
Published in Transactions on Machine Learning Research (06/2025)

Evolution guided generative flow networks

Zarif Ikram
National University of Singapore

Ling Pan
The Hong Kong University of Science and Technology

Dianbo Liu
National University of Singapore

Reviewed on OpenReview: https: // openreview. net/ forum? id= UgZIR6TF5N

Abstract

Generative Flow Networks (GFlowNets) are a family of probabilistic generative models
recently invented that learn to sample compositional objects proportional to their rewards.
One big challenge of GFlowNets is training them effectively when dealing with long time
horizons and sparse rewards. To address this, we propose Evolution guided generative flow
networks (EGFN), a simple and powerful augmentation to the GFlowNets training using
Evolutionary algorithms (EA). Our method can work on top of any GFlowNets training
objective, by training a set of agent parameters using EA, storing the resulting trajectories in
the prioritized replay buffer, and training the GFlowNets agent using the stored trajectories.
We present a thorough investigation over a wide range of toy and real-world benchmark tasks
showing the effectiveness of our method in handling long trajectories and sparse rewards.
We release the code at http://github.com/zarifikram/egfn.

1 Introduction

“Do I contradict myself?
Very well then I contradict myself,
(I am large, I contain multitudes.)”

— Walt Whitman, Song of Myself (1855)

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) are a family of probabilistic amortized
samplers that learn to sample from a space proportionally to some reward function R(x), effectively sampling
compositional objects over some probability distribution. As a generative process, it composes objects by
some sequence of actions, terminating by reaching a termination state.

GFlowNets have shown great potential for diverse challenging applications, such as molecule discovery (Jain
et al., 2023a), biological sequence design (Jain et al., 2022), combinatorial optimization (Zhang et al., 2023),
latent variable sampling (Liu et al., 2023) and road generation (Ikram et al., 2023). The key advantage of
GFlowNets over other methods such as reinforcement learning (RL) is that GFlowNets’s key objective is
not reward maximization, allowing them to sample diverse samples proportionally to the reward function.
Although entropy-regularized RL also encourages randomness when taking actions, it is not general in when
the underlying graph is not a tree (i.e., a state can have multiple parent states) (Zhao et al., 2019).

Despite the recent advancements, the real-world adaptation of GFlowNets is still limited by a major problem:
temporal credit assignment for long trajectories and sparse rewards. For example, real-world problems such
as protein design often are often long-horizon problems, necessitating long trajectories for sampling. Since
reward is given only when the agent reaches the terminal states, associating actions with rewards over a

1

https://openreview.net/forum?id=UgZIR6TF5N
http://github.com/zarifikram/egfn

Published in Transactions on Machine Learning Research (06/2025)

Figure 1: The proposed EGFN architecture. Step one provides high-quality trajectories to the replay buffer by
evolving the agents using the trajectory rewards as fitness. Step two gathers training trajectories from both online
and offline trajectories. Step three trains the star agent using the training trajectories.

lengthy trajectory becomes challenging. Additionally, reward space is sparse in real-world tasks, making
temporal credit assignment more difficult. Trajectory balance (TB) objective (Malkin et al., 2022) attempts
to tackle the problem by matching the flow across the entire trajectory, but in practice, it induces larger
variance and is highly sensitive to sparse rewards (Madan et al., 2023), making the training unstable.

Evolutionary algorithms (EA) (Bäck & Schwefel, 1993), a class of optimization algorithms inspired by
natural selection and evolution, can be a promising candidate for tackling the said challenges. Indeed, the
shortcomings of GFlowNets are the advantages of EA, which makes it promising to consider incorporating EA
into the learning paradigm of GFlowNets to leverage the best from both worlds. First, the selection operation
in EA is achieved by fitness evaluation throughout the entire trajectory, which makes them robust to long
trajectories and sparse rewards as they naturally bias towards regions with high expected returns. Secondly,
mutation makes EA naturally exploratory, which is crucial for GFlowNets training and mode-finding as they
rely on diverse samples for better training (Pan et al., 2022). Third, EA’s natural selection biases towards
parameters that generate high reward samples, which, coupled with a replay buffer, can provide sample
redundancy, resulting in a better gradient signal for stable GFlowNets training.

In this work, we introduce Evolution guided generative flow networks (EGFN), a novel training method
for GFlowNets combining gradient-based and gradient-free approaches and benefit from the best of both
worlds. Our proposed approach is a three-step training process, as summarized in Figure 1. First, using a
fitness metric across sampled trajectories taken over a population of GFlowNets agents, we perform selection,
crossover, and mutation on neural network parameters of GFlowNets agents to generate a new population.
To reuse the population’s experience, we store the evaluated trajectories in the prioritized replay buffer
(PRB). For the second step, we sample the stored trajectories from a PRB and combine them with online
samples from a different GFlowNets agent. Finally, using the gathered samples, we train a GFlowNets
agent using gradient descent over some objectives such as Flow matching (FM), Detailed balance (DB), and
Trajectory balance (TB), where they optimize at the transition-level (FM, DB), and trajectory level (TB).
The reward-maximizing capability of EA enhances gradient signal through high reward training samples,
ensuring stable GFlowNets training even in conditions with sparse rewards and long trajectories. Through
extensive evaluation in experimental and a wide range of real-world settings, our method proves effective
in addressing weaknesses related to temporal credit assignment in sparse rewards and long trajectories,
surpassing GFlowNets baselines in terms of both the number of re-discovered modes and top-K rewards. The
key contributions of the work are the following.

• We effectively use EA to train GFlowNets in long trajectories and sparse rewards;

• We understand several design decisions through thorough ablation experiments to help practitioners;

• We perform extensive experiments to validate our method’s capability.

2

Published in Transactions on Machine Learning Research (06/2025)

2 Preliminaries

2.1 Generative Flow Networks (GFlowNets)

Generative Flow Networks (GFlowNets) are a family of generative models that samples compositional objects
through a sequence of actions. We define the flow network as a single source initial state s0 with in-flow Z,
and one sink for each terminal state x ∈ X with out-flow R(x) > 0. We denote the Markovian composition
trajectory (s0 → s1 −→ · · · → x) as τ ∈ T , where T is the set of all trajectories. Thus, the problem
is formulated as a directed acyclic graph (DAG), (S, E), where each node in S denotes a state with an
initial state s0, and each edge in E denotes a transition st → st+1 with a special terminal action indicating
s = x ∈ X . We specifically consider DAGs that are not tree-structured, thus there exist different paths
leading to the same state in the DAG, except for the root, which has no parent. Given a terminal state space
X , GFlowNets aim to learn a stochastic policy π that can sample terminal states x ∈ X proportionally to
a non-negative reward function R(x), i.e., π(x) ∝ R(x). GFlowNets construct objects x ∈ X by sampling
constructive, irreversible actions a ∈ A that transition st to st+1. An important advantage of GFlowNets
is that GFlowNets’s probability of generating an object is proportional to a given positive reward for that
object and we can train it in both online and offline settings, allowing us to train from replay buffers.

The key objective of GFlowNets training is to train PF such that π(x) ∝ R(x), where,

π(x) =
∑
τ∈T
x∈τ

|τ |−1∏
t=0

PF (st+1|st; θ) (1)

where, PF is a parametric model representing the forward transition probability of st to st+1 with parameter
θ. There are several widely used loss functions to optimize GFlowNets including FM, DB and TB.

Flow matching. Following Bengio et al. (2021), we define the state flow and edge flow functions F (s) =∑
s∈τ F (τ) and F (s→ s′) =

∑
τ=(...s→s′...) F (τ), respectively, where F (τ) the trajectory flow is a nonnegative

function F : T → R+ so that probability measure of a trajectory τ ∈ T is P (τ) = F (τ)/
∑

τ∈T F (τ). Then,
the FM criterion matches the in-flow and the out-flow for all states s ∈ S, formally –∑

s′∈Parent(s)

F (s′ → s) =
∑

s′′∈Child(s)

F (s→ s′′). (2)

To achieve the criterion, using an estimated edge flow Fθ : E → R+, we turn equation 2 to a loss function –

LFM(s; θ) =
[

log
∑

s′∈Parent(s) Fθ(s′ → s)∑
s′′∈Child(s) Fθ(s→ s′′)

]2

(3)

Detailed balance. Following Bengio et al. (2023), we parameterize F (s), F (s→ s′), and F (s′ → s) with
Fθ(s), PF (s′|s, θ), and PB(s|s′, θ), respectively, where PF (s′|s, θ) ∝ F (s→ s′) and PB(s|s′, θ) ∝ F (s′ → s).
Then, the DB loss for all (s→ s′) in a sampled trajectory τ ∈ T is –

LDB(s, s′; θ) =
[
log Fθ(s)PF (s′|s, θ)

Fθ(s′)PB(s|s′, θ)

]2
. (4)

Trajectory balance. Malkin et al. (2022) extends the detail balance objective to the trajectory level, via
a telescoping operation of Eq. (4). Specifically, Zθ is a learnable parameter that represents the total flow:∑

x∈X R(x) =
∑

s:s0→s∈τ∀τ∈T PF (s|s0; θ), and the TB loss is defined as:

LTB(τ ; θ) =
[

log Zθ

∏|τ |−1
t=0 PF (st+1|st, θ)

R(x)
∏|τ |−1

t=0 PB(st|st+1, θ)

]2

. (5)

This can incur larger variance as demonstrated in Madan et al. (2023).

We train the GFlowNets parameter θ by minimizing the loss L by performing stochastic gradient descent.

3

Published in Transactions on Machine Learning Research (06/2025)

2.2 Evolutionary algorithms (EA)

Evolutionary algorithms (EA) (Bäck, 2006; Spears et al., 1993) are a class of optimization algorithms that
generally rely on three key techniques: mutation, crossover, and selection as in biological evolution. The
crossover operation is responsible for generating new samples based on exchange of information among a
population of samples. The mutation operation alters the generated samples, usually with some probability
pmutation. Finally, the selection operation evaluates the fitness score of the population and is responsible
for generating the next population. In this work, we apply EA in the context of the weights of the neural
networks, often referred to as neuroevolution (Stanley & Miikkulainen, 2002b; Risi & Togelius, 2014; Floreano
et al., 2008; Lüders et al., 2017).

3 Evolution guided generative flow networks (EGFN)

Algorithm 1 Evolution Guided GFlowNet Training
Input:
P ∗

F : Forward flow of the star agent with weights θ∗

popF : Population of k agents with randomly initiated weights
D : Prioritized replay buffer
E : Number of episodes in an evaluation
ϵ: percent of greedily selected elites
δ: online-to-offline sample ratio
γ: mutation strength
for each episodes do

for each PF ∈ popF do
fitness, D = EVALUATE(PF , E, noise = None, D); // store experience in replay buffer

Sort popF based on fitness in a descending order
Select the first ϵk PF from popF as elite
Select (1 - ϵ) PF from popF stochastically based on fitness as S
while |S| < k do

crossover between PF ∈ elite and PF ∈ S and append to S

for each PF ∈ S do
Apply mutation ∼ N (0, γ) to θPF

with probability pmutation

Sample a minibatch of δT online trajectories Tonline from P ∗
F and store them to D

Sample a minibatch of (1− δ)T offline trajectories Toffline from D
Compute loss L using trajectory balance loss from Tonline ∪ Toffline

Update parameters θ∗ using stochastic descent on loss L

EGFN is a strategy to augment existing training methods of GFlowNets. The evolutionary part in EGFN
(Step one) samples discrete objects, e.g., a molecular structure, using a population of GFlowNets agents,
evaluates the fitness of the agents based on the samples, and generates better samples by manipulating
the weights of the agent population. We store the samples obtained from the population in a PRB that
the GFlowNets sampler uses to, alongside on-policy samples, train its weights (step two & three). To
differentiate the GFlowNets agent trained by gradient descent in step two and three from the agent
population trained using EA in step one, we refer to the agent trained by gradient descent as the star agent
and GFlowNets agents trained using EA as EA GFlowNets agents. Algorithm 1 details the training loop,
which can be summarized in the following three steps:

Step One Generate a population of EA GFlowNets agents. Evaluate the fitness of the agents’ weights
by evaluating the samples gathered from the agents’. Apply the necessary selection, mutation,
and crossover to the weights to generate the next population. Store the generated trajectories
{(τ1, . . . , τE)1, (τ1, . . . , τE)2, . . . , (τ1, . . . , τE)k} to the PRB.

Step Two Gather online trajectories from star agent P ∗
F and offline samples from PRB.

4

Published in Transactions on Machine Learning Research (06/2025)

Step Three Train P ∗
F using {τ1, τ2, . . . , τT } using gradient descent on any GFlowNets loss function such

as equations 3, 4, or 5.

3.1 Step one: Evolve

Population

Crossover among
selected agents

Sample agents
proportionally to their

fitness

Gather unselected
agents

Gather Elite agents

Pairwise crossover

Population after
crossover

Figure 2: The crossover operation in EGFN. Here, we fill
a proportion of population through the crossover between
agents selected proportionally to their fitness. We fill the
rest with the crossover between the unselected agents and
the elite agents.

This step involves optimizing EA GFlowNets agent
weights to produce trajectories that accelerate P ∗

F

training using the PRB. To this end, before the
train begins, we initialize pop, a population of k
EA GFlowNets agents with random weights. We
optimize the population weights in a standard EA
process that contains selection, crossover, and mu-
tation. Algorithm 2 in the appendix C details the
evaluation process.

Selection. The selection process begins with an
evaluation of the population by calculating each
agent’s fitness scores. We define the fitness score
of an agent by the mean reward of E trajectories
{τ1, τ2, . . . , τE} sampled from the agent. Next, based
on fitness scores, we transfer the top ϵ% elite agents’
weights to the next population, unmodified. No-
tably, we store the kE trajectories sampled from this
step to the PRB in this step. Optionally, we restore
the star agent parameters to the agent population
by replacing the parameters with the worst fitness
periodically.

Crossover. The crossover step ensures weight mix-
ing between agents’ weights, ensuring stochasticity
(Spears, 1995). Here, we perform the crossover in two steps. First, we perform a selection tournament process
among the agents to get pop - elite agents, sampling proportionally to their fitness value and performing
crossover among them. Next, we perform a crossover between the unselected agents and elite. We combine
the two sets of agents and pass them on to the mutation process. To perform the crossover, we simply swap
randomly chosen the weights uniformly (see details in Algorithm 3).

Mutation. The mutation process ensures natural exploratory policy in agents. We apply mutation by
adding a gaussian perturbation N (0, γ) to the agent weights. In this work, we only apply mutation to the
non-elite agents.

3.2 Step two: Sample

In this step, we gather trajectory samples {τ1, τ2, . . . , τT } to train the star agent. We use both online
trajectories sampled by the star agent and offline trajectories stored in the PRB. For online trajectories, we
construct a trajectory τ by applying P ∗

F to get s0 → s1 → · · · → x, x ∈ X , where X is the set of all terminal
states. It is noteworthy that there are many works (Rector-Brooks et al., 2023; Kim et al., 2023; Pan et al.,
2023a; 2022) that augment or perturb the online trajectories by applying stochastic exploration, temperature
scaling, etc. In this work, we choose a simple on-policy sampling from P ∗

F to get the online trajectories. For
offline samples, we simply use PRB to sample trajectories collected from step one proportionally to the
terminal reward. For this work, we take a simple approach for PRB, uniformly sampling 50% trajectories
from the 20 percentile and 50% trajectories from the rest.

3.3 Step three: Train

We train the star agent by calculating loss L using equation 3, 4, or 5 and minimizing the loss by applying
stochastic gradient descent to the parameter θ.

5

Published in Transactions on Machine Learning Research (06/2025)

Figure 3: Left: An example hypergrid environment for dimension D = 2, horizon H = 16. Here, the 22 = 4 yellow
tiles refer to the high reward modes. Right: Experimental results comparison for the hypergrid task between EGFN,
GFlowNets, RL, and MCMC baseline across increasing dimensions for 2500 training steps. Right top: the ℓ1 error
between the learned distribution density and the true target density. Right bottom: the number of discovered modes
across the training process. As the dimension of the grid increases, the trajectory length also increases. The proposed
EGFN method achieves better performance than all baselines, with broader performance gap between EGFN and
GFlowNets with increasing trajectory length.

4 Experiments

In this section, we validate EGFN for different synthetic and real-world tasks. Section 4.1 presents an
investigation of EGFN’s performance in long trajectory and sparse rewards, generalizability across multiple
GFlowNets objectives, and an ablation study on different components. Next, we present five real-world
molecule generation experiments. In section 4.2 and 4.4, we offer large-scale molecule experiments to confirm
EGFN’s ability to produce longer sequences. Additionally, we compare our method with experiments relevant
to previous literature in section 4.3, D.2, and D.3. For all the following experiments, we use k = 5, E = 4,
ϵ = 0.2, and γ = 1. All baselines are equipped with replay buffers that have parameters similar to the EGFN
in order to conduct fair comparisons. The exception to this is PPO, where we double the sample size to
guarantee fairness. All result figures report the mean and variance over three random seeds. Appendix E
reports additional experiment details.

4.1 Synthetic tasks

We first study the effectiveness of EGFN investigating the well-studied hypergrid task introduced by Bengio
et al. (2021). The hypergrid is a D-dimensional environment of H horizons, with a HD state-space, D + 1
action-space, and 2D modes. The ith action in the action space corresponds to moving 1 unit in the ith
dimension, with the Dth action being a termination action with which the agent completes the trajectory
and gets a reward specified by -

R(x) = R0 + R1

D∏
d=1

I
[∣∣∣∣ xd

H − 1 − 0.5
∣∣∣∣ ∈ (0.25, 0.5]

]
+ R2

D∏
d=1

I
[∣∣∣∣ xd

H − 1 − 0.5
∣∣∣∣ ∈ (0.3, 0.4]

]
(6)

where I is the indicator function and R0, R1, and R2 are reward control parameters.

In this empirical experiment, two questions interest us.

• Does EGFN augmentation provide improvement against the best GFlowNets baseline for longer
trajectories and sparse rewards?

• Is this method generally applicable to other baselines?

6

Published in Transactions on Machine Learning Research (06/2025)

Figure 4: Experimental results comparison for the hypergrid task between EGFN, GFlowNets (GFlowNets, GAFN),
RL (PPO, SAC, IQL), and MCMC (MARS) baseline across increasing dimensions for 2500 training steps. Top: the
ℓ1 error between the learned distribution density and the true target density. Bottom: the number of discovered
modes across the training process. Here, H = 20, D = 5. As the R0 value decreases, the reward sparsity increases.
The proposed EGFN method achieves better performance than all baselines, with broader performance gap between
EGFN and GFlowNets with increasing sparsity.

Setup. We run all hypergrid experiments for D ∈ {3, 4, 5}, H = 20, and R0 ∈ {10−3, 10−4, 10−5}. To
determine the best GFlowNets baseline, we run three objectives ∈ {FM, TB, DB} (please see Figure 10
in appendix D.1) and decide to use DB with a PRB of size 1000. For a fair comparison, we use DB for
implementing EGFN. We use R0 = 10−5 for the long trajectory experiment and D = 5 for the reward sparsity
experiment, keeping other variables fixed. Finally, we present an ablation study on different components used
in our experiments for H = 20, D = 5, and R0 = 10−5.

For a complete picture, we compare our method with RL baselines such as PPO (Schulman et al., 2017),
SAC (Haarnoja et al., 2018; Christodoulou, 2019), and IQL (Kostrikov et al., 2022) and MCMC baseline
such as MARS (Xie et al., 2020), and recent GFlowNet baseline such as GAFN. Besides, we also compare it
against a simpler variation to our method that involves GFlowNets with its offline trajectories sampled by
random policy ensembles. We provide an additional overview of the baselines in Appendix G.

Long time horizon result. In this experiment, as D increases, |τ | increases, showing the performance
over increasing |τ |. Figure 3 demonstrates that EGFN outperforms GFlowNets baseline both in terms of
mode finding efficiency and L1 error. Notably, as |τ | increases, the performance gap increases, confirming
its efficacy in challenging environments. Unexpectedly, MARS prove to be very slow for these challenging
environments. Besides, while RL baseline such PPO competes with GFlowNets and EGFN in the beginning,
it fails to discover all modes due to its mode maximization objective.

Reward sparsity result. Next, to understand the effect of sparse rewards, we compare our method against
GFlowNets for R0 ∈ {10−3, 10−4, 10−5}. With a decreasing R0, reward sparsity increases. Figure 4 shows
that EGFN outperforms GFlowNets. Similar to the previous experiment, we see an increasing performance
gap as the reward sparsity increases. Similar to previous experiment, both RL and MCMC baselines are no
match for such difficult environments.

Ablation study result. To understand the individual effect of each component of our method, we run
the hypergrid experiment by comparing our method against the same without PRB and mutation. Figure 5
details the results of the experiment, underscoring the importance of the mutation operator in EGFN. It
shows that PRB individually is not effective for improved results, but when it is coupled with mutation, our
method delivers better results. Appendix F presents a detailed ablation on different parts of EA used in
EGFN, showing larger population (appendix F.1), lower elite population (appendix F.2), larger replay buffer

7

Published in Transactions on Machine Learning Research (06/2025)

Figure 5: Experimental results for the hypergrid task on different components of EGFN. Top: the ℓ1 error between
the learned distribution density and the true target density. Bottom: the number of discovered modes across the
training process. Here, H = 20, D = 5, and we use DB objective.

(appendix F.3), greater mutation strength (appendix F.4), higher priority percentile (appendix F.5), and high
priority-non-priority split (appendix F.6) generally improves EGFN.

4.2 Antibody sequence optimization task

Figure 6: Experimental results comparison for an-
tibody sequence optimization task for 2500 training
steps. EGFN achieves the best performance in terms
of mode discovery.

Top-K Ed ↑ Top-K index ↓
GFlowNet 34.91 39.04

EGFN 40.47 35.95
GAFN 17.46 38.08
SAC 0.0 40.41

Table 1: Experiment results for antibody sequence optimization
between EGFN, GFlowNets, GAFN, and SAC baseline task after
training for 2500 steps. EGFN achieves the lowest instability
index while retaining the best diversity. The performances
measures are taken from 1000 samples after training and K =
100

Setup. In this task, our goal is to generate an antibody heavy chain sequence of length 50 that, augmented
with a pre-defined suffix sequence, optimizes the instability index (Guruprasad et al., 1990) of the antibody
sequence. We represent antibody sequences as x = (x1, . . . , xd), where xi ∈ 1, . . . , 21 refers to the 20 amino
acid (AA) type, with the gap token ’-’ to ensure variable length. We label the training sequences using
BioPython (Cock et al., 2009) and transform the instability index to a reward by performing the following
transformation: R(x) = 2 index−5

10 where index is the instability index of x. Finally, we define sequences with
an instability index less than 35 as modes1.

Results. For comparison, we include GFlowNets, GAFN, and SAC. We train all the baselines for 2500 steps
and sample 1000 sequences afterwards. To calculate the diversity of the samples, we use the edit distance

1Based on the literature, any index greater than 40 is unstable, but we define modes with index < 35 to make the reward
space more sparse.

8

Published in Transactions on Machine Learning Research (06/2025)

Figure 7: From left to right. Example binder produced in the Soluable Epoxy Hydrolase (sEH) binder generation
task. Here the structure corresponds to the molecule with SMILES representation O=P([O-])(O)c1ccc2ccccc2c1.
sEH binder generation experiment over 2.5 × 104 training steps. GFlowNets implementation uses FM objective. The
number of modes with a reward threshold of 7.5 and 8.0. The average reward across the top-100 and 1000 molecules.
The proposed augmentation with EGFN achieves better results both in terms of mode discovery and average reward.

(Ed). Figure 4.2 reports the results from both training and post-training. During training, EGFN discovers a
significant number of modes compared to the other baselines. We can see that this translates to post-training
sample quality, as EGFN samples have a lower mean instability index and higher diversity.

4.3 Soluable Epoxy Hydrolase (sEH) binder generation task

Setup. In this experiment, we are interested in generating molecules with desired chemical properties that
are not too similar to one another. Here, we represent molecules states as graph structures and actions
as a vocabulary of blocks specified by junction tree modeling (Bickerton et al., 2012; Shi et al., 2020). In
the pharmaceutical industry, drug-likeliness (Bickerton et al., 2012), synthesizability (Shi et al., 2020), and
toxicity are crucial properties. Hence, we are interested in finding diverse candidate molecules for a given
criteria to increase chances for post-selection. Here, the criteria is the molecule’s binding energy to the 4JNC
inhibitor of the soluble epoxide hydrolase (sEH) protein. To this end, we train a proxy reward function
for predicting the negative binding energy that serves as the reward function. We perform the experiment
following the experimental details and reward function specifications from Bengio et al. (2021). Since we are
interested in both the diversity and efficacy of drugs, we define a mode as a molecule with a reward greater
than 7.5 and a tanimoto similarity among previous modes less than 0.7. We use FM as the GFlowNets
baseline and implement EGFN for the same objective.

Results. Since the state space is large, we show the result of the number of modes > 7.5, the number of
modes > 8.0, the top-100, and the top 1000 over the first 2.5× 104 states visited. Figure 7 confirms that
EGFN outperforms GFlowNets baseline for mode discovery. Remarkably, EGFN discovers rare molecule
with a very high reward (R > 8) that GFlowNets fails to discover. Besides, EGFN has a better top-100 and
top-1000 reward performance than GFlowNets baseline, soliciting its mode diversity.

4.4 hu4D5 CDR H3 mutation generation task

Setup. To further show the robustness, here we consider the task of generating CDR mutants on a hu4D5
antibody mutant dataset (Mason et al., 2021). After de-duplication and removal of multi-label samples, this
dataset contains 9k binding and 25k non-binding hu4D5 CDR mutants up to 10 mutations. To classify the
generated samples, we train a binary classifier that achieves 85% accuracy on an IID validation set. For
this task, we define samples, which are classified as binders with a high probability (> 96%) as modes. The
reward transformation in this task is R(x) = 2pbind − 1.

Results. We compare EGFN against GFlowNets, GAFN, and SAC and train the baselines for 2500 steps.
As shown in Figure 8, the modes discovered by EGFN during training exceed the other baselines.

9

Published in Transactions on Machine Learning Research (06/2025)

4.5 Result summary

Figure 8: Experimental comparison of discovered modes
across the training process for the hu4D5 CDR H3 mutation
generation task between EGFN, GFlowNets, SAC, and
GAFN baseline for 2500 training steps. Right top: the ℓ1
error between the learned distribution density and the true
target density. EGFN augmentation achieves better mode
discovery compared to other baselines.

In both the synthetic and real-world experiments,
EGFN performs well for mode discovery using fewer
training steps than GFlowNets baseline. The per-
formance gap increases with increasing trajectory
length and reward sparsity. We also discover that
the mutation operator is the most important factor
for performance improvement.

5 Discussion and Limitations

Why does EGFN work? To explore this, we com-
pare the trajectories stored in the training step
for GFlowNets and EGFN across training steps
∈ {500, 1000, 1500, 2000, 2500} in the hypergrid task
in Figure 9 for different levels of sparsity (R0 ∈
{10−2, 10−5}. We see that when there is low reward
sparsity (left), the training trajectory length distri-
bution of both methods is similar. However, when
the reward sparsity increases (right), GFlowNets
training trajectories center around a lower trajectory
length than that of EGFN. However, for a reward-
symmetrical environment like hypergrid, the sam-
pled trajectory length must be uniformly distributed
to truly capture the data distribution. EGFN can
achieve this through population variation, diversify-
ing the sampled trajectories in the PRB.

Figure 9: Experimental results for the trajectory lengths
of the trajectories stored in the training samples across
different training steps for R0 = 10−2 (left) and 10−4 (right).
Top: GFlowNets Bottom: EGFN

A potential limitation of this work is that it is
based on GFlowNets, which is an amortized sam-
pler with the provable objective of fitting the reward
distribution instead of RL’s reward maximization.
Thus, depending on the perspective, this method
may seem slower than RL. Besides, because of the
evolution step, the method takes longer than the
vanilla GFlowNets. For example, we report the run-
time analysis on the QM9 task (appendix D.3) in
table 2, which is performed with an Intel Xeon Pro-
cessor (Skylake, IBRS) with 512 GB of RAM and
a single A100 NVIDIA GPU. We can see that the
runtime has increased by 35%. However, we do note
that there is no additional cost for increasing the
population size, except for increased memory require-
ment, since we perform the population sampling by
utilizing threading.

Another avenue where our work falls short is that it does not propose a better credit assignment solution but
rather utilizes the quality-diversity samples from EA to address the challenge of training EGFN in long time
horizons and sparse rewards. Figure 22 motivates this approach, showing that the population achieves high
mean reward quicker than the star agent.

Finally, while we keep the total training samples in each step the same across the baselines for our experiments,
we do not strictly enforce the number of reward calls to be same. However, they are also roughly the same,
e.g., EGFN uses 36 calls while other baselines use 32, except for PPO which doubles the reward calls since

10

Published in Transactions on Machine Learning Research (06/2025)

Table 2: Runtime analysis comparing EGFN and GFlowNets on the QM9 task.

Wall-clock time per step K number of eval samples number of online samples
EGFN 3.033 ± 0.004 10 1 24
GFN 2.243 ± 0.016 0 0 32

we double the amount of on-policy samples due to not having off-policy samples. This said, we still see
significant improvement of EGFN compared of GFlowNets when we plot the results with number of trajectory
evaluations on the X axis (Figure 21 in Appendix H).

6 Related work

6.1 Evolution in learning

There has been many attempts to augment learning, especially RL, with EA. Early works such Whiteson
(2006) combine NEAT (Stanley & Miikkulainen, 2002a) and Q Learning (Watkins & Dayan, 1992) by using
evolutionary strategies to better tune the function approximators. In a similar manner, Colas et al. (2018)
uses EA for exploration in policy gradient, generating diverse samples using mutation. Fernando et al. (2017)
use EA for allowing parameter reuse without catastrophic forgetting. Recently, many methods use EA to
enhance deep RL architectures such as Proximal Policy Optimization (PPO) (Hämäläinen et al., 2020),
Soft-Actor Critic (SAC) (Hou et al., 2020), and Policy Gradient (Khadka & Tumer, 2018). The key idea
from these approaches is to use EA to overcome the temporal credit assignment and improve exploration by
getting diverse samples (Lee et al., 2020), with some exceptions such as Gangwani & Peng (2018); Fujimoto
et al. (2018); Pourchot & Sigaud (2019) where they utilize EA to tune the parameter of the actor itself.

6.2 GFlowNets

GFlowNets have recently been applied to various problems (Liu et al., 2023; Bengio et al., 2021). There
have also been recent efforts in extending GFlowNets to continuous (Lahlou et al., 2023) and stochastic
worlds (Pan et al., 2023b), and also leveraging the power of pre-trained models (Pan et al., 2024). In
GFlowNets training, exploration is an important concept for training convergence, which many works attempt
in different ways. For example, Bengio et al. (2021) use ϵ-greedy exploration strategy, Kim et al. (2023) learn
the logits conditioned on different annealed temperatures, Pan et al. (2022) introduces augmented flows into
the flow network represented by intrinsic rewards, etc. The temporal credit assignment for long trajectories
and sparse reward is a more recently studied topic for GFlowNets. Recent works such as Malkin et al. (2022)
attempt to tackle this problem by minimizing the loss over an entire trajectory as opposed to state-wise
FM proposed by Bengio et al. (2021), however, it may incur large variance as demonstrated in Madan et al.
(2023).

7 Conclusion

In this work, we presented EGFN, a simple and effective EA based strategy for training GFlowNets, especially
for credit assignment in long trajectories and sparse rewards. This strategy mixes the best of both worlds: EA’s
population-based approach biases towards regions with long-term returns, and GFlowNet’s gradient-based
objectives handle the matching of the reward distribution with the sample distribution by leveraging better
gradient signals. Besides, EA promotes natural diversity of the explored region, removing the need to use
any other exploration strategies for GFlowNets training. Furthermore, by incorporating PRB for offline
samples, EA promotes redundancy of high region samples, stabilizing the GFlowNet training with better
gradient signals. We validate our method on a wide range of challenging toy and real-world benchmarks with
exponentially large combinatorial search spaces, showing that our method outperforms the best GFlowNet
baselines on long time horizon and sparse rewards.

11

Published in Transactions on Machine Learning Research (06/2025)

In this work, we implement a standard evolutionary algorithm for EGFN. Incorporating more complex
sub-modules of EA for GFlowNets training such as Covariance Matrix Adaptation and Evolution Strategy
(CMA-ES) such as the work in Pourchot & Sigaud (2019) can be an exciting future work. Another future
direction could be integrating the gradient signal from the GFlowNets objectives into the EA strategy, creating
a feedback loop. Besides, while we use a reward-maximization formulation for the EA in this work, there are
works such as Parker-Holder et al. (2020) that directly improves diversity by formulation. We leave that for
the future work.

Broader Impact Statement

The primary goal of this work is to advance the field of Machine Learning. The authors, thus, do not foresee
any specific negative impacts of this work.

Acknowledgments

DL is funded by NUS-UToronto joint grant. Furthermore, ZI is thankful to his family. The authors are
grateful to Emmanuel Bengio and Moksh Jain for their valuable feedback and suggestions in this work.

References
Thomas Bäck. Evolutionary computation: Toward a new philosophy of machine intelligence. In IEEE

Press Series on Computational Intelligence, 2006. URL https://api.semanticscholar.org/CorpusID:
27611267. 4

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter optimization.
Evolutionary computation, 1(1):1–23, 1993. 2

Luis A Barrera, Anastasia Vedenko, Jesse V Kurland, Julia M Rogers, Stephen S Gisselbrecht, Elizabeth J
Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, et al. Survey of variation in human
transcription factors reveals prevalent dna binding changes. Science, 351(6280):1450–1454, 2016. 20

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network
based generative models for non-iterative diverse candidate generation. Advances in Neural Information
Processing Systems, 34:27381–27394, 2021. 1, 3, 6, 9, 11, 18, 19, 20

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet
foundations. Journal of Machine Learning Research, 24(210):1–55, 2023. 1, 3

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins. Quantifying
the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012. 9

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207, 2019. 7

Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke, Iddo
Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython: freely available python
tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11):1422, 2009. 8

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and exploitation in
deep reinforcement learning algorithms. In International conference on machine learning, pp. 1039–1048.
PMLR, 2018. 11

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander
Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural networks. arXiv
preprint arXiv:1701.08734, 2017. 11

Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to learning. Evolu-
tionary Intelligence, 1:47–62, 2008. URL https://api.semanticscholar.org/CorpusID:2942634. 4

12

https://api.semanticscholar.org/CorpusID:27611267
https://api.semanticscholar.org/CorpusID:27611267
https://api.semanticscholar.org/CorpusID:2942634

Published in Transactions on Machine Learning Research (06/2025)

Nathan C Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse, Isidro
Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, et al. Protein discovery with discrete
walk-jump sampling. arXiv preprint arXiv:2306.12360, 2023. 20

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018. 11

Tanmay Gangwani and Jian Peng. Policy optimization by genetic distillation. In International Conference
on Learning Representations, 2018. 11

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR,
2017. 20

Kunchur Guruprasad, BV Bhasker Reddy, and Madhusudan W Pandit. Correlation between stability of a
protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from
its primary sequence. Protein Engineering, Design and Selection, 4(2):155–161, 1990. 8

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018. 7

Perttu Hämäläinen, Amin Babadi, Xiaoxiao Ma, and Jaakko Lehtinen. Ppo-cma: Proximal policy optimization
with covariance matrix adaptation. In 2020 IEEE 30th International Workshop on Machine Learning for
Signal Processing (MLSP), pp. 1–6. IEEE, 2020. 11

Zhimin Hou, Kuangen Zhang, Yi Wan, Dongyu Li, Chenglong Fu, and Haoyong Yu. Off-policy maximum
entropy reinforcement learning: Soft actor-critic with advantage weighted mixture policy (sac-awmp).
arXiv preprint arXiv:2002.02829, 2020. 11

Zarif Ikram, Ling Pan, and Dianbo Liu. Probabilistic generative modeling for procedural roundabout
generation for developing countries. In NeurIPS 2023 Workshop on Adaptive Experimental Design and
Active Learning in the Real World, 2023. URL https://openreview.net/forum?id=WWqJWiyQ2D. 1, 17

Zarif Ikram, Dianbo Liu, and M Saifur Rahman. Gradient-guided discrete walk-jump sampling for biological
sequence generation. Transactions on Machine Learning Research, 2024. URL https://openreview.net/
forum?id=fFVuo4SPfT. 20

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou,
Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al. Biological sequence
design with gflownets. In International Conference on Machine Learning, pp. 9786–9801. PMLR, 2022. 1

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua Bengio.
Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023a. 1

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua Bengio,
Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International Conference on Machine
Learning, pp. 14631–14653. PMLR, 2023b. 21

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning. In Neural
Information Processing Systems, 2018. URL https://api.semanticscholar.org/CorpusID:53096951.
11

Minsu Kim, Joohwan Ko, Dinghuai Zhang, Ling Pan, Taeyoung Yun, Woo Chang Kim, Jinkyoo Park, and
Yoshua Bengio. Learning to scale logits for temperature-conditional gflownets. In NeurIPS 2023 AI for
Science Workshop, 2023. 5, 11

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. In
International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
68n2s9ZJWF8. 7

13

https://openreview.net/forum?id=WWqJWiyQ2D
https://openreview.net/forum?id=fFVuo4SPfT
https://openreview.net/forum?id=fFVuo4SPfT
https://api.semanticscholar.org/CorpusID:53096951
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

Published in Transactions on Machine Learning Research (06/2025)

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-Garcıa,
Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous generative flow networks.
In International Conference on Machine Learning, pp. 18269–18300. PMLR, 2023. 11

Kyunghyun Lee, Byeong-Uk Lee, Ukcheol Shin, and In So Kweon. An efficient asynchronous method for
integrating evolutionary and gradient-based policy search. Advances in Neural Information Processing
Systems, 33:10124–10135, 2020. 11

Dianbo Liu, Moksh Jain, Bonaventure FP Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay
Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, et al. Gflowout: Dropout with generative
flow networks. In International Conference on Machine Learning, pp. 21715–21729. PMLR, 2023. 1, 11

Benno Lüders, Mikkel Schläger, Aleksandra Korach, and Sebastian Risi. Continual and one-shot learning
through neural networks with dynamic external memory. In EvoApplications, 2017. URL https://api.
semanticscholar.org/CorpusID:37413014. 4

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian
Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from partial episodes for improved
convergence and stability. In International Conference on Machine Learning, pp. 23467–23483. PMLR,
2023. 2, 3, 11

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Improved
credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:5955–5967, 2022. 2,
3, 11

Derek M Mason, Simon Friedensohn, Cédric R Weber, Christian Jordi, Bastian Wagner, Simon M Meng,
Roy A Ehling, Lucia Bonati, Jan Dahinden, Pablo Gainza, et al. Optimization of therapeutic antibodies
by predicting antigen specificity from antibody sequence via deep learning. Nature Biomedical Engineering,
5(6):600–612, 2021. 9

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative augmented flow
networks. In The Eleventh International Conference on Learning Representations, 2022. 2, 5, 11, 18, 19

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with local credit
and incomplete trajectories. In International Conference on Machine Learning, pp. 26878–26890. PMLR,
2023a. 5

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative flow
networks. In Uncertainty in Artificial Intelligence, pp. 1628–1638. PMLR, 2023b. 11

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative flow
networks. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=ylhiMfpqkm. 11

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective diversity
in population based reinforcement learning. Advances in Neural Information Processing Systems, 33:
18050–18062, 2020. 12

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019. 16

Aloïs Pourchot and Olivier Sigaud. Cem-rl: Combining evolutionary and gradient-based methods for policy
search. In 7th International Conference on Learning Representations, ICLR 2019, 2019. 11, 12

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014. 17, 21

14

https://api.semanticscholar.org/CorpusID:37413014
https://api.semanticscholar.org/CorpusID:37413014
https://openreview.net/forum?id=ylhiMfpqkm
https://openreview.net/forum?id=ylhiMfpqkm

Published in Transactions on Machine Learning Research (06/2025)

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar,
Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in gflownets. In ICML
2023 Workshop on Structured Probabilistic Inference {\&} Generative Modeling, 2023. 5

Sebastian Risi and Julian Togelius. Neuroevolution in games: State of the art and open challenges.
IEEE Transactions on Computational Intelligence and AI in Games, 9:25–41, 2014. URL https:
//api.semanticscholar.org/CorpusID:11245845. 4

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017. 7

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and Tommaso
Biancalani. Towards understanding and improving gflownet training. arXiv preprint arXiv:2305.07170,
2023. 17, 20

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework for
retrosynthesis prediction. In International conference on machine learning, pp. 8818–8827. PMLR, 2020. 9

William M Spears. Adapting crossover in evolutionary algorithms. Evolutionary programming, 1995. 5

William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo de Garis. An overview
of evolutionary computation. In European Conference on Machine Learning, 1993. URL https://api.
semanticscholar.org/CorpusID:175549. 4

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002a. 11

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. Evo-
lutionary Computation, 10:99–127, 2002b. URL https://api.semanticscholar.org/CorpusID:498161.
4

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical information
and modeling, 55(11):2324–2337, 2015. 19

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks for
data-driven offline model-based optimization. In International Conference on Machine Learning, pp.
21658–21676. PMLR, 2022. 17

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992. 11

Shimon Whiteson. Evolutionary function approximation for reinforcement learning. Journal of Machine
Learning Research, 7, 2006. 11

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars: Markov molecular
sampling for multi-objective drug discovery. In International Conference on Learning Representations,
2020. 7

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the
flows tell: Solving graph combinatorial problems with gflownets. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. 1

Dinghuai Zhang, Ling Pan, Ricky TQ Chen, Aaron Courville, and Yoshua Bengio. Distributional gflownets
with quantile flows. Transactions on Machine Learning Research, 2024. 19

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multiplex graph
for molecular structures. arXiv preprint arXiv:2011.07457, 2020. 18, 21

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement learning.
In International Conference on Machine Learning, pp. 7553–7562. PMLR, 2019. 1

15

https://api.semanticscholar.org/CorpusID:11245845
https://api.semanticscholar.org/CorpusID:11245845
https://api.semanticscholar.org/CorpusID:175549
https://api.semanticscholar.org/CorpusID:175549
https://api.semanticscholar.org/CorpusID:498161

Published in Transactions on Machine Learning Research (06/2025)

A Codes

The hypergrid and sEH binder task is based on the code from https://github.com/zdhNarsil/
Distributional-GFlowNets. The QM9 and TFBind8 task is based on the code from https://github.com/
maxwshen/gflownet. All our implementation code uses the PyTorch library (Paszke et al., 2019). We used
MolView https://molview.org/ to visualize the molecule diagrams for our paper.

B Summary of notations

We summarize the notations used in our paper in the table 3 below.

Table 3: Notations summary

Symbol Description
S state space
X terminal state space
A action space (s→ s′)
T trajectory space
s0 initial state in S
s state in S
x terminal state in X
τ trajectory in T

PF forward flow
PB backward flow
k population size
D replay buffer
ϵ elite population ratio
γ mutation strength

C Fitness evaluation algorithm

Algorithm 2 Evaluation of Forward Flows
Data: Forward flow PF

Result: Updated replay buffer with trajectories and fitness of PF

Procedure EVALUATE(PF , E ,D)
fitness ← 0

for iter = 1 to E do
Initialize start state s ; // Can also be parallelized
Initialize trajectory T to an empty list
while s not a terminal state do

Sample action a based on PF (s|θPF
)

s′ ← transition(s, a)
Append (s′, a) to the T
s← s′

Compute R(s) using reward function using the last state in T
fitness ← fitness + R(s)
Append T to D

Return fitness
E , D

16

https://github.com/zdhNarsil/Distributional-GFlowNets
https://github.com/zdhNarsil/Distributional-GFlowNets
https://github.com/maxwshen/gflownet
https://github.com/maxwshen/gflownet
https://molview.org/

Published in Transactions on Machine Learning Research (06/2025)

Figure 10: Experimental results for the hypergrid task between EGFN and GFN across different GFlowNets
objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the number
of discovered modes across the training process. The proposed augmentation with EGFN achieves better results for
all three objectives.

D Additional Experiments

D.1 Generalizability experiment

To see how well EGFN works with different GFlowNets objectives, we show the result of augmentation of our
method over all three GFlowNets objectives in Figure 10. We see that EGFN offers a steady improvement
across all three GFlowNets objectives.

D.2 Transcription factor binder generation task

Figure 11: Experiment results for transcription factor
binder generation task over 2000 training steps for β = 3.
Top: the number of discovered modes across the train-
ing process. Bottom: the relative mean error. The pro-
posed augmentation with EGFN achieves better results.
GFlowNets implementation uses TB objective.

Setup In this experiment, we generate a nucleotide
as a string of length 8. Although the string could
be generated autoregressively, in this experiment
setting, we use a Prepend-Append Markov decision
process (PA-MDP), used in similar settings by Shen
et al. (2023); Ikram et al. (2023). Using this MDP,
GFlowNets agent actions prepend or append to the
nucleotide string. The reward is a DNA binding
affinity to a human transcription factor provided by
Trabucco et al. (2022). We attempt three GFlowNets
objectives, finally deciding to use TB as the best
GFlowNets baseline and implement EGFN with the
same using a reward exponent β = 3.

Results Figure 11 shows the result over 2000 train-
ing steps, showing that GFlowNets outperforms
GFlowNets baseline both in terms of the number
of modes discovered and the mean relative error.

D.3 Small molecule generation Task

Setup In this experiment, we generate a small
molecule graph based on the QM9 data (Ramakrish-
nan et al., 2014) that maximizes the energy gap between its HOMO and LUMO orbitals, thereby increasing

17

Published in Transactions on Machine Learning Research (06/2025)

Figure 12: From top to bottom: Example molecule produced in the qm9 task with SMILES representation
C1CCCCC1NOCFO. Experiment results for small molecule generation task on the QM9 data over 2000 training steps
for β = 1. The number of discovered modes across the training process. The relative mean error. The proposed
augmentation with EGFN achieves better results. GFlowNets implementation uses TB objective.

its stability. The resulting molecule is a 5-block molecule, having a choice among 12 blocks for its two stems.
For the reward function, we use a pre-trained MXMNet proxy by Zhang et al. (2020) with a reward exponent
β = 1. Similar to D.2, we use TB for this experiment.

Results In Figure 12, we report the mode discovery and L1 error results over 2000 training steps. Similar
to previous experiments, EGFN maintains a steady improvement over the GFlowNets baseline for mode
discovery while decreasing the L1 error quicker.

E Additional implementation details

E.1 Hypergrid task

In our experiments, R1 and R2 stay at a fixed value of 0.5 and 2. In our experiments, R0 varies within
{10−3, 10−4, 10−5}. A mode is the terminal state x for which R(x) = Rmax. From the equation 6, it is
evident that there are 2D distinct reward regions, with each region having M number of modes (M = 1 for
our experiments). Besides, H refers to the horizon of the environment, meaning each dimension of x can be
equal to i ∈ {0, 1, 2, . . . , H − 1}. For example, Figure 4 uses D = 5 and H = 20. Clearly, while increasing
both D and H increases the complexity of the task, effecting the trajectory length |τ | and the number of
states |X |, only increasing D increases the number of modes. To calculate the empirical probability density,
we collect the past visited 200000 states and calculate the probability density.

Architecture We model the forward layer with a 3-layer MLP with 256 hidden dimensions, followed by a
leaky ReLU. The forward layer takes the one-hot encoding of the states as inputs and outputs action logits.
For FM, we simply use the forward layer to model the edge flow. For TB and DB, we double the action
space and train the MLP as both the forward and backward flow. We use a learning rate of 10−4 for FM and
10−3 for both TB and DB, including a learning rate of 0.1 for Zθ. The replay buffer uses a maximum size of
1000, and we use a worst-reward first policy for replay replacement. For RL and MCMC baselines, we use
the implementation provided by Bengio et al. (2021). For GAFN baseline, we use the official code provided
by Pan et al. (2022), performing a hyper-parameter tuning of intrinsic reward and using intrinsic reward =
{0.05, 0.03, 0.01} for our experiments with D ∈ {3, 4, 5}, respectively.

18

Published in Transactions on Machine Learning Research (06/2025)

E.2 Antibody sequence optimization task

In this task, we are interested in generating the mutation of the first 50 characters of a heavy-chain
antibody sequence. To adapt to the variable length of the sequence, we use a gap token of ’-’, making
the total number of actions 21 2. The heavy and light chain suffixes appended to the generated 21-length
sequences are QVQLVQSGTEVKKPGSSVKVSCKASGGTFSSYAVSWVRQAPGQGLEWMGRFIPIL-
NIKNYAQDFQGRVTITADKSTTTAYMELINLGPEDTAVYYCARGSLSGREGLPLEYWGQGTLV
SVSS and EVVMTQSPATLSVSPGESATLYCRASQIVTSDLAWYQQIPGQAPRLLIFAASTRATGI-
PARFSGSGSETDFTLTISSLQSEDFAIYYCQQYFHWPPTFGQGTKVEIK, respectively. We collect the
chain pair from the observed antibody space (OAS) database. Finally, we use a reward policy to reduce the
instability index of the mutated sequences. The main goal of this task is to assess the GFlowNet’s ability to
perform on longer sequences with long trajectories. To the best of our knowledge, no GFlowNets literature
has experimented with tasks with such a long trajectory length, mainly because GFlowNets struggle with
longer trajectories.

Architecture This task’s architecture closely resembles the hypergrid setting. Careful architecture choice
may improve the observed results of the task, but this is outside the scope of this work.

E.3 sEH binder generation Task

Figure 13: Illustration of GFlowNets policy for sEH binder generation task. Figure adopted from Pan et al. (2022)

For this task, the number of actions is within 100 to 2000, depending on the state, making |X | ≈ 1016. We
allow the agent to choose from a library of 72 blocks. Similar to Bengio et al. (2021), we include the different
symmetry groups of a given block, making the action count 105 per stem. We also allow the agent to select
up to 8 blocks, choosing them as suggested by Sterling & Irwin (2015) from the ZINC dataset (Sterling &
Irwin, 2015). Following Zhang et al. (2024), we use Tanimoto similarity, defined by the ratio between the
intersection and the union of two molecules based on their SMILES representation. To maintain diversity,
we define a mode to be a terminal state for which the normalized negative binding energy to the 4JNC
inhibitor of the soluble epoxide hydrolase (sEH) protein is more than 7.5 and the tanimoto similarity of other
discovered modes is less than 0.7. Note that this objective is more limiting than simply counting the number
of different Bemis-Murcko scaffolds that reach the reward threshold like Bengio et al. (2021). Since we are
focusing on both molecule separation and optimization, our approach is more applicable for de novo molecule
design, while the scaffold-based metric is suitable for lead optimization.

2A = 22, as we still need a stop token for the GFlowNets agent.

19

Published in Transactions on Machine Learning Research (06/2025)

Architecture Following Bengio et al. (2021), we use a message passing neural network (MPNN) (Gilmer
et al., 2017) that receives the atom graph to calculate the proxy reward of the molecules. Similarly, we use
another MPNN that receives the block graph for flow estimation. The block graph is a tree of learned node
embeddings that represent the blocks and edge embeddings that represent the bonds. To represent the flow,
we pass the stems through a 10-layer graph convolution followed by GRU to calculate their embedding and
pass the embedding through a 3-layer MLP to get a 105-dimension logit. Similarly, to represent the stop
action, we pass the global mean pooling to the 3-layer MLP. The MLPs use 256 hidden dimensions, followed
by a leakyReLU. We use a learning rate of 0.0005 and a minibatch size of 4. For EGFN, we use an offline
sample probability of 0.2. Besides, we use a reward exponent β = 10 and a normalizing constant of 8.

Figure 14: Molecule blocks for the sEH protein task. Figure adapted from Bengio et al. (2021)

E.4 hu4D5 CDR H3 mutation generation task

Following Frey et al. (2023); Ikram et al. (2024), we consider the task of generating CDR3 10-length mutations
on a hu4D5 antibody mutant dataset. The dataset contains both non-binder and binder sequences. We
train a discriminator model on the binding likelihood of a sequence and then compare the starting points
for making sequences that improve both the binding likelihood and the diversity shown by the pairwise edit
distance of the new sequences.

Archtecture The architecture of different baselines follows the baselines of the previously discussed tasks.
We use a 35-layer Bytenet architecture with a hidden layer of 128 for the discriminator model. This is followed
by a 3-layer 1D-CNN and a 3-layer MLP, with leakyReLU activations added between the layers. We train
the model on the hu4D5 antibody mutant dataset, which achieves 85% accuracy on the test set.

E.5 TFBind8 task

For this task, the goal is to generate an 8-length DNA sequence that maximizes the binding activity score
with a particular transcription factor SIX6REFR1 (Barrera et al., 2016). We use a precalculated oracle for
the proxy reward calculation. Using a PA-MDP, we prepend or append a neucleotide in each step. Note that
this formulation reduces the trajectory length significantly despite our effort to showcase better performance
in long trajectories, but we use it following previous works.

Architecture Following Shen et al. (2023), the GFlowNets architecture uses a 2-layer MLP with 128-
dimension hidden layer parameterizing SSR (S,S ′ → R+). For each training step, we train on both online
and offline trajectories for three steps, using a minibatch of 32. Besides, we use a learning rate of 10−4 for
policy and 0.01 for Zθ. Finally, we use a reward exponent β = 3 and an exploration probability of 0.01 (we
do not use any exploration for EGFN).

20

Published in Transactions on Machine Learning Research (06/2025)

E.6 QM9 task

The goal here is to generate diverse molecules based on the QM9 data (Ramakrishnan et al., 2014) that
maximize the HOMO-LUMO. To that end, we use the reward proxy that Jain et al. (2023b) provides based
on Zhang et al. (2020). Similar to the sEH task, we generate molecules with atoms and bonds. The blocks
used here are the following: C, 0, N, C-F, C=0, C#C, c1ccccc1, C1CCCCC1, C1CCNC1, CCC.

Architecture Using a PA-MDP, we use a 2-layer MLP with 1024 hidden dimensions for flow estimation.
The reward proxy is a MXMNet proxy trained on the QM9 data. We use a reward exponent β = 1. The
learning rate and training style follow the ones used for the TFBind8 task, with the exception of exploration
probability (0.1 here) and hidden dimension (1024 here).

We detail the summary of the training hyperparameters in table 4.

Table 4: Summary of the hyperparameters for all experiments

Hypergrid/Antibody/CDR3 sEH Small Molecules TFBind8 QM9
Learning Rate 10−4 (FM), 10−3 5× 10−4 10−4 10−4

Zθ Learning Rate 0.1 N/A 0.01 0.01
β 1 10 3 1

MDP Enumerate Sequence Insert PA-MDP PA-MDP
Exploration ϵ (none for EGFN) 0 0 0.01 0.1

Replay Buffer Training 50% 0 (20% for egfn) 50% 50%
MLP layers 3 3 2 2

MLP hidden dimensions 256 256 128 1024

F Additional ablation experiments
F.1 Number of population

Figure 15: Experimental results for the hypergrid task for EGFN among different values of k across the three
training objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom:
the number of discovered modes across the training process. Here, H = 20, D = 5. The results show that increasing
population size leads to diminishing returns.

To investigate the effect of population size, we vary the k ∈ {5, 10, 15}, while keeping ϵ = 0.2, D = 5, H =
20, R0 = 10−5. We plot the results of the experiment in Figure 15. It shows that increasing k beyond 10 leads
to diminishing returns, motivating our choice of k = 10 for all the experiments. For DB, however, increasing
k leads to considerable improvement. Indeed, this is useful because increased population size leads to more
evaluation round required. While these evaluation round can be parallelized with threads as we do in our
work, massive population size requirement is difficult to satisfy.

Takeaway: FM and DB benefit from higher sample diversity provided by larger population.

21

Published in Transactions on Machine Learning Research (06/2025)

F.2 Elite population

Figure 16: Experimental results for the hypergrid task for EGFN among different values of ϵ across the three training
objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the number
of discovered modes across the training process. Here, H = 20, D = 5. We observe that lower ϵ leads to better results
for FM and TB.

Following ablation on k, we next perform ablation on the elite population ratio, ϵ ∈ {0.2, 0.4, 0.6}. For this
experiment, we use the same hypergrid settings for k = 10. We plot the results of the experiment in Figure 16.
It shows that low ϵ improves mode discovery, especially for FM and TB objectives. This result is reasonable:
we apply mutation and crossover only to the non-elite population, so having a low number of elite population
means we have a better chance at exploring using the non-elite population’s mutation and crossover.

Takeaway: FM and TB benefit from lower mode-seeking behavior through lower number of elite
population.

F.3 Replay buffer size

Figure 17: Experimental results for the hypergrid task between GFlowNets and EGFN across different values of
|D|. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the number
of discovered modes across the training process. Here, we use DB for H = 20, D = 5. The results show that while
increasing replay buffer size improves the robustness of the result, it has little effect otherwise.

To understand the effect of replay buffer size, we run GFlowNets baseline with PRB and EGFN on a
20x20x20x20x20 environment with R0 = 10−5 for replay buffer size ∈ {1000, 5000, 10000}. We present

22

Published in Transactions on Machine Learning Research (06/2025)

the findings in Figure 17. From the figure, we see that increasing buffer size generally has little effect for
GFlowNets, but it improves EGFN’s robustness a little.

Takeaway: Higher replay buffer capacity preserves more diverse samples, resulting in a more consistent
EGFN result.

F.4 Mutation strength

Figure 18: Experimental results for the hypergrid task for EGFN among different values of γ across the three
training objectives. Top: the ℓ1 error between the learned distribution density and the true target density. Bottom:
the number of discovered modes across the training process. Here, H = 20, D = 5. We observe that lower γ leads to
better results for FM and TB, while higher γ leads to better results for DB.

We now turn our attention to the mutation. To observe the effect of the mutation strength γ, we run
the hypergrid experiment for the three training objectives using EGFN for γ ∈ {1, 5, 10}. The hypergrid
configurations follow the the same configurations as before. We plot the mode discovery and ℓ1 error between
the learned distribution density and the true target density over 2500 training steps in Figure 18. While the
results indicate that having a higher γ leads to better result for DB, the improvement is not extraordinary.
Besides, in our work, we experience training instability for higher γ. Thus, we restrict γ to be 1 throughout
in our work.

Takeaway: Higher mutation strength generally leads to diminishing returns.

F.5 Priority percentile

PRB is an important component of our EGFN setup. Therefore, an important question is how the definition
of priority samples stored in the replay buffer affects the results. To answer this question, we run the hypergrid
experiment in the hardest setting while changing the priority percentile ∈ {50, 70, 90} controlling the sampling
split, i.e., while sampling offline trajectories from the PRB, 50% of them come from the priority samples
and the rest come from the non-priority samples. Figure 19 shows the results. It indicates that having
high-reward priority samples stored in the replay buffer benefits the training in terms of mode discovery, but
there is little improvement in distribution fitting.

Takeaway: Higher priority percentile improves mode-discovery of TB.

23

Published in Transactions on Machine Learning Research (06/2025)

Figure 19: Experimental results for the hypergrid task for EGFN among different percentiles of priority samples for
the TB objective. Throughout the experiment, we keep a 50-50 split between the priority and non-priority samples.
Top: the ℓ1 error between the learned distribution density and the true target density. Bottom: the number of
discovered modes across the training process. Here, H = 20, D = 5. We observe that higher percentile priority samples
lead to better results for TB.

F.6 Priority split

Figure 20: Experimental results for the hypergrid task for EGFN among different splits of priority sampling for
the TB objective. Throughout the experiment, we used 90 percentile samples as priority samples. Top: the ℓ1 error
between the learned distribution density and the true target density. Bottom: the number of discovered modes across
the training process. Here, H = 20, D = 5. We observe that having a high priority-non-priority split leads to better
results for TB.

Finally, a decision just as important as the priority percentile is the sampling ratio between the priority
and non-priority offline trajectories. This time, we keep the priority percentile fixed at 90%, while changing

24

Published in Transactions on Machine Learning Research (06/2025)

the priority to non-priority ratio splits between {20, 50, 80}. We run an experiment similar to the previous
experiments with the aforementioned setting and report the results in Figure 20. The results clearly
demonstrate that, despite their collection from a small subset of states, sampling more from the priority
samples is beneficial for both mode discovery and distribution fitting.

Takeaway: Higher priority-non-priority split improves mode-discovery and distribution-fitting of TB.

G Baselines

MARS. MArkov moleculaR Sampling method (MARS) is a multi-objective molecular design method that
define a Markov chain over the explicit molecular graph space and design a kernel to navigate high probable
candidates with acceptance-rejection sampling.

GAFN. Generative Augmented Flow Networks (GAFN) is a GFlowNets variant that aims to address
the exploration challenge of GFlowNets by enabling intermediate rewards in GFlowNets and thus intrinsic
rewards.

SAC. Soft Actor-Critic (SAC) is an off-policy RL algorithm that maximizes a trade-off between expected
reward and entropy, encouraging diverse and stable exploration.

PPO. Proximal Policy Optimization (PPO) is a policy-gradient method that simplifies training by con-
straining policy updates, ensuring stable and reliable improvement during optimization.

IQL. Implicit Q-Learning (IQL) is an offline reinforcement learning approach that effectively extracts
value-based policies by decoupling value estimation from policy improvement, achieving stable learning from
static datasets.

H Additional analysis

Long time horzion results with reward evalutations. To understand the sample complexity of EGFN
in comparison to GFlowNets, we plot the results for long time horizon task against the number of R(x) calls
for the default hyperparameters in this paper. We see that EGFN captures the R(x) distribution better than
GFlowNets with comparable trajectory evaluations.

Figure 21: Experimental results comparison for the hypergrid task between EGFN and GFlowNets across increasing
dimensions for 2500 training steps. The results shows that for similar amount of evaluation calls, EGFN performs
better than GFlowNets with increasing difficulty.

25

Published in Transactions on Machine Learning Research (06/2025)

Population performances against the star agent. To understand the contribution of the population
during the training of the star agent, we plot the performances of the population and the star agent of EGFN
while training in an increasingly complex environment. For fair comparison, we choose mean fitness for the
population (K= 4) and top 10% reward for the star agent as a performance metric, as it is trained on a
GFlowNets loss. The results in Figure 22 show that the population are more resistant to the increasing
difficulty, which ultimately drives the PRB samples, improving GFlowNets training.

Figure 22: Comparing the star agent and population on increasing dimensions for 2500 training steps. For star
agent, we report the top 10% reward, and for population, we report the mean reward.

I Additional algorithms

I.1 Crossover

Algorithm 3 Crossover step
Data: Agent weights θPF1

, θPF2
Result: Crossover between agent weights
Procedure CROSSOVER(θPF1

, θPF2
)

for weights w1, w2 in θPF1
, θPF2

do
N = NUM_ROW(w1)
num_mutations ∼ U(N)
for count = 1 to num_mutations do

index ∼ U(N)
if r() < 0.5 then

w1[index] = w2[index]

else
w2[index] = w1[index]

26

	Introduction
	Preliminaries
	Generative Flow Networks (GFlowNets)
	Evolutionary algorithms (EA)

	Evolution guided generative flow networks (EGFN)
	Step one: Evolve
	Step two: Sample
	Step three: Train

	Experiments
	Synthetic tasks
	Antibody sequence optimization task
	Soluable Epoxy Hydrolase (sEH) binder generation task
	hu4D5 CDR H3 mutation generation task
	Result summary

	Discussion and Limitations
	Related work
	Evolution in learning
	GFlowNets

	Conclusion
	Codes
	Summary of notations
	Fitness evaluation algorithm
	Additional Experiments
	Generalizability experiment
	Transcription factor binder generation task
	Small molecule generation Task

	Additional implementation details
	Hypergrid task
	Antibody sequence optimization task
	sEH binder generation Task
	hu4D5 CDR H3 mutation generation task
	TFBind8 task
	QM9 task

	Additional ablation experiments
	Number of population
	Elite population
	Replay buffer size
	Mutation strength
	Priority percentile
	Priority split

	Baselines
	Additional analysis
	Additional algorithms
	Crossover

