
Under review as a conference paper at ICLR 2024

LANGPROP: A CODE OPTIMIZATION FRAMEWORK US-
ING LANGUAGE MODELS APPLIED TO DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

LangProp is a framework for iteratively optimizing code generated by large lan-
guage models (LLMs) in a supervised/reinforcement learning setting. While
LLMs can generate sensible solutions zero-shot, the solutions are often sub-
optimal. Especially for code generation tasks, it is likely that the initial code
will fail on certain edge cases. LangProp automatically evaluates the code perfor-
mance on a dataset of input-output pairs, as well as catches any exceptions, and
feeds the results back to the LLM in the training loop, so that the LLM can itera-
tively improve the code it generates. By adopting a metric- and data-driven train-
ing paradigm for this code optimization procedure, one could easily adapt findings
from traditional machine learning techniques such as imitation learning, DAgger,
and reinforcement learning. We demonstrate the first proof of concept of auto-
mated code optimization for autonomous driving in CARLA, showing that Lang-
Prop can generate interpretable and transparent driving policies that can be verified
and improved in a metric- and data-driven way. Our code will be open-sourced and
is available at https://github.com/langprop-iclr24/LangProp.

1 INTRODUCTION

Building systems that can self-improve with data is at the core of the machine learning paradigm. By
leveraging vast amounts of data and having an automated feedback loop to update models according
to an objective function, machine learning methods can directly optimize the metrics of interest,
thus outperforming systems that are handcrafted by experts. In the early history of artificial intelli-
gence (AI), Symbolic AI, e.g. rule-based expert systems (Hayes-Roth, 1985; Jackson, 1986), was
a dominant and perhaps a more intuitive and explainable approach to solving tasks in an automated
way, and is still widely used in fields such as medicine (Abu-Nasser, 2017) and autonomous driv-
ing (Badue et al., 2021). However, there have been numerous successes in recent decades in machine
learning, e.g. deep neural networks, that demonstrate the advantage of data-driven learning.

The innovation in Large Language Models (LLMs) (Brown et al., 2020; OpenAI, 2023; Touvron
et al., 2023) is a prominent success enabled by neural networks. Trained on both natural language
and code, they can translate human intent and logic into executable code and back, expanding the
boundaries of applying logic and reasoning. Unlike other machine learning techniques, LLMs have
an affinity with Symbolic AI since they operate in discrete symbolic input-output spaces. The gen-
erated outputs are interpretable, even though the internal representation of these tokens is in a con-
tinuous embedding space. This observation led us to question if it is possible to have the best of
both worlds – having an interpretable and transparent system, characteristic of Symbolic AI, which
can self-improve in a data-driven manner, following the machine learning paradigm. We believe that
LLMs provide the missing piece of the puzzle; the optimization mechanism.

Our insight is that we can draw a direct analogy from training neural networks and train symbolic
systems by leveraging the power of language models to interpret and generate scripts. Using the
analogy of model training, an LLM can be used as an optimizer equivalent to stochastic gradient
descent or Adam. The actual model in our paradigm is an object that handles the initialization and
updates of parameters as well as the forward pass logic, where the parameters are a collection of
symbolic scripts that the LLM generates. At every iteration, we perform a forward pass through the
model, compare it against the ground truth in the dataset, and pass the scores and feedback into the
LLM which interprets the results and updates the scripts in a way that fixes the issues raised.

1

https://github.com/langprop-iclr24/LangProp

Under review as a conference paper at ICLR 2024

While many methods use LLMs for code generation, and systems such as Auto-GPT (Richards,
2023) iteratively query LLMs to execute tasks in an agent-like manner, as far as we know, we are
the first to completely translate and apply the training paradigm used in machine learning for iter-
ative code generation. We draw inspiration from MineDojo VOYAGER (Wang et al., 2023), which
first introduced the idea that a collection of code generated by LLMs (skill library) can be consid-
ered as sharable and fine-tunable checkpoints. However, VOYAGER’s implementation is specific to
Minecraft, and additional work is needed to apply its approach to other domains. We propose Lang-
Prop, a general code optimization framework that is easily adaptable to many application domains.

Autonomous driving is a key area in which model interpretability and transparency are critical.
We consider LangProp to be a valuable proof of concept for building interpretable and language-
instructable systems in a more automated and learnable way. We tested our hypotheses that (a)
LangProp can generate interpretable code that learns to control a vehicle, (b) LangProp can improve
driving performance with more training data in comparison to zero-shot code generation, and (c)
we can easily transfer training paradigms from machine learning to LangProp such as imitation
learning, reinforcement learning (Sutton & Barto, 2018) and DAgger (Ross et al., 2011).

2 RELATED WORK

2.1 LLMS FOR CODE GENERATION

Transformer-based models (Vaswani et al., 2017) have shown outstanding performance in code
generation tasks (Chen et al., 2021; Li et al., 2022; Xu et al., 2022; Nijkamp et al., 2023; Fried
et al., 2023). In particular, general purpose LLMs (Ouyang et al., 2022; OpenAI, 2023) have shown
remarkable capabilities of code generation, translating natural language into code, and vice versa.
However, there is no guarantee that the generated code is error-free. Benchmarks have been sug-
gested to evaluate LLMs on the quality of code generation (Chen et al., 2021; Liu et al., 2023).

Code generation with execution is especially relevant to our work. Cobbe et al. (2021) and Li et al.
(2022) used majority voting on the execution results to select code from a pool of candidates. but this
is prone to favoring common erroneous solutions over infrequent correct solutions. Ni et al. (2023)
suggested a ranking mechanism using a learned verifier to assess code correctness. Given the code,
its specification, and its execution results, it computes the rankings based on the code correctness
and code generation probability. CLAIRIFY (Skreta et al., 2023) implemented automatic iterative
prompting that catches errors and provides feedback to the LLM until all issues are resolved.

Tangentially related fields are Automated Program Repair (APR) (Xia & Zhang, 2022; Xia et al.,
2022), unit test generation (Roziere et al., 2022), and planning applied to LLMs and code generation
(Le et al., 2022; Zhang et al., 2023). APR is typically solved as a text infill task by identifying an
erroneous block of code, masking it out, and querying an LLM, providing the surrounding code as
context. Planning for LLMs formulates code generation as a sequence generation task and applies
Reinforcement Learning techniques. While these approaches are orthogonal to our approach of
iteratively generating code using a pre-trained general-purpose LLM as an optimizer, findings from
these fields may be compatible with LangProp for future work.

2.2 LARGE LANGUAGE MODELS FOR AUTOMATING COMPOSITIONAL TASKS

LLM-powered agents have demonstrated sophisticated planning capabilities. Sequential prompting
with the history of observation, action, and the reason for the action was proposed by ReAct (Yao
et al., 2023) as an improvement to Chain-of-Thought prompting (Wei et al., 2022), which has also
been applied to autonomous driving Fu et al. (2023). Auto-GPT (Richards, 2023) automated tasks
by iteratively generating a sequence of subtasks in finer detail until they are executable. A similar
strategy was applied to robotics (Huang et al., 2022). SayCan (Ahn et al., 2022) used LLMs to
generate candidate subgoals and assessed their affordances with a value function given visual obser-
vations to ground the agent’s behavior. VIMA (Jiang et al., 2023) and PaLM-E (Driess et al., 2023)
demonstrated profound reasoning and execution capabilities on multi-modal tasks such as Visual
Q&A and robotics by fine-tuning LLMs to allow multi-modal prompting. Inner Monologue (Huang
et al., 2023) used environment and user feedback to replan for embodied tasks. Unlike our method,
the above methods require an LLM in the loop during inference, whereas our method only requires
access to an LLM during the code optimization stage. Liang et al. (2023) and Singh et al. (2023)

2

Under review as a conference paper at ICLR 2024

used LLMs to directly generate code for robotics, while ViperGPT (Dídac et al., 2023) and Vis-
Prog (Gupta & Kembhavi, 2023) composed pre-trained vision-and-language models to solve chal-
lenging vision tasks which require reasoning and domain knowledge. However, none of the above
methods implement code optimization via iterative prompting.

Our method is inspired by VOYAGER (Wang et al., 2023), which integrates environment feedback,
execution errors, and self-verification into an iterative prompting mechanism for embodied control
in Minecraft. VOYAGER maintains a skill library, a collection of verified reusable code, which can
be considered as checkpoints. However, there is no mechanism to optimize or remove a sub-optimal
skill once it has been added to the library. We address this limitation and present a more general
code optimization framework that can be applied to a variety of domains, e.g. autonomous driving.

2.3 AUTONOMOUS DRIVING AND THE CARLA BENCHMARK

Approaches to Autonomous Driving can be broadly classified into modular systems and end-to-
end systems (Yurtsever et al., 2020). Most systems take a modular approach (Urmson et al., 2008;
Levinson et al., 2011; Wei et al., 2013; Maddern et al., 2017), which has human-defined rules that
orchestrate separately engineered components for localization and mapping, object detection, track-
ing, behavior prediction, planning, and vehicle control. Such systems allow compartmentalization
and better interpretability, but can be complex and require domain knowledge to maintain and up-
date. Another challenge is error propagation (McAllister et al., 2017), i.e. the upstream outputs can
be erroneous and must be corrected downstream. Recent work has harnessed end-to-end learning
to address these issues. Imitation learning (IL) (Bojarski et al., 2016; Bansal et al., 2018) optimizes
the policy to match actions taken by experts, and is the most widely used approach. However, its
performance is upper-bounded by the expert. Deep reinforcement learning has also shown successes
in simulation (Sallab et al., 2017), on the road (Kendall et al., 2019), and in combination with IL (Lu
et al., 2022). Our work combines both the benefit of interpretability of expert systems while also
taking a data-driven approach, exposing the system to potential failure modes and adverse scenarios
during training time and iteratively optimizing the system towards a well-defined driving metric so
that the resulting system is robust to adverse events and potential errors in intermediate components.

CARLA (Dosovitskiy et al., 2017) is a widely used open-sourced 3D simulator for autonomous driv-
ing research. Many prior works on CARLA have open-sourced their expert agents. Roach (Zhang
et al., 2021) trained a PPO agent (Schulman et al., 2017) on handcrafted reward signals with priv-
ileged information. The heavy lifting is done at the reward shaping level, where hazardous agents
are identified and the desired speed and pose are computed. Roach expert is also used in MILE (Hu
et al., 2022) and TCP (Wu et al., 2022), where TCP has an additional emergency braking upon
detecting potential collisions. TransFuser (Chitta et al., 2022), InterFuser (Shao et al., 2023) and
TF++ (Jaeger et al., 2023) implement their handcrafted expert systems, either using cuboid intersec-
tions or line intersections for hazard detection. TransFuser also introduced the Longest6 benchmark,
which consists of longer routes compared to the official CARLA benchmark and is less saturated.

3 THE LANGPROP FRAMEWORK

The LangProp framework, visualized in Figure 2, addresses a general task of optimizing code on
any given metric of success in a data-driven way, similar to how a neural network is optimized on an
objective function. LangProp performs iterative prompting to improve code performance, using the
inputs, outputs, exceptions, metric scores, and any environmental feedback to inform the LLM upon
updates. The updates in LangProp are performed using a form of an evolutionary algorithm (Bäck
& Schwefel, 1993). The following sections describe the key concepts in LangProp in more detail.

3.1 MODEL DEFINITION

The LangProp model consists of a setup prompt, an update prompt, and a collection of executable
code generated by the LLM, which we refer to as a policy. While neural models are parameterized by
floating-point weights, the parameters of a LangProp model is the collection of policies. Each policy
is associated with an executable script as well as a statistics tracker, which updates the priority, an
aggregate measure of the policy’s performance with respect to the training objective. The priority is
used to rerank the policies so that the best-performing policies are used for updates and inference.

3

Under review as a conference paper at ICLR 2024

Figure 1: An overview of the LangProp framework, which consists of a LangProp model, an LLM
optimizer, and a LangProp trainer. During training, the LLM generates and updates the policy scripts
which are evaluated against a training objective. The performances of the policies are monitored
and aggregated over time by a policy tracker as priorities, which is then used to rerank the policies.
Policies with higher priorities are selected for updates, and the best policy is used for inference.

3.1.1 POLICY SETUP

The initialization of the policies is done similarly to zero-shot code generation. The definition and
specification of the requested function is given, for example, the docstring of the function including
the names and types of the inputs and outputs, what the function is supposed to achieve, and a tem-
plate for the function. We also adopt Chain-of-Thought prompting (Wei et al., 2022). An example of
a setup prompt can be found in Appendix A.1. The response from the LLM is parsed to extract the
solution code snippet. Multiple responses are collected to ensure the diversity of the initial policies.

3.1.2 TRAINING OBJECTIVE

The advantage of LangProp over typical usage of LLMs for code generation is that it performs code
optimization in a metric- and data-driven manner. In many tasks, it is easier to provide a dataset of
inputs and ground truth corresponding outputs rather than to accurately specify the requirements for
a valid solution or write comprehensive unit tests. Similar to how neural networks are trained, the
user defines an objective function that measures how accurate the policy prediction is against the
ground truth, e.g. L1 or L2 loss. A penalty is given if the policy raises an exception.

3.1.3 FORWARD-PASS AND FEEDBACK

Similar to training neural networks, LangProp assumes a dataset of inputs and associated ground
truth labels for supervised learning (or rewards/returns for reinforcement learning, discussed in Sec-
tion 4.3). For every batch update, the inputs are fed into all the policies currently in the LangProp
model to make predictions, equivalent to a forward-pass. For each policy, the prediction is evaluated
by the objective function which returns a score. If an exception is raised during execution of a policy
script, it is caught by the model and an exception penalty is returned as a score instead.

The execution results, which include the score, exception trace, and any print messages from the ex-
ecution, are fed back into the model and are recorded by the policy tracker. This is analogous to how
parameters in a neural network are assigned gradients during back-propagation (see Appendix A.9).
This information stored by the tracker is used in the policy update step in Section 3.1.5.

3.1.4 PRIORITY

The priority is, simply put, an average of scores with respect to the training objective. In case a
small batch size is required for faster computation, a running average of the scores is used as the
priority rather than ranking the policies’ performance based on scores from the current batch alone,
which may result in highly stochastic results. This is sufficient for supervised learning with a fixed
size dataset. As discussed later in Section 4.3, however, a more complex training method such
as reinforcement learning or DAgger (Ross et al., 2011) has a non-stationary training distribution.

4

Under review as a conference paper at ICLR 2024

Therefore, we use exponential averaging with a discount factor of γ ∈ (0, 1] following Equation (1).

Pi,k = (

NB
k∑

j=1

si,j,k +Wi,k−1Pi,k−1)/(N
B
k +Wi,k−1), Wi,k = γ(NB

k +Wi,k−1) (1)

Here, NB
k , Pi,k and Wi,k are the batch size, priority, and priority weighting of the k-th batch for the

i-th policy, respectively, and si,k is the objective score of the i-th policy for the j-th element in the
k-th batch. Initial conditions are Pi,0 = 0 and Wi,0 = 0. By weighting recent scores higher, we
ensure policies with higher priorities have high performance on the most up-to-date dataset.

3.1.5 POLICY RERANKING AND UPDATE

This step updates the model based on the most recent forward-backward pass and updated priorities.
This corresponds to the optimization step in neural network training, where parameters are updated
based on gradients computed on the most recent batch. First, the policies are reranked by the priori-
ties and the top NK number of policies are kept, out of which the top NU policies are selected for
updates. For each of these policies, the policy tracker storing records of inputs, outputs and scores is
queried for the worst-case input-output pairs in the training batch that had the minimum score, along
with any exception or print messages during the execution. This information, together with the old
policy script, is embedded into the update prompt by a prompt template engine (Section 3.2). The
update prompt is passed to the LLM, which returns NR responses containing new policy scripts.

After the model update, there are NU × NR new policies, as well as up to NK old policies. To
initialize the new policies with sensible priorities, extra forward-backward passes are performed on
these policies with the same batch of samples used for the model update. Finally, all policies are
sorted according to their priorities, ready for inference or training on a new batch.

3.2 PROMPT TEMPLATE ENGINE

During the policy update stage, we require a dynamic prompting mechanism to embed information
about the input, predicted output, ground truth, exception, print messages, and the policy script to
be revised. The logic to generate these prompts is sometimes complex, for example, predictions are
only made when there are no exceptions. To enable flexible prompt generation while avoiding any
hardcoding of the prompts in the codebase, we developed a simple yet powerful prompt template
that can parse variables, execute Python code embedded within the prompt, and import sub-prompts
from other files, and will be included in our open-sourced solution. The update prompt example
shown in Appendix A.2 makes extensive use of the policy template engine’s capabilities.

3.3 TRAINING PARADIGM

LangProp mirrors the code abstraction of PyTorch (Paszke et al., 2019) and PyTorch Lightning (Fal-
con, 2019) for the module and trainer interfaces, respectively. This allows LangProp to be task-
agnostic, making it easily applicable to a range of domains and use cases. Moreover, it helps high-
light the similarities between neural network optimization and code optimization using LangProp
and facilitates a smooth integration of other training paradigms for neural network training.

Importantly, LangProp’s internal implementation does not depend on PyTorch or PyTorch Lightning.
LangProp supports PyTorch datasets and data loaders, as well as any iterable dataset object for
training and validation. Listing 1 shows an example of a standard LangProp training script.

1 train_loader = DataLoader(train_data, batch_size, shuffle=True, collate_fn=lambda x: x)
2 val_loader = DataLoader(val_data, batch_size, shuffle=True, collate_fn=lambda x: x)
3 model = LPModule.from_template(name=model_name, root=model_root)
4 trainer = LPTrainer(model, RunConfig(run_name=run_name))
5 trainer.fit(train_loader, val_loader, epochs=epochs) # train model

Listing 1: Training a LangProp model with a LangProp trainer.

After every training step on a mini-batch, the trainer saves a checkpoint, which consists of the setup
prompt, update prompt template, the currently kept policy scripts (maximum of NK +NU ×NR),

5

Under review as a conference paper at ICLR 2024

and the statistics monitored by the policy tracker (priorities P and priority weights W). Since these
can be stored as text or JSON files, the size of a checkpoint is in the order of a few hundred kilobytes.
Checkpoints can be used to resume training, fine-tune the model, or for inference.

1 model = LPModule.from_checkpoint(checkpoint) # load checkpoint
2 model.setup(config=RunConfig())
3 prediction = model(*input_args, **input_kwargs) # make prediction

Listing 2: Inference with a pre-trained LangProp model checkpoint.

Listing 2 shows how a LangProp checkpoint can be loaded and used for inference. The policy with
the highest priority is used for inference. Since policies are parameterized as executable code, the
use of an LLM is only required during training, not during inference. Since querying LLMs is both
expensive and slow, this is a key advantage of the LangProp approach, which makes integration of
LLMs more feasible for real-time applications, such as robotics and autonomous driving.

4 LANGPROP APPLIED TO DRIVING IN CARLA

In this section, we describe how the LangProp framework can be used in the context of autonomous
driving. We chose the CARLA environment (Dosovitskiy et al., 2017) as a benchmark since (a)
autonomous driving requires interpretable driving policies, (b) CARLA has a rich collection of
human-implemented expert agents to compare against, and (c) a metric-driven learnable approach
would be beneficial since driving decisions such as when to lane-change or to give way are chal-
lenging planning problems, and even human-implemented experts have sub-optimal performance.

4.1 EXPERT

We implemented our expert agent for data collection and to provide pseudo-ground-truth actions
to train the LangProp agent with imitation learning. While TransFuser (Chitta et al., 2022) and
TF++ (Jaeger et al., 2023) use a computationally expensive 3D bounding box collision detection
algorithm, and InterFuser (Shao et al., 2023) uses line collision which is faster but less accurate, we
use an efficient polygon collision detection algorithm between ground-projected bounding boxes.
By extrapolating the motion of the ego vehicle and the actors into the future and checking for any
polygon intersections, the safety margins to the pedestrians and vehicles are calculated. Together
with the distance to the nearest traffic light and/or stop sign, the target speed is determined to give a
2 s margin. Steering is evaluated by calculating the angle to the next waypoint, which is 4 m ahead
of the ego vehicle. A PID controller is used for low-level control to convert the target speed and
angle to throttle, brake, and steering. For more implementation details, see Appendix B.2.

4.2 LANGPROP AGENT

Similarly to our expert and all the baseline experts, we provide privileged information from the
CARLA simulator to the agent. While we manually convert the bounding box coordinates of actors
in the scene into the ego-relative frame of reference, we let LangProp handle these computations,
providing everything in absolute world coordinates. We provide the location, orientation, speed,
length, and width of the ego vehicle as well as for other vehicles and pedestrians that are within the
range of 50m. Importantly, we do not filter out actors even if they are irrelevant to the driving agent.
We also provide the target waypoint (4 m ahead, used by other baseline experts) and the distances
to a red traffic light and stop sign along the current lane if they exist. Given this information, the
LangProp policy is expected to return a desired speed level ("MOVE": 6 m/s, "SLOW": 1 m/s,
"STOP": 0 m/s)1 and a turning angle for the ego vehicle. These are passed to an external PID
controller to convert them into throttle, brake, and steering. A more detailed explanation of the
function definition is given in Listing A.5, which is an extract of the setup prompt used in the
LangProp model. Given the function definition as a docstring, an LLM generates policy script

1While it is straightforward for the policy to directly predict the speed or acceleration as numeric values, this
makes the task of designing a suitable loss function for imitation learning more challenging and open-ended.
Therefore, we opted for a categorical output which simplifies the scoring function.

6

Under review as a conference paper at ICLR 2024

Figure 2: An overview of the LangProp agent training pipeline. The LangProp model is updated on
a dataset that includes both offline expert data as well as online LangProp data annotated with expert
actions, similar to DAgger. The agent is given negative rewards upon infraction.

candidates that satisfy the specification and updates them following the procedures in Section 3. We
use GPT 3.5 Turbo 16k model, provided by OpenAI’s Chat Completion API (OpenAI, 2022).

4.3 IMITATION LEARNING, DAGGER, AND REINFORCEMENT LEARNING

We explore three major training paradigms often used to train embodied agents - imitation learning
(IL), DAgger (Ross et al., 2011), and reinforcement learning (RL). In imitation learning, the accu-
racy of the policy outputs is measured against ground truth expert actions for a pre-collected dataset.
Imitation learning is known to have issues with out-of-distribution inputs at inference time, since
the expert’s policy is used to collect the training data, while the learned policy is used for rollouts
at inference time. DAgger addresses this issue by labeling newly collected online data with expert
actions, and adding them to the expert-collected offline data to form an aggregate replay buffer. Both
CARLA and the LangProp agent run at a frame rate of 20 Hz. LangProp adds training samples to
the replay buffer every 10 frames, and a batch update is performed after every 100 new samples.

While DAgger solves the issue of distribution mismatch, the performance of the learned policy is
still upper-bounded by the accuracy of the expert. It also does not take into account that certain
inaccuracies are more critical than others. In the context of autonomous driving, actions that result
in infractions such as collisions should be heavily penalized. Reinforcement Learning offers a way
of training a policy from reward signals from the environment, which is convenient since we can
directly assign penalties upon any infractions according to the CARLA leaderboard (CARLA, 2020).
While RL typically optimizes for maximum returns (discounted sum of future rewards), we simplify
the setting by assigning an infraction penalty if there is an infraction in the next 2 s window. The
agent monitors infractions every 10 frames, and triggers an update upon infractions.

Since infraction penalties are very sparse, and will become rarer as the policies improve, we adopt
two strategies; (a) we combine RL training with imitation learning training that provides denser
signals, and (b) we sample training data with infractions with 100 times higher sampling probability.
The expert is only imitated upon no infractions, or if the expert was not the behavior policy which
incurred the infraction, and an infraction cost is only given when the current policy takes the same
action as the behavioral policy which caused the infraction when the expert chose a different action.
For more details on the training objective, see Appendix C.2.

5 EXPERIMENTS

We compared our LangProp agent against RL experts with privileged information (Roach (Zhang
et al., 2021), TCP (Wu et al., 2022)) as well as human-implemented experts (TransFuser (Chitta
et al., 2022), InterFuser (Shao et al., 2023), TF++ (Jaeger et al., 2023), ours). We used the offi-
cial training and testing routes provided by the CARLA leaderboard (CARLA, 2020), as well as

7

Under review as a conference paper at ICLR 2024

Table 1: Driving performance of expert drivers in CARLA version 0.9.10. The driving score is
a product of the route completion percentage R̄ and the infraction factor Ī . IL and RL stand for
imitation learning and reinforcement learning. DAgger uses both online and offline data.

Method
Training routes Testing routes Longest6

Score ↑ R̄ ↑ Ī ↑ Score ↑ R̄ ↑ Ī ↑ Score ↑ R̄ ↑ Ī ↑
Roach expert 57.8 95.9 0.61 63.4 98.8 0.64 54.9 81.7 0.67
TCP expert 64.3 92.3 0.71 72.9 93.2 0.77 46.9 63.1 0.76
TransFuser expert 69.8 94.5 0.74 73.1 91.3 0.80 70.8 81.2 0.88
InterFuser expert 69.6 83.1 0.86 78.6 81.7 0.97 48.0 56.0 0.89
TF++ expert 90.8 95.9 0.94 86.1 91.5 0.94 76.4 84.4 0.90
Our expert 88.9 92.8 0.95 95.2 98.3 0.97 72.7 78.6 0.92
LangProp: Offline IL 0.07 0.37 0.97 0.00 0.00 1.00 0.00 0.00 1.00
LangProp: DAgger IL 36.2 94.5 0.40 41.3 95.3 0.44 22.6 87.4 0.30
LangProp: DAgger IL/RL 64.2 90.0 0.72 61.2 95.2 0.64 43.7 71.1 0.65
LangProp: Online IL/RL 70.3 90.5 0.78 80.9 92.0 0.89 55.0 75.7 0.73

the Longest6 benchmark (Chitta et al., 2022) that has longer routes with denser traffic. See Ap-
pendix D.1 for more details on the benchmark and the routes and towns used. For the LangProp
agent, only the training routes are used for imitation/reinforcement learning at training time, and the
saved checkpoints are used for inference during evaluation runs. The results are shown in Table 1.

5.1 EXPERT AND LANGPROP AGENTS

Our expert and the TF++ expert significantly outperformed all other expert agents in all routes, and
our expert outperformed TF++ by a margin on the test routes. The core collision avoidance logic
is just 100 lines of code, with additional preprocessing and tooling for data collection. From the
breakdown of the scores, our expert seems to prioritize safer driving with fewer infractions (higher
infraction factor Ī) by trading off route completion compared to TF++ in the Longest6 benchmark.

For the LangProp agent, we observe that training using offline samples, DAgger, and online samples
improves performance in this order. Adding the infraction penalties as an additional reinforcement
learning objective further improved the performance. The best-performing agent, LangProp trained
on online data with IL and RL, achieved better performance than the Roach expert (trained with
PPO) as well as the TransFuser and InterFuser experts (both written by researchers) on all bench-
marks apart from TransFuser on the Longest6 benchmark.

The result has two important implications. Firstly, the code selection metric (the training objective)
plays a large role in the ultimate performance of the code. This is an important finding since prior
work on code generation mostly focused on error correction given exceptions. Our results demon-
strate that for complex tasks, it is important to treat code generation as an iterative optimization
process rather than a zero-shot task. Secondly, training using LangProp exhibits similar characteris-
tics as training in deep learning; in deep learning, it is a well-studied problem that policies trained
with imitation learning on offline datasets do not generalize to out-of-distribution online data. DAg-
ger and reinforcement learning are two of the common ways of addressing this problem. Our results
show that these training paradigms can also be effective when used in LangProp.

5.2 DEMONSTRATION OF CAUSAL CONFUSION WHEN TRAINED OFFLINE

A common failure mode of offline trained models was that the agent remained stationary indefinitely
until the timeout was reached. Upon inspection of the policy code that was generated, we were able
to identify the failure to be a phenomenon known as causal confusion in imitation learning (De Haan
et al., 2019). A snippet of code responsible for such failure in one of the runs is shown in Listing 3.

This exemplifies the interpretability of LangProp models, allowing us to directly assess the source
of failure. The code predicts 0 speed when the agent’s current speed is already close to 0. Note that
this is not a failure of the LangProp algorithm, but due to such a policy maximizing the imitation

8

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700
steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sc
or

e

Offline IL
DAgger IL
DAgger IL/RL
Online IL/RL

(a) training scores on the replay buffer

0 100 200 300 400 500 600 700
steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sc
or

e

Offline IL
DAgger IL
DAgger IL/RL
Online IL/RL

(b) validation scores on the offline dataset

Figure 3: Training curves for the different training methods of the LangProp agent. The training
scores are evaluated on 1000 samples from the offline training dataset and/or online replay buffer,
and the validation scores are evaluated on 1000 samples from the offline validation dataset. Updates
are performed every 1000 frames of agent driving, as well as upon infractions in the RL setting. The
score is in the range of [−10, 1] due to exception penalties. We limit the axis to [−1, 1] in the plots.

learning objective on an offline dataset, bypassing the need to learn a more complex policy. This
phenomenon is commonly researched in the context of deep imitation learning, and can be avoided
by employing training on online data, e.g. using DAgger or RL. We believe our work to be the first
to report a similar phenomenon using LLMs for policy optimization.

1 # General rule: if the ego vehicle is stopped or moving very slowly, set the speed
level to "STOP"↪→

2 if np.abs(scene_info["ego_forward_speed"]) < DELTA_V_THRESHOLD:
3 speed_level = "STOP"

Listing 3: Identifying causal confusion in the policy when trained purely offline

5.3 ANALYSIS OF TRAINING METHODS

The use of online training samples alleviated the issue of causal confusion, leading to selecting
policies where the agent has a sensible driving performance. This is because if the agent remains
stationary, those samples will accumulate in the replay buffer, resulting in a lower priority for the
causally confused policy. Comparing the results in Table 1 and the validation scores in Figure 3b,
it seems that the scores on the offline dataset are not indicative of the agent’s driving performance.
From the training scores on the replay buffer and/or offline dataset in Figure 3a, we see that the
agents trained with RL on infractions have spikes corresponding to infractions. This is due to over-
sampling infractions when they occur, allowing the policy update to immediately address the issue.
DAgger has a milder response compared to training just on online data because the offline dataset
does not include on-policy infractions. The higher rate of infractions in the training distribution may
be why the online trained agent has a lower training score but has a higher driving performance.

6 CONCLUSION

We presented LangProp, a framework that uses LLMs for data-driven code optimization, and demon-
strated its capability of generating driving policies in CARLA. We showed that classical training
paradigms such as imitation learning, DAgger, and reinforcement learning directly translate to train-
ing with LangProp, and the choices of the objective function and the training data distribution can be
used to guide which policies are selected. Since numerous candidate solutions satisfy the code spec-
ification, automatically optimizing the code to maximize a given performance metric has been a key
missing feature in few-shot code generation. The LangProp framework provides this feature by re-
formulating the machine learning training paradigm in the context of using LLMs as code optimizers
and treating policy code as parameters of the model. We believe that the LangProp paradigm opens
up many possibilities for data-driven machine learning with more interpretability and transparency.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We will open-source the code both for the general LangProp framework, as well as the code for
training and evaluating the LangProp agent in CARLA. More details of the implementation and
design decisions can be found in the appendices.

For the ICLR 2024 conference submission, supplementary materials can be found at https://
github.com/langprop-iclr24/LangProp/, which includes the code, pre-trained check-
points using LangProp, videos of sample runs by the LangProp agent. We also include self-contained
minimal examples of applying LangProp to tasks such as Sudoku and CartPole.

REFERENCES

Bassem Abu-Nasser. Medical expert systems survey. International Journal of Engineering and
Information Systems (IJEAIS), 1(7):218–224, 2017.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B Cardoso,
Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M Paixao, Filipe Mutz, et al. Self-driving
cars: A survey. Expert Systems with Applications, 165:113816, 2021.

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

CARLA. Carla autonomous driving leaderboard. https://leaderboard.carla.org/,
2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022.

10

https://github.com/langprop-iclr24/LangProp/
https://github.com/langprop-iclr24/LangProp/
https://leaderboard.carla.org/

Under review as a conference paper at ICLR 2024

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Surís Dídac, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128, 2023.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg
(eds.), Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings
of Machine Learning Research, pp. 1–16. PMLR, 13–15 Nov 2017.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model, 2023.

William A Falcon. Pytorch lightning. https://github.com/Lightning-AI/
lightning, 2019.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, and Yu Qiao. Drive
like a human: Rethinking autonomous driving with large language models. arXiv preprint
arXiv:2307.07162, 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Frederick Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921–932, 1985.

Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zachary Murez, Corina Gurau, Hudson Yeo, Alex
Kendall, Roberto Cipolla, and Jamie Shotton. Model-based imitation learning for urban driving.
Advances in Neural Information Processing Systems, 35:20703–20716, 2022.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In Conference on Robot Learning, pp. 1769–1782. PMLR, 2023.

Peter Jackson. Introduction to expert systems. 1986.

Bernhard Jaeger, Kashyap Chitta, and Andreas Geiger. Hidden biases of end-to-end driving models.
arXiv preprint arXiv:2306.07957, 2023.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. In Fortieth International Conference on Machine Learning, 2023.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 8248–8254. IEEE, 2019.

11

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

Under review as a conference paper at ICLR 2024

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel, J Zico
Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous driving: Sys-
tems and algorithms. In 2011 IEEE intelligent vehicles symposium (IV), pp. 163–168. IEEE,
2011.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bronstein, Becca Roelofs, Benjamin Sapp,
Brandyn White, Aleksandra Faust, Shimon Whiteson, et al. Imitation is not enough: Robus-
tifying imitation with reinforcement learning for challenging driving scenarios. arXiv preprint
arXiv:2212.11419, 2022.

Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul Newman. 1 year, 1000 km: The oxford
robotcar dataset. The International Journal of Robotics Research, 36(1):3–15, 2017.

Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto Cipolla, and
Adrian Weller. Concrete problems for autonomous vehicle safety: advantages of bayesian deep
learning. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp.
4745–4753, 2017.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-Tau Yih, Sida Wang, and Xi Vic-
toria Lin. LEVER: Learning to verify language-to-code generation with execution. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 26106–26128. PMLR, 23–29 Jul 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2022.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Toran Bruce Richards. Auto-gpt. https://github.com/Significant-Gravitas/
Auto-GPT, 2023.

12

https://openai.com/blog/chatgpt
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

Under review as a conference paper at ICLR 2024

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Baptiste Roziere, Jie Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation. In International
Conference on Learning Representations, 2022.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 29:70–76, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced autonomous
driving using interpretable sensor fusion transformer. In Conference on Robot Learning, pp. 726–
737. PMLR, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen,
Kourosh Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful
prompts: Instruction guided task programming with verifier-assisted iterative prompting. arXiv
preprint arXiv:2303.14100, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, MN Clark, John
Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Autonomous driving in urban environ-
ments: Boss and the urban challenge. Journal of field Robotics, 25(8):425–466, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Junqing Wei, Jarrod M Snider, Junsung Kim, John M Dolan, Raj Rajkumar, and Bakhtiar Litk-
ouhi. Towards a viable autonomous driving research platform. In 2013 IEEE Intelligent Vehicles
Symposium (IV), pp. 763–770. IEEE, 2013.

Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet strong baseline. Advances in
Neural Information Processing Systems, 35:6119–6132, 2022.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959–
971, 2022.

13

Under review as a conference paper at ICLR 2024

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Practical program repair in the era of large
pre-trained language models. arXiv preprint arXiv:2210.14179, 2022.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, MAPS 2022, pp. 1–10, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392730. doi: 10.1145/3520312.3534862.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE access, 8:58443–58469, 2020.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. End-to-end urban
driving by imitating a reinforcement learning coach. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 15222–15232, 2021.

Appendices
A LANGPROP MODEL AND PROMPT DEFINITIONS

LangProp as a framework can be used to optimize a diverse range of code optimization problems.
The functionality of the model is determined by the choices in the setup prompt, the update prompt,
and the dataset that the LangProp model is trained on.

A.1 POLICY SETUP PROMPT EXAMPLE

We provide a simplified example of learning a function to compute the factorial for a given number
to show the generality of the framework. The setup prompt should include the specification of the
function’s inputs and outputs and their types in the form of a docstring.

1 I am developing code to evaluate the factorial of an integer input.
2 Here is the definition of the function.
3
4 ```
5 Given a non-negative integer, return the factorial of that integer.
6
7 Args:
8 - number: int # Has to be non-negative
9

10 Returns:
11 - factorial: int # Factorial of input number
12 ```
13
14 This is a template of the code.
15
16 ```python
17 def {{ function_name }}(number: int) -> int:
18 # Write code here
19 return output
20 ```
21
22 Please do the following:
23 Step 1. Describe step by step what the code should do in order to achieve its task.
24 Step 2. Provide a python code solution that implements your strategy, including all

necessary import statements.↪→

14

Under review as a conference paper at ICLR 2024

Listing A.1: Setup prompt template for a simple factorial calculator

A.2 POLICY UPDATE PROMPT EXAMPLE

The prompt used to update the policy contains the same information as the setup prompt, but in
addition, has example inputs and outputs where the code had failed to produce a valid prediction.
If there was an exception or printed messages during the execution of the code, this will also be
provided as feedback. The LLM is asked to identify the source of the sub-optimal performance and
rewrite the code to achieve a higher score.

1 I am developing code to evaluate the factorial of an integer input.
2 Here is the definition of the function.
3
4 ```
5 Given a non-negative integer, return the factorial of that integer.
6
7 Args:
8 - number: int # Has to be non-negative
9

10 Returns:
11 - factorial: int # Factorial of input number
12 ```
13
14 Here is an example code that I have written. However, it is not working as expected.
15
16 ```python
17 {{ code }}
18 ```
19
20 I executed the code, and got an accuracy of {{ int(avg_score * 100) }}%.
21
22 $begin
23 if printed:
24 print("There was a print message saying: {{ printed }}")
25 if exception:
26 print("""The code failed to run because there was an exception. The exception

message was as follows: {{ exception }}""")↪→
27 print("Resolving this exception is the top priority.")
28 else:
29 print("""
30 The code produced incorrect results for the following inputs. The prediction, ground

truth label and score were as follows.↪→
31
32 Inputs: {{ args[0] }}
33 Incorrect prediction: factorial = {{ outputs }}""")
34 if {{ label }}:
35 print("Ground truth label: factorial = {{ label }}")
36 print("Score: {{ int(score * 100) }}%")
37 $end
38
39 $begin
40 if feedback:
41 print("""{{ feedback }}""")
42 $end
43
44 Please do the following:
45
46 $begin
47 if exception:
48 print("Step 1. Look at the error message carefully and identify the reason why the

code failed, and how it can be corrected.")↪→
49 else:
50 print("Step 1. Given the example input and output, identify the reason why the code

made a wrong prediction, and how it can be corrected to achieve a good driving
score.")

↪→
↪→

51 $end
52
53 Step 2. Describe step by step what the code should do in order to achieve its task.
54 Step 3. Please rewrite the python function `{{ function_name }}` to achieve a higher

score, including all necessary import statements.↪→

Listing A.2: Update prompt template for a simple factorial calculator

15

Under review as a conference paper at ICLR 2024

A.3 MODEL FORWARD PASS DEFINITION

The LangProp module captures printed outputs and exceptions and stores them in the policy tracker
along with the corresponding inputs during a forward pass. The Python code snippet extracted from
the LLM’s response and saved as a text string is executed using the exec function in Python. The
local scope variables can be accessed via locals.

1 class LPModule:
2 ...
3
4 def __call__(self, *args, **kwargs) -> Any:
5 if not self.training:
6 return self.forward(self.script_records[0].script, *args, **kwargs)
7
8 inputs = (args, kwargs)
9 script = self.run_config.active_tracker.record.script

10 with CapturePrint() as p:
11 try:
12 output = self.forward(script, *args, **kwargs)
13 self.run_config.active_tracker.forward(inputs, output, "\n".join(p))
14 except KeyboardInterrupt as e:
15 raise e
16 except Exception as e:
17 trace = "\n".join(traceback.format_exc().split('\n')[-3:])
18 detail = f"""{type(e).__name__}: {trace}"""
19 self.run_config.active_tracker.store_exception(inputs, e, detail,

"\n".join(p))↪→
20 raise e
21 return output
22
23 def forward(self, script, *args, **kwargs):
24 exec(script, locals(), locals())
25 output = locals()[self.name](*deepcopy(args), **deepcopy(kwargs))
26 return output

Listing A.3: Forward passing mechanism of the LangProp module (extract)

A.4 TRAINER FORWARD-BACKWARD DEFINITION

The trainer has a similar abstraction to deep learning training. At every step, it triggers a forward
method that calls the policy and stores the inputs, the policy’s prediction, and the expected output,
and a backward method that updates the policy tracker with the scores, exceptions, or any feedback.

1 class LPTrainer:
2 ...
3
4 def step(self, tracker: RecordTracker, func_args, func_kwargs, label, feedback=""):
5 with self.run_config.activate(tracker):
6 score, exception_detail = self.forward(func_args, func_kwargs, label)
7 tracker.backward(score, label, feedback + exception_detail)
8
9 def forward(self, func_args, func_kwargs, label):

10 try:
11 with set_timeout(self.run_config.forward_timeout):
12 output = self.module(*func_args, **func_kwargs)
13 self.test_output(output, func_args, func_kwargs, label)
14 score = self.score(output, label)
15 exception_detail = ""
16 except KeyboardInterrupt as e:
17 raise e
18 except Exception as e:
19 score = self.run_config.exception_score
20 trace = "\n".join(traceback.format_exc().split('\n')[-3:])
21 exception_detail = f"""\nThere was an exception of the

following:\n{type(e).__name__}: {trace}"""↪→
22 return score, exception_detail

Listing A.4: Forward-backward pass in the LangProp Trainer (extract)

16

Under review as a conference paper at ICLR 2024

A.5 POLICY DEFINITION FOR THE LANGPROP DRIVING AGENT IN CARLA

The driving policy is given the location, orientation, speed, length, and width of the ego vehicle,
other vehicles and pedestrians in the scene, the distances to the next red traffic light and stop sign, and
the target waypoint (4 m ahead, used by other baseline experts), all in absolute world coordinates.

1 ```
2 Args:
3 - scene_info: dict
4 Contains the following information:
5 {
6 "ego_location_world_coord": np.ndarray, # numpy array of shape (2,)

which contains (x, y) of the center location of the ego vehicle in
world coordinates given in [m]

↪→
↪→

7 "ego_target_location_world_coord": np.ndarray, # numpy array of shape (2,)
which contains (x, y) of the target location of the ego vehicle in
world coordinates given in [m]

↪→
↪→

8 "ego_orientation_unit_vector": np.ndarray, # numpy array of shape (2,)
which contains (x, y) of unit vector orientation of the ego vehicle in
world coordinates. The vehicle moves in the direction of the
orientation.

↪→
↪→
↪→

9 "ego_forward_speed": float, # the speed of the ego
vehicle given in [m/s].↪→

10 "ego_length": float, # length of the ego vehicle
in the orientation direction, given in [m/s].↪→

11 "ego_width": float, # width of the ego vehicle
perpendicular to the orientation direction, given in [m].↪→

12 "distance_to_red_light": Union[float, None], # distance to red light
given in [m]. None if no traffic lights are affecting the ego vehicle↪→

13 "distance_to_stop_sign": Union[float, None], # distance to stop sign
given in [m]. None if no stop signs are affecting the ego vehicle↪→

14 "vehicles": { # dictionary of nearby vehicles
15 <vehicle_id: int>: {
16 "location_world_coord": np.ndarray, # numpy array of shape (2,)

which contains (x, y) of the center location of vehicle
<vehicle_id> in world coordinates given in [m]

↪→
↪→

17 "orientation_unit_vector": np.ndarray, # numpy array of shape (2,)
which contains (x, y) of unit vector orientation of vehicle
<vehicle_id> in world coordinates. The vehicle moves in the
direction of the orientation.

↪→
↪→
↪→

18 "forward_speed": float, # speed of vehicle
<vehicle_id> given in [m/s].↪→

19 "forward_length": float, # length of the vehicle
<vehicle_id> along the orientation direction, given in [m].↪→

20 "sideways_width": float, # width of the vehicle
<vehicle_id> perpendicular to the orientation direction, given
in [m].

↪→
↪→

21 },
22 },
23 "pedestrians": { # dictionary of nearby pedestrians
24 <pedestrian_id: int>: {
25 "location_world_coord": np.ndarray, # numpy array of shape (2,)

which contains (x, y) of the center location of pedestrian
<pedestrian_id> in world coordinates given in [m]

↪→
↪→

26 "orientation_unit_vector": np.ndarray, # numpy array of shape (2,)
which contains (x, y) of unit vector orientation of pedestrian
<pedestrian_id> in world coordinates. The vehicle moves in the
direction of the orientation.

↪→
↪→
↪→

27 "forward_speed": float, # speed of pedestrian
<pedestrian_id> relative to the orientation given in [m/s].↪→

28 "forward_length": float, # length of the pedestrian
<pedestrian_id> along the orientation direction, given in [m].↪→

29 "sideways_width": float, # width of the pedestrian
<pedestrian_id> perpendicular to the orientation direction,
given in [m].

↪→
↪→

30 },
31 }
32 }
33
34 Returns:
35 - speed_level: str # Choose from ("MOVE", "SLOW", "STOP").
36 - turn_angle: float # Predicted turn angle of the ego vehicle to reach the

target waypoint in [degrees]. The range should be between -180 to 180 degrees↪→
37 ```

Listing A.5: Docstring given as part of the setup prompt for the LangProp agent

17

Under review as a conference paper at ICLR 2024

A.6 NOTES ON SPECIFYING THE POLICY

One of the challenges in the early stages of the project was in specifying the inputs and outputs of the
function. Most of the failures in learning a policy were due to misspecification of the inputs, rather
than a fundamental problem with the LLM or with LangProp. For instance, we found that it is crucial
to specify the units of the input values, e.g. m/s, which allowed the LLM to choose sensible values
for some internal parameters. It was also important to name input variables explicitly such that it
is clear whether the coordinates are given as absolute world coordinates or coordinates relative to
the ego vehicle. A useful property of LangProp is that because the LLM has some understanding of
the world from natural language, it can easily incorporate this knowledge when generating the code,
constraining the search space of feasible code. We can further guide the LLM to generate policies
with certain characteristics, e.g. having a larger safety margin, by expressing our preferences in the
prompts. This adds to the benefits of the LangProp approach, where it is easier to encourage policies
to exhibit certain behaviors.

A.7 DETAILS OF THE PROMPT TEMPLATE ENGINE

In the template engine, every line that begins with “#" is treated as comments. Every line that begins
with “$ " or line blocks in between “$begin" and “$end" are treated as executable Python code,
as well as everything surrounded by {{ }} in a single line. If a “print" function is used within
the prompt template, it will execute the Python code inside the print function and render the resulting
string as a part of the prompt. Variables can be passed to the prompt template engine, and are made
accessible in the local scope of the prompt template.

As an example, consider the following prompt template.

1 {{" and ".join(p for p in people)}} {{"are" if len(people) > 1 else "is"}} work here.
2 $begin
3 for i, p in enumerate(people):
4 print(f"{p} is employee number {i + 1}.")
5 $end

Listing A.6: Example template

If the prompt template engine is called with the arguments read_template("example",
people=["Tom", "Jerry"]), this resolves to: “Tom and Jerry work here.\nTom is employee
number 1.\nJerry is employee number 2.".

A.8 HOW TO CHOOSE THE PRIORITY DISCOUNT FACTOR

How the priorities of the policies are calculated has a large effect on the final performance of the
trained LangProp model. For a stationary training distribution (e.g. supervised learning on a fixed
offline dataset), whether one uses the immediate average score, a running average, or an exponential
average does not make a difference except that just using the immediate average score results in a
more stochastic result due to fewer numbers of samples. If the computational resources and time are
not constrained, one could increase the batch size and just use the immediate average score. If these
are constrained, one may adopt a running average with smaller batch sizes. This works when the
training distribution is stationary and there are no other changing components other than the policy
currently training.

If the training distribution changes or the policy consists of multiple chained modules, each with
a learnable sub-policy, we can no longer use a simple running average but have to use either the
scores evaluated on a single large batch or the exponential averaging scheme. The current imple-
mentation of LangProp does not support multiple chained modules, but is a foreseeable and natural
extension to the framework. Changes in the training distribution are expected in DAgger or re-
inforcement learning. For training our LangProp agent in Section 4.3, we used a discount factor
γ = 0, effectively only using the immediate average scores evaluated on a freshly sampled batch.
This is because forward passes through the LangProp driving policies are fast due to not having any
complex components so we could afford to have a large batch size. However, in applications where

18

Under review as a conference paper at ICLR 2024

forward passes are expensive and the batch size must be small, using exponential averaging with a
non-zero discount factor γ is recommended.

A.9 USE OF THE TERM “BACK-PROPAGATION"

The current LangProp implementation is limited to an update of a single module, i.e. it does not yet
accommodate for chaining of modules. We have explored this path by making the LLM generate
docstrings of helper functions so that submodules can be instantiated, and track priorities also for
submodules. However, version tracking of submodules and the mechanism of providing feedback
for submodule updates were substantial challenges. LangProp v1 does not implement the full back-
propagation algorithm, but we refer to a single-layer feedback operation as back-prop to highlight
the similarities and encourage future research in this area.

A.10 SELF-CONTAINED MINIMAL EXAMPLES OF APPLYING LANGPROP

We include self-contained examples of applying LangProp to (a) Sudoku and (b) CartPole.

For Sudoku, we solve a generalized sudoku puzzle that consists of W × H subblocks, each with
H ×W elements, where H and W represent height and width, respectively. Due to the complexity
of the task specification, we found that the LLM queried zero-shot occasionally failed on the first
attempt, confusing the task with a standard 3 × 3 sudoku, but using LangProp allowed us to filter
out incorrect results and arrive at a fully working solution.

For CartPole, we provided the observation and action specifications in the Gymnasium documenta-
tion for CartPole-v1. Queried zero-shot, the LLM generated a solution which is simplistic and does
not balance the CartPole, achieving a score of 9.9 out of 500. With a simple Monte-Carlo method of
optimizing the policy for the total rewards, we obtained improved policies using LangProp, achiev-
ing the maximum score of 500.0 (evaluated over 100 runs).

Implementations, prompts, checkpoints, and comparisons of zero-shot and trained policies are avail-
able in the open-sourced repository.

B DATA COLLECTION

B.1 DATA AGENT

To standardize the data collection and evaluation pipeline for both our expert agent and our Lang-
Prop agent, we implement a generic DataAgent that collects basic information of the CARLA
environment which can be used. These are the 3D bounding box coordinates of the actors in the
scene (pedestrians, vehicles, traffic lights, and stop signs), the velocity of the pedestrians and ve-
hicles, distances to the next traffic light and stop sign in the current lane, and the next waypoint
to navigate towards. In addition, it also collects the RGB, depth, lidar, segmentation, top-down
view, and the expert’s control actions which can be used to train image-based driving policies. We
created this standardized data collection agent which is decoupled from our expert agent and the
LangProp agent, and has the option of turning off sensors that are not used for data collection to
save computation time and data storage.

The data collection agent itself does not have a driving policy. It expects a separate AgentBrain
that takes a dictionary of scene information curated by the data agent as input and outputs a vehicle
control action (throttle, brake, and steering). All driving agents inherit from the DataAgent class,
each with an AgentBrain that implements its driving policy. It is also possible to chain multiple
agent brains as an array, where the previous agent brain’s control decision is provided as an addi-
tional input to the next agent brain. This is useful for our DAgger and online agents, which require
expert supervision during online rollouts.

B.2 EXPERT AGENT

Our expert agent only uses the data collected by the data agent to ensure that the LangProp agent
has access to the same privileged information as the expert agent. For every interval of 0.25 s up
to 2 s into the future, we evaluate whether the ego vehicle polygon will intersect any of the actor

19

Under review as a conference paper at ICLR 2024

polygons, assuming that the ego vehicle will maintain velocity, and the other actors will move in the
current orientation with a speed less than or equal to the current speed. The ego vehicle polygon is
padded forward by 2m, and by 2m either left or right upon lane changes. Apart from lane changing,
only actors that are ahead of the ego vehicle are considered, i.e. with a field of view of 180°. The
traffic light and stop sign that affect the vehicle are identified by querying the associated waypoints
in the CARLA simulator. For pedestrians, vehicles, traffic light, and stop sign, the distances to the
obstacles are calculated. The normal driving speed is 6 m/s ("MOVE"). If any of the distances are
reachable within 2 s with a 2m margin ("SLOW"), the target speed is set to the speed which allows
a 2 s margin, and if the distance is below 2m ("STOP"), the target speed is set to 0m/s. Steering is
evaluated by calculating the angle to the next waypoint, which is 4 m ahead of the current position
of the ego vehicle. A PID controller is used for low-level control to convert the target speed and
angle to throttle, brake, and steering.

C TRAINING THE LANGPROP AGENT

C.1 TRAINING STRATEGY

For all the LangProp agents, the training data is collected only on the training routes in CARLA
leaderboard (CARLA, 2020), and data collected on the test routes by the expert agent with expert
action labels is used as the validation dataset. See Appendix D.1 for more details on the routes.
For the LangProp agent trained offline, we only use data collected by the expert agent as training
data. For the online training, we only use data collected by the current LangProp model’s inference
policy, i.e. the policy code with the highest priority at the time of rollout. For DAgger training, we
have a split of 1000 training samples collected offline and 1000 samples collected online in every
replay batch to evaluate the objective score. Strictly speaking, DAgger (Ross et al., 2011) should
incrementally add new online samples to a buffer initialized with offline samples. However, we
found that this prevents the LangProp model from learning from infractions during the early stages
of the training, since online samples with infractions are the minority of all the samples. For this
reason, we maintained an even split between offline and online samples throughout the training, with
a sampling weight of 100 for samples with infractions. Sampling is without replacements, so that a
particular training sample is only sampled once per replay batch.

C.2 TRAINING OBJECTIVE

The training objective for the LangProp driving agent is given as Equation (2),

S(aπ, aπe , aπb , I, E) = 1
[
(aπspeed = aπe

speed) ∧ [¬I ∨ {(aπspeed ̸= aπb

speed) ∧ (aπe

speed ̸= aπb

speed)}]
]

+ rinfrac1(I ∧ (aπspeed = aπb

speed) ∧ (aπe

speed ̸= aπb

speed))

+ rangle1(|aπangle − aπe

angle| > θmax) + rerror1(E)

(2)

where aπ , aπe and aπb are actions taken by the current policy, expert policy, and behavior policy
used to collect the training sample, respectively, I and E are boolean variables for infraction and
exception occurrences, rinfrac = rerror = rangle = −10 are penalties for infraction, exception, and
exceeding angle error of θmax = 10°, and 1 equates to 1 if the boolean argument is true, and 0
otherwise. The expert is only imitated when there are no infractions, or if the expert was not the
behavior policy that incurred the infraction, and an infraction cost is only given when the current
policy takes the same action as the behavioral policy that caused the infraction when the expert chose
a different action.

C.3 HYPERPARAMETERS

Notable training hyperparameters are the number of policies chosen for updates NU = 2, the num-
ber of responses per query NR = 2, the number of policies to keep NK = 20, the frequency of
batch updates (every 100 new samples in the replay buffer), batch sizes for online replay data (1000)
and offline expert data (1000), the sampling weight for infractions (100), and the infraction, excep-
tion, and angle penalties (rinfrac = rerror = rangle = −10). For better performance, it is possible to

20

Under review as a conference paper at ICLR 2024

Table 2: A breakdown of the number of routes per town, the average length of the routes per town,
and traffic density for the training routes, testing routes, and the Longest6 benchmark.

Routes Training routes Testing routes Longest6
count avg. dist. density count avg. dist. density count avg. dist. density

Town 1 10 776.3 120 - - 120 6 898.8 500
Town 2 - - 100 6 911.7 100 6 911.7 500
Town 3 20 1392.5 120 - - 120 6 1797.5 500
Town 4 10 2262.6 200 10 2177.8 200 6 2102.4 500
Town 5 - - 120 10 1230.1 120 6 1444.7 500
Town 6 10 1915.4 150 - - 150 6 2116.7 500

increase NU , NR, and NK , but with a trade-off of computational time and the cost of using OpenAI
API. With our experiment setting, around 700 training steps are taken, 1400 queries are made, and
2800 responses are received from GPT 3.5 per training job, which costs roughly $150.

D EVALUATION

D.1 CARLA BENCHMARK, ROUTES AND TOWNS

The driving scores are computed by the CARLA leaderboard evaluator (CARLA, 2020), using the
official training and test routes, and the Longest6 benchmark provided by Chitta et al. (2022). There
are towns 1−6 across the benchmarks. Towns 7−10 are also used in the official online leaderboard.
A breakdown of routes for each benchmark is shown in Table 2. Towns 2 and 5 are withheld in the
training routes and only appear in the testing routes and the Longest6 benchmark. The Longest6
benchmark has longer routes with denser traffic.

The main metric of the leaderboard is the driving score, which is evaluated as 1
N

∑N
i (RiIi), where

i denotes the index of the N routes used for evaluation, Ri is the percentage of route completion
of the i-th route, and Ii is the infraction factor of the i-th route. The infraction factor is a product
of infraction coefficients for pedestrian collision (0.5), vehicle collision (0.60), collision with static
objects (0.65), running a red light (0.70), and running a stop sign (0.80). The driving score per
route is equal to the route completion Ri when there are no infractions, and is discounted for every
infraction by a corresponding infraction factor. Note that in the Longest6 benchmark, the authors
decided to remove the stop sign penalty by setting its infraction coefficient to 1.0, which we adhere
to in our experiments.

D.2 SOFTWARE DETAILS

We use CARLA version 0.9.10 for the experiments to maintain consistency with other baseline
experts that assume this version. Our expert has been tested both on CARLA version 0.9.10 and
version 0.9.11. For LangProp training, we used GPT 3.5 Turbo 16k chat completion API by OpenAI.
We used the 16k-token model since the update prompt often exceeds the 8k-token context size of a
smaller model.

E DRIVING CODE GENERATED BY LANGPROP

We show an example driving policy generated using LangProp, trained with both imitation learning
and reinforcement learning, as described in Section 4.3. Please refer to our open-sourced code
repository for the full prompts and code used to train the policy, and pre-trained checkpoints for
each training setting used in our evaluation.

1 import numpy as np
2 from typing import List, Tuple, Union, Dict
3
4 def predict_speed_and_steering(scene_info: Dict, stopping_time_margin=2.0,

21

Under review as a conference paper at ICLR 2024

5 reaction_time=1.0, stopping_speed=0.1, slow_speed=2.5,
safety_margin=2.0) -> Tuple[str, float]:↪→

6 """
7 Given the state of the scene, find the required speed level and turn angle of the ego

vehicle.↪→
8
9 Args:

10 scene_info (dict): Contains information about the scene.
11 stopping_time_margin (float): Time margin to determine when to stop in seconds

[default: 2.0]↪→
12 reaction_time (float): Time taken to react to external events in seconds [default:

1.0]↪→
13 stopping_speed (float): Minimum speed below which the vehicle should stop in m/s

[default: 0.1]↪→
14 slow_speed (float): Speed at which the vehicle should slow down in m/s [default:

2.5]↪→
15 safety_margin (float): Safety margin in meters between the vehicle and other

objects [default: 2.0]↪→
16
17 Returns:
18 (str, float): A tuple containing the required speed level and turn angle of the ego

vehicle.↪→
19 The speed level can be "MOVE", "SLOW", or "STOP". The turn angle

should be a float between -180 to 180 degrees.↪→
20 """
21 # Step 1: Given the input dictionary, extract all the relevant parameters.
22 ego_location = np.array(scene_info['ego_location_world_coord'])
23 ego_target_location = np.array(scene_info['ego_target_location_world_coord'])
24 ego_orientation = np.array(scene_info['ego_orientation_unit_vector'])
25 ego_forward_speed = scene_info['ego_forward_speed']
26 ego_length = scene_info['ego_length'] + safety_margin
27 ego_width = scene_info['ego_width'] + safety_margin
28 vehicles = scene_info['vehicles']
29 pedestrians = scene_info['pedestrians']
30 distance_to_stop_sign = scene_info['distance_to_stop_sign']
31 distance_to_red_light = scene_info['distance_to_red_light']
32
33 # Step 2: Convert all coordinates for vehicles and pedestrians to relative coordinates

in terms of the ego vehicle orientation.↪→
34 vehicles_rel = {}
35 for k, v in vehicles.items():
36 location = np.array(v['location_world_coord']) - ego_location
37 orientation = np.array(v['orientation_unit_vector'])
38 speed = v['forward_speed']
39 length = v['forward_length'] + v['sideways_width'] + safety_margin
40 width = v['sideways_width'] + safety_margin
41 location_rel = np.dot(location, ego_orientation),

np.abs(np.dot([-ego_orientation[1], ego_orientation[0]], location))↪→
42 if location_rel[0] > 0:
43 vehicles_rel[k] = {'location_rel': location_rel, 'speed': speed, 'length':

length, 'width': width}↪→
44
45 pedestrians_rel = {}
46 for k, v in pedestrians.items():
47 location = np.array(v['location_world_coord']) - ego_location
48 orientation = np.array(v['orientation_unit_vector'])
49 speed = v['forward_speed']
50 length = v['forward_length'] + safety_margin
51 width = v['sideways_width'] + safety_margin
52 location_rel = np.dot(location, ego_orientation),

np.abs(np.dot([-ego_orientation[1], ego_orientation[0]], location))↪→
53 if location_rel[0] > 0:
54 pedestrians_rel[k] = {'location_rel': location_rel, 'speed': speed, 'length':

length, 'width': width}↪→
55
56 # Step 3: Compute the Euclidean distance from the ego location to the target location.
57 distance_to_target = np.linalg.norm(ego_target_location - ego_location)
58
59 # Step 4: Calculate the threshold stopping distance and threshold slow distance based

on the current speed.↪→
60 if ego_forward_speed < stopping_speed:
61 stopping_distance = safety_margin
62 slow_distance = ego_length / 2
63 else:
64 stopping_distance = ((ego_forward_speed - stopping_speed) ** 2) / (2 * 0.7) +

safety_margin + ego_length / 2↪→
65 slow_distance = ((ego_forward_speed - slow_speed) ** 2) / (2 * 0.7) + safety_margin

+ ego_length / 2↪→
66

22

Under review as a conference paper at ICLR 2024

67 # Step 5: Check if there is a stop sign and the distance is smaller than the stopping
distance. If yes, initiate a stop action if the speed is greater than the stopping
speed.

↪→
↪→

68 if distance_to_stop_sign is not None and distance_to_stop_sign < stopping_distance:
69 if ego_forward_speed <= stopping_speed:
70 speed_level = "MOVE"
71 else:
72 stopping_speed_current = max(distance_to_stop_sign / 2, stopping_speed)
73 if ego_forward_speed > stopping_speed_current:
74 ego_forward_speed = stopping_speed_current
75 speed_level = "STOP"
76 else:
77 speed_level = "MOVE"
78
79 # Step 6: Check if there is a red light and the distance is smaller than the stopping

distance. If yes, initiate a stop action.↪→
80 elif distance_to_red_light is not None and distance_to_red_light < stopping_distance:
81 speed_level = "STOP"
82
83 # Step 7: Check for vehicles and pedestrians that may cause collision course, and

decide whether to STOP, SLOW or MOVE the ego vehicle.↪→
84 else:
85 collision_vehicle = False
86 collision_pedestrian = False
87 min_longitudinal_distance = stopping_distance
88 min_lateral_distance = float('inf')
89 for k, v in vehicles_rel.items():
90 location_rel = v['location_rel']
91 speed = v['speed']
92 length = v['length']
93 width = v['width']
94 longitudinal_distance = location_rel[0] - v['length'] / 2 - ego_length / 2
95
96 # check if there is a collision course with the ego vehicle
97 if np.abs(location_rel[1]) <= width / 2 + ego_width / 2 and

longitudinal_distance <= stopping_distance:↪→
98 collision_vehicle = True
99 if longitudinal_distance <= 0:

100 speed_level = "STOP"
101 break
102 # check if the vehicle is within safety margin
103 if longitudinal_distance < stopping_distance and np.abs(location_rel[1]) <=

width / 2 + ego_width / 2:↪→
104 if np.abs(speed - ego_forward_speed) < 0.5 and speed <= ego_forward_speed:
105 continue
106 min_longitudinal_distance = min(longitudinal_distance - v['length'] / 2 -

ego_length / 2, min_longitudinal_distance)↪→
107 min_lateral_distance = np.minimum(width / 2 + ego_width / 2 -

np.abs(location_rel[1]), min_lateral_distance)↪→
108
109 for k, v in pedestrians_rel.items():
110 location_rel = v['location_rel']
111 speed = v['speed']
112 length = v['length']
113 width = v['width']
114 longitudinal_distance = location_rel[0] - length / 2 - ego_length / 2
115
116 # check if there is a collision course with the ego vehicle
117 if np.abs(location_rel[1]) <= width / 2 + ego_width / 2 and

longitudinal_distance <= stopping_distance:↪→
118 collision_pedestrian = True
119 if longitudinal_distance <= 0:
120 speed_level = "STOP"
121 break
122 # check if the pedestrian is within safety margin
123 if longitudinal_distance < stopping_distance and np.abs(location_rel[1]) <=

width / 2 + ego_width / 2:↪→
124 if np.abs(speed - ego_forward_speed) < 0.5 and speed <= ego_forward_speed:
125 continue
126 min_longitudinal_distance = min(longitudinal_distance - length / 2 -

ego_length / 2, min_longitudinal_distance)↪→
127 min_lateral_distance = np.minimum(width / 2 + ego_width / 2 -

np.abs(location_rel[1]), min_lateral_distance)↪→
128
129 # Step 8: Initiate a stop action if the ego vehicle is about to collide with a

nearby vehicle or pedestrian.↪→
130 if collision_vehicle or collision_pedestrian or min_longitudinal_distance <=

safety_margin/2 or min_lateral_distance <= safety_margin/2:↪→
131 speed_level = "STOP"
132 ego_forward_speed = 0

23

Under review as a conference paper at ICLR 2024

133 # Step 9: Initiate a slow action if the vehicles or pedestrian within the safe
stopping distance margin.↪→

134 elif min_longitudinal_distance <= slow_distance and min_longitudinal_distance >=
stopping_distance and min_lateral_distance <= ego_width:↪→

135 speed_level = "SLOW"
136 if np.abs(min_lateral_distance) > 0 and np.abs(min_lateral_distance -

ego_width) > 0:↪→
137 speed_factor = (min_longitudinal_distance - stopping_distance) /

(slow_distance - stopping_distance/2)↪→
138 speed_factor = min(max(0.0, speed_factor), 1.0)
139 ego_forward_speed = slow_speed * speed_factor + ego_forward_speed * (1 -

speed_factor)↪→
140 # Step 10: Initiate a move action if no obstacles are present
141 else:
142 speed_level = "MOVE"
143 ego_forward_speed = min(ego_forward_speed + 0.2, 6.0)
144
145 # Step 11: Compute the angle between the ego vehicle orientation and the vector

pointing to the target in world coordinates.↪→
146 target_direction = ego_target_location - ego_location
147 target_direction_ego = np.dot(target_direction, ego_orientation),

np.dot([-ego_orientation[1], ego_orientation[0]], target_direction)↪→
148
149 # Step 12: Rotate the vector to the coordinate system of the ego vehicle and return the

angle.↪→
150 target_angle = np.arctan2(target_direction_ego[1], target_direction_ego[0]) * 180.0 /

np.pi if np.linalg.norm(target_direction_ego) > 0 else 0.0↪→
151 target_angle = ((target_angle + 180) % 360) - 180
152
153 return speed_level, target_angle

Listing A.7: Example driving policy generated by LangProp, trained with both imitation learning
and reinforcement learning.

F FUTURE WORK

LangProp is a framework that harnesses the capability of LLMs to apply data-driven optimization
techniques to code optimization. We do not claim that a solution using LangProp is appropriate for
all problems - in fact, neural networks excel in working with continuous state-action spaces and low-
level control, whereas LLMs have advantages in handling high-level planning and reasoning tasks,
rather than low-level control tasks. Our intention is to propose an alternative learning paradigm that
allows LLMs to be used to learn high-level planning which has hitherto been a difficult problem for
other machine learning approaches (e.g. neural networks).

There are numerous future research directions that could improve the capability of LangProp as a
training framework, as well as give a better theoretical foundation, such as (a) chaining of modules
with a full back-propagation algorithm, (b) improvements to the evolutionary algorithm (e.g. priority
mechanism), (c) a robust sampling mechanism for failed examples upon updates, (d) incorporating
human feedback in natural language during policy updates, and (e) using LangProp with LLMs
fine-tuned for code correction and optimization tasks. In particular, scaling our approach to larger
repositories and complex systems would require a multi-modular approach that can propagate useful
learning signals to subcomponents if there are multiple failure points in the system.

Applying LangProp to reinforcement learning tasks has open questions in credit assignment and
value estimation. We have demonstrated that reinforcement learning policies written as code can
be improved using LangProp if either (a) the policy can be optimized on episodic returns with a
Monte-Carlo method (e.g. CartPole), or (b) there is immediate feedback from the environment
(e.g. infractions in CARLA). However, for complex tasks that have delayed rewards, it is necessary
to have an accurate value/advantage estimator for credit assignment. Since replacing a neural value
estimator with a code-based function is not feasible, it is most likely that a hybrid method (having an
interpretable code-based actor policy trained with LangProp that uses a value function estimated by
a neural network as a critic) would be a way to apply LangProp to complex reinforcement learning
scenarios. However, this is also an open-ended question, which calls for further exploration.

Having an LLM in the RL optimization means that we could potentially harvest more useful signals
from the environment, rather than relying just on sparse scalar rewards for updates. For instance,

24

Under review as a conference paper at ICLR 2024

having descriptive feedback from the Gymnasium environment on the failure modes of the agent,
given either as a warning or natural language feedback, can significantly accelerate the learning of
the RL agent. This also allows a more seamless integration of human-in-the-loop feedback.

Finally, more investigation is required in terms of the robustness and safety of LLM-written applica-
tions. This is applicable to all systems that involve code generation. While our framework iteratively
improves the quality of the code and filters out potential errors that make the final code policy less
likely to contain errors, additional safety mechanisms and firewalls are necessary during the train-
ing process, since the code is evaluated based on execution, which could potentially be a source of
attacks or risk. We stress the importance of additional safety precautions before deployment.

We believe that LangProp opens up new possibilities for data-driven code development. While
zero-shot applications of LLMs have enabled tools such as GitHub Copilot, some suggestions are
inaccurate or misaligned with the user’s intentions, whereas if we have data or unit tests that the
code needs to satisfy, the code suggestions can be made much more accurate by first running evalu-
ations on these test suites and choosing the best possible suggestion that satisfies the requirements.
Planning is one aspect of autonomous driving that has not yet successfully adopted a data-driven ap-
proach, for good reasons, since neural networks often struggle to produce generalizable high-level
planning rules and are less interpretable. Therefore, most methods currently in deployment have
human-engineered planning algorithms. Our LangProp framework is far from sufficient to replace
such systems since it lacks the robustness that human-designed systems have to offer, and more re-
search needs to be done in this direction. We hope that our work will provide inspiration for future
research to make the framework more robust and safely deployable in the real world.

25

	Introduction
	Related work
	LLMs for code generation
	Large Language Models for automating compositional tasks
	Autonomous Driving and the CARLA benchmark

	The LangProp Framework
	Model definition
	Policy setup
	Training objective
	Forward-pass and feedback
	Priority
	Policy reranking and update

	Prompt template engine
	Training paradigm

	LangProp applied to driving in CARLA
	Expert
	LangProp agent
	Imitation Learning, DAgger, and Reinforcement Learning

	Experiments
	Expert and LangProp agents
	Demonstration of causal confusion when trained offline
	Analysis of training methods

	Conclusion
	LangProp model and prompt definitions
	Policy setup prompt example
	Policy update prompt example
	Model forward pass definition
	Trainer forward-backward definition
	Policy definition for the LangProp driving agent in CARLA
	Notes on specifying the policy
	Details of the prompt template engine
	How to choose the priority discount factor
	Use of the term ``back-propagation"
	Self-contained minimal examples of applying LangProp

	Data collection
	Data agent
	Expert agent

	Training the LangProp agent
	Training strategy
	Training objective
	Hyperparameters

	Evaluation
	CARLA benchmark, routes and towns
	Software details

	Driving code generated by LangProp
	Future work

