 -

(d) K = 100

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 99.18 ± 0.50 97.32 ± 0.1797.32 ± 0.1797.32 ± 0.17 86.64 ± 0.2186.64 ± 0.2186.64 ± 0.21 97.22 ± 0.1297.22 ± 0.1297.22 ± 0.12 95.06 ± 0.3195.06 ± 0.3195.06 ± 0.31 94.18±0.29 92.72±1.50 89.54±1.92 82.00±1.87 83.16±1.27 81.12 ± 2.0581.12 ± 2.0581.12 ± 2.05
LassoNet 99.30 ± 0.00 96.64 ± 0.14 84.98 ± 0.18 97.04 ± 0.12 93.18 ± 0.22 95.14 ± 0.2995.14 ± 0.2995.14 ± 0.29 90.96 ± 1.36 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 72.00 ± 4.30 78.42 ± 4.20 79.46±2.83

STG 99.76±0.12 96.38 ± 0.35 85.20 ± 0.58 97.08±0.18 92.64 ± 0.56 92.82 ± 0.74 85.96 ± 1.24 85.72 ± 3.00 75.50 ± 3.67 82.08 ± 3.87 72.20 ± 3.07
QS 98.28 ± 1.15 96.85±0.09 85.52±0.15 97.00 ± 0.14 94.22±0.28 94.06 ± 0.48 89.02 ± 1.26 78.58 ± 9.82 78.12 ± 1.08 84.85 ± 2.1684.85 ± 2.1684.85 ± 2.16 73.60 ± 1.40

Fisher_score 80.20 ± 0.00 90.70 ± 0.00 79.60 ± 0.00 96.50 ± 0.00 79.80 ± 0.00 83.80 ± 0.00 89.70 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 65.00 ± 0.00 78.90 ± 0.00 66.70 ± 0.00
CIFE 67.70 ± 0.00 95.10 ± 0.00 69.20 ± 0.00 78.00 ± 0.00 81.20 ± 0.00 85.30 ± 0.00 74.40 ± 0.00 71.40 ± 0.00 65.00 ± 0.00 81.60 ± 0.00 58.30 ± 0.00
ICAP 100.00 ± 0.00100.00 ± 0.00100.00 ± 0.00 95.00 ± 0.00 77.70 ± 0.00 95.40 ± 0.00 82.80 ± 0.00 92.10 ± 0.00 94.00 ± 0.0094.00 ± 0.0094.00 ± 0.00 52.40 ± 0.00 82.50 ± 0.0082.50 ± 0.0082.50 ± 0.00 76.30 ± 0.00 69.40 ± 0.00

RFS 78.50 ± 0.00 - - 96.70 ± 0.00 87.80 ± 0.00 89.90 ± 0.00 78.70 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 77.50 ± 0.00 71.10 ± 0.00 -

(e) K = 150

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 99.86 ± 0.28 97.72 ± 0.1097.72 ± 0.1097.72 ± 0.10 87.18 ± 0.1687.18 ± 0.1687.18 ± 0.16 97.48 ± 0.0497.48 ± 0.0497.48 ± 0.04 95.58 ± 0.2995.58 ± 0.2995.58 ± 0.29 95.02±0.35 93.44 ± 0.9193.44 ± 0.9193.44 ± 0.91 89.54±1.92 80.50 ± 4.3080.50 ± 4.3080.50 ± 4.30 83.68±1.04 82.22 ± 1.3282.22 ± 1.3282.22 ± 1.32
LassoNet 99.54 ± 0.20 97.42 ± 0.07 86.02 ± 0.15 97.48 ± 0.0797.48 ± 0.0797.48 ± 0.07 94.96 ± 0.15 95.72 ± 0.2095.72 ± 0.2095.72 ± 0.20 92.58 ± 0.62 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 72.00 ± 1.87 78.38 ± 1.04 79.48±1.37

STG 100.00 ± 0.00100.00 ± 0.00100.00 ± 0.00 97.14 ± 0.08 86.28 ± 0.35 97.28 ± 0.12 94.20 ± 0.35 93.56 ± 0.59 86.42 ± 1.74 84.76 ± 4.67 75.00 ± 3.16 82.60 ± 4.27 72.76 ± 3.27
QS 99.92±0.13 97.70±0.12 86.88±0.32 97.42±0.11 95.48±0.32 94.80 ± 0.24 89.80 ± 0.83 79.75 ± 6.19 78.75±1.25 84.22 ± 3.2384.22 ± 3.2384.22 ± 3.23 75.00 ± 0.00

Fisher_score 81.20 ± 0.00 93.10 ± 0.00 83.60 ± 0.00 97.30 ± 0.00 83.00 ± 0.00 84.40 ± 0.00 91.70 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 65.00 ± 0.00 78.90 ± 0.00 63.90 ± 0.00
CIFE 71.90 ± 0.00 96.80 ± 0.00 75.60 ± 0.00 89.60 ± 0.00 85.70 ± 0.00 85.90 ± 0.00 79.20 ± 0.00 76.20 ± 0.00 55.00 ± 0.00 81.60 ± 0.00 72.20 ± 0.00
ICAP 100.00 ± 0.00100.00 ± 0.00100.00 ± 0.00 96.40 ± 0.00 81.70 ± 0.00 95.80 ± 0.00 89.30 ± 0.00 93.40 ± 0.00 93.20±0.00 42.90 ± 0.00 77.50 ± 0.00 71.10 ± 0.00 69.40 ± 0.00

RFS 86.10 ± 0.00 - - 97.20 ± 0.00 92.50 ± 0.00 91.30 ± 0.00 79.90 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 75.00 ± 0.00 71.10 ± 0.00 -

(f) K = 200

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 100.00 ± 0.00100.00 ± 0.00100.00 ± 0.00 97.92±0.07 87.50±0.17 97.54±0.10 95.82±0.31 95.14±0.21 92.82 ± 1.13 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 84.00 ± 3.3984.00 ± 3.3984.00 ± 3.39 84.20 ± 0.0084.20 ± 0.0084.20 ± 0.00 82.76 ± 2.7182.76 ± 2.7182.76 ± 2.71
LassoNet 100.00 ± 0.00100.00 ± 0.00100.00 ± 0.00 97.90 ± 0.00 86.66 ± 0.14 97.58 ± 0.0797.58 ± 0.0797.58 ± 0.07 95.34 ± 0.05 95.58 ± 0.1295.58 ± 0.1295.58 ± 0.12 92.92±1.06 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 73.50 ± 2.55 78.92 ± 1.68 80.02±2.06

STG 100.00 ± 0.00100.00 ± 0.00100.00 ± 0.00 97.46 ± 0.20 87.00 ± 0.26 97.38 ± 0.04 94.88 ± 0.07 93.70 ± 0.66 87.46 ± 1.03 86.68±3.56 77.00 ± 3.32 81.54 ± 3.34 73.88 ± 3.80
QS 99.50±0.53 98.00 ± 0.0798.00 ± 0.0798.00 ± 0.07 87.52 ± 0.1587.52 ± 0.1587.52 ± 0.15 97.50 ± 0.00 96.14 ± 0.0896.14 ± 0.0896.14 ± 0.08 94.76 ± 0.29 90.18 ± 0.66 79.75 ± 6.19 80.62±3.25 82.88±5.44 73.60 ± 1.40

Fisher_score 84.00 ± 0.00 94.50 ± 0.00 84.70 ± 0.00 97.50 ± 0.00 89.90 ± 0.00 85.80 ± 0.00 92.20 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 65.00 ± 0.00 78.90 ± 0.00 61.10 ± 0.00
CIFE 72.20 ± 0.00 97.60 ± 0.00 78.80 ± 0.00 96.30 ± 0.00 87.90 ± 0.00 85.90 ± 0.00 79.20 ± 0.00 76.20 ± 0.00 57.50 ± 0.00 78.90 ± 0.00 72.20 ± 0.00
ICAP 99.30 ± 0.00 97.60 ± 0.00 84.50 ± 0.00 96.90 ± 0.00 90.30 ± 0.00 93.30 ± 0.00 93.70 ± 0.0093.70 ± 0.0093.70 ± 0.00 42.90 ± 0.00 80.00 ± 0.00 76.30 ± 0.00 72.20 ± 0.00

RFS 90.30 ± 0.00 - - 97.30 ± 0.00 94.90 ± 0.00 92.70 ± 0.00 81.20 ± 0.00 90.50 ± 0.0090.50 ± 0.0090.50 ± 0.00 77.50 ± 0.00 71.10 ± 0.00 -

17

	Introduction
	Background
	Feature Selection
	Problem Formulation
	Related Work

	Sparse Neural Networks
	Dynamic Sparse Training (DST)

	Proposed Method
	Dynamic Neuron Evolution
	NeuroFS
	Problem Setup
	Training
	Feature Selection

	Experiments and Results
	Settings
	Feature Selection Evaluation
	Feature Importance Visualization

	Discussion
	Robustness Evaluation: Topology Variation
	Computational Efficiency of NeuroFS
	Hyperparameters Effect

	Conclusion
	Ablation Study: Gradient vs Random Policy for Weight and Neuron Selection
	Comparison Results

