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ABSTRACT

Inductive biases in the form of conservation laws have been shown to provide
superior performance for modeling physical systems. Here, we present Hamil-
tonian graph neural network (HGNN), a physics-informed GNN that learns the
dynamics directly from the trajectory. We evaluate the performance of HGNN on
spring, pendulum, and gravitational systems and show that it outperforms other
Hamiltonian-based neural networks. We also demonstrate the zero-shot generaliz-
ability of HGNN to unseen hybrid spring-pendulum systems and system sizes that
are two orders of magnitude larger than the training systems. HGNN provides ex-
cellent inference in all the systems providing a stable trajectory. Altogether, HGNN
presents a promising approach to modeling complex physical systems directly from
their trajectory.

1 INTRODUCTION AND RELATED WORKS

Learning the dynamics of physical systems directly from their trajectory is a problem of interest
in wide areas such as robotics, mechanics, biological systems such as proteins, and atomistic
dynamics (Cranmer et al., 2020b; Karniadakis et al., 2021). Recently, it has been shown that infusing
the inductive biases in terms of the ODEs directly in the formulation as a hard constraint as in
Hamiltonian (HNN) (Sanchez-Gonzalez et al., 2019; Greydanus et al., 2019; Zhong et al., 2020;
2021), and Lagrangian neural networks (LNN) (Cranmer et al., 2020a; Finzi et al., 2020; Lutter
et al., 2019)—instead of a soft constraint in the loss function—can significantly enhance the learning
efficiency while also leading to realistic trajectories in terms of conservation laws. Additionally,
combining these formulations with graph neural networks (GNNs) (Scarselli et al., 2008; Bhattoo
et al., 2023; 2022; Thangamuthu et al., 2022) can lead to superior properties such as zero-shot
generalizability to unseen system sizes and hybrid systems unseen during the training, more efficient
learning, and inference.

Of special interest among these physics-informed GNNs are the Hamiltonian graph neural networks
(HGNN), where you employ Hamiltonian equations of motion as an inductive bias. In the present
work, we propose a HGNN that learns the Hamiltonian of a system directly from the trajectory. We
evaluate our architecture on several complex systems such as n− pendulum and spring systems and
gravitational systems. The major contribution of our work is as follows.

• Graph architecture: We propose a graph architecture for HGNN, which decouples body forces and
internal forces, and allows efficient learning for systems with external forces such as n− pendulums.
• Decoupling kinetic and potential energies: Our HGNN architecture also decouples the potential
and kinetic energies, which, in turn, allows improved interpretation of the learned quantities.
• Explicit constraints: We show that employing explicit constraints allows efficient learning in
systems such as pendulums where such constraints govern the dynamics of the systems.
• Zero-shot generalizability: Finally, we show that HGNN exhibits generalizability to system sizes
that are orders of magnitude larger than the training trajectory and to hybrid systems. For instance,
HGNN trained on spring and pendulum systems can infer the dynamics of a complex spring-pendulum
system.
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2 BACKGROUND ON HAMILTONIAN MECHANICS
Consider a system of n particles that are interacting with their positions at time t represented by the
Cartesian coordinates as x(t) = (x1(t),x2(t), ...xn(t)). The Hamiltonian H of the system is defined
as H(px,x) = T (ẋ) + V (x), where T (ẋ) represents the total kinetic energy and V (x) represents
the potential energy of the system. The Hamiltonian equations of motion for this system in Cartesian
coordinates are given by (LaValle, 2006; Goldstein, 2011)

ẋ = ∇pxH, ṗx = −∇xH (1)

where px = ∇ẋH = Mẋ represents the momentum of the system in Cartesian coordinates and M
represents the mass matrix. Assuming Z = [x;px] and J = [0, I;−I, 0], Hamiltonian equations can
be combined as: ∇ZH + JŻ = 0 (2)

In systems with constraints, as in the case of a pendulum, the Hamiltonian equations of motion can
be modified to feature the constraints explicitly as

∇ZH + JŻ + (DZΨ)Tλ = 0 (3)

where (DZΨ)Tλ represents the effect of constraints on ẋ and ṗx. (DZΨ)T is transpose of (DZΨ).
Here, Ψ(Z) = (Φ; Φ̇) and Φ = Φ(x) = 0 represent the constraints equation Ψ(Z) = 0. Thus,
(DZΨ)Ż = 0. Substituting for Ż and solving for λ yields

λ = −[(DZΨ)J(DZΨ)T ]−1[(DZΨ)J(∇H)] (4)

Substituting λ in the Eq. 3 and solving for Ż yields

Ż = J [∇ZH − (DZΨ)T [(DZΨ)J(DZΨ)T ]−1(DZΨ)J∇ZH] (5)

In this work, we employ Eq.5 to obtain the acceleration of the system from the Hamiltonian, which,
when integrated, provides the updated configuration of the system.

3 GRAPH ARCHITECTURE

In this section, we briefly describe the architecture of HGNN shown in Fig. 1.
Graph structure. The physical system is modeled as an undirected graph G = (V, E) with nodes as
particles and edges as connections between them. For instance, in a n-ball-spring system, the balls
are represented as nodes and springs as edges.
Input features. The raw node features are tp (type of particle) as one-hot encoding, x, and ẋ, and the
raw edge feature is the distance, d = ||xj − xi||, between two particles i and j. A notable difference
in the HGNN architecture from previous works (Sanchez-Gonzalez et al., 2019) is the presence of
global and local features—local features participate in message passing and contribute to quantities
that depend on topology, while global features do not take part in message passing. Here, we employ
the position x, velocity ẋ as global features for a node while d and tp are used as local features.
Neural architecture. We employ a l-layer message passing GNN, which takes an embedding of the
node and edge features created by MLPs as input. The local features participate in message passing
to create an updated embedding for both the nodes and edges. The final representations of the nodes
and edges, zi and zij , respectively, are passed through MLPs to obtain the Hamiltonian of the system.
Hamiltonian prediction. The Hamiltonian of the system is predicted as the sum of T and V in the
HGNN. Specifically, the potential energy is predicted as Vi =

∑
i MLPv(zi) +

∑
ij MLPe(zij)),

where MLPv and MLPe represent the contribution from the node (particles themselves) and edges
(interactions) toward the potential energy of the system, respectively, and T =

∑
i MLPT (h

T
i ).

Trajectory prediction and training. The H of the system is obtained from HGNN is substituted in
the Eq.(3) to obtain the acceleration and velocity of the particles. These values are integrated using
velocity Verlet, a symplectic integrator, to compute the updated position. The loss function of HGNN
is computed by using the predicted and actual positions at timesteps 2, 3, . . . , T in a trajectory T,
which is then back-propagated to train the MLPs. Specifically, the loss function is as follows.

L =
1

n

(
n∑

i=1

T∑
t=2

(
xT,t
i − x̂T,t

i

)2)
(6)

4 EMPIRICAL EVALUATIONS
In this section, we evaluate the performance of HGNN toward (i) learning the dynamics of physical
systems, (ii) generalizing to unseen hybrid systems, and (iii) generalizing to unseen system sizes.
Our implementation is available at https://github.com/M3RG-IITD/HGNN. Details of the
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Figure 1: Architecture of Hamiltonian Graph Neural Network

Figure 2: EE and RE for 5-,10-,50- links pendulum and 5-,50-,500- links spring systems.

systems are provided in the App. B.
Baselines: We consider two baselines to compare the performance of HGNN. The first,
HNN (Greydanus et al., 2019), is a simple MLP that directly predicts the Hamiltonian of the
system. Note that the decoupling of kinetic and potential energies is implemented in HNN. Second,
HGN (Sanchez-Gonzalez et al., 2019) is a graph-based version of HNN, albeit without decoupling the
kinetic and potential energies. While the performance of HNN has been demonstrated on several
spring and pendulum systems, HGN (Sanchez-Gonzalez et al., 2019) has been evaluated only on
spring systems.
• Datasets and systems: To evaluate HGNN, we selected standard systems, viz, n-pendulums and
springs, where n = (3, 4, 5). All the graph-based models are trained on 5-pendulum and 5-spring
systems only, which are then evaluated on other system sizes. Further, to evaluate the zero-shot
generalizability of HGNN to large-scale unseen systems, we simulate 5, 50, 500-link spring systems,
and 5-, 10-, and 50-link pendulum systems. We also considered a hybrid spring-pendulum system
unseen during training to evaluate HGNN and a gravitational system. The detailed data-generation
procedure is given in App. C.1. The timestep used for the forward simulation of the pendulum system
is 10−5s with the data collected every 1000 timesteps, and for the spring system is 10−3s with the
data collected every 100 timesteps. Model architecture and training details are provided in the App. A.
• Evaluation Metric: Following the work of (Finzi et al., 2020), we evaluate performance by comput-
ing the following two error metrics, namely, (1) relative error in the trajectory, defined as the rollout
error, (RE(t)), (2) Energy violation error (EE(t)) given by RE(t) = ||x̂(t)−x(t)||2

||x̂(t)||2+||x(t)||2 , EE(t) =

||Ĥ−H||2
(||Ĥ||2+||H||2

. Here, x and H represent position and total energy respectively Note that all the variables
with a hat, for example x̂, represent the predicted values based on the trained model and the variables
without a hat, that is x, represent the ground truth.
4.1 ROLLOUT AND ENERGY ERRORS

Fig. 2 shows the performance of HNN, HGN, and HGNN for spring and pendulum systems. We observe
that HGNN outperforms both HNN and HGN on both spring and pendulum systems. Specifically, we
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Figure 3: Visualization of (a) gravitational and (b) hybrid systems. EE and RE for (c) hybrid system
and (d) 4-body gravitational system.

Figure 4: Energy violation and Rollout error for 5-,10-,50-links pendulum and 5-,50-,500-links spring
systems.

observe that the energy violation error in HGNN remains saturated, suggesting a stable and realistic
predicted trajectory. Note that HNN is trained and evaluated on each of these systems separately,
while HGN and HGNN are trained in only one system and inferred for all other systems by performing
the forward simulation.

4.2 COMPLEX SYSTEMS

In order to evaluate the performance of HGNN on more complex systems, we consider a gravitation
system and a hybrid spring-pendulum system (see Figs. 3(a) and (b)). We observe that HGNN, trained
on spring and pendulum systems separately, provides an excellent inference for the hybrid system
unseen by the model. Despite best efforts, the HGN and HNN was unable to provide a forward
trajectory for the hybrid system. The superior performance of HGNN could be attributed to the
architecture, which decouples the potential and kinetic energies and learns them separately for each
system. We also evaluate HGNN for a more complex interaction than springs and pendulums, that
is, gravitational forces. Fig. 3 shows that HGNN provides excellent inference for the gravitational
system. Similar to the hybrid system, the baselines trained on the gravitational systems were unable
to provide a stable trajectory and exploded after a few steps during the inference.

4.3 ZERO-SHOT GENERALIZATION

Finally, we evaluate the zero-shot generalizability of HGNN in comparison to HGN (see Fig. 4). We
observe that HGNN exhibits superior generalization to system sizes that are two orders of magnitude
larger than the training system. In the case of the spring system, even for a system size two orders of
magnitude error, we observe a comparable error in energy, which remains stable with time.

5 CONCLUSION

In this work, we present a HGNN that learns the Hamiltonian of physical systems directly from their
trajectory. We demonstrate the approach to spring, pendulum, and gravitational systems. HGNN
outperforms HNN and HGN both in terms of energy and rollout errors. Further, HGNN exhibits
zero-shot generalizability to unseen hybrid systems and large-scale systems that are two orders of
magnitude larger than the training system. While HGNN presents a promising approach, it is still
applied to simple systems. Extending this to more complex systems, such as atomic structures or
deformable bodies, can be addressed as future challenges.
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A MODEL ARCHITECTURE AND TRAINING SETUP:

For HGN, HNN, and HGNN, the MLPs are two-layers deep. We use 10000 data points from 100
trajectories divided into 75:25 (train: validation) to train all the models. Detailed training procedures
and hyper-parameters are provided in App. C.2. All models were trained till the decrease in loss
saturates to less than 0.001 over 100 epochs. The model performance is evaluated on a forward
trajectory, a task it was not explicitly trained for, of 10s in the case of the pendulum and 20s in the
case of spring. Note that this trajectory is 2-3 orders of magnitude larger than the training trajectories
from which the data has been sampled. The dynamics of n-body system are known to be chaotic
for n ≥ 2. Hence, all the results are averaged over trajectories generated from 100 different initial
conditions.

A.1 SIMULATION ENVIRONMENT

All the simulations and training were carried out in the JAX environment (Schoenholz & Cubuk,
2020; Bradbury et al., 2020). The graph architecture was developed using the jraph package (Godwin*
et al., 2020). The experiments were conducted on a machine with Apple M1 chip having 8GB RAM
and running MacOS Monterey.

B EXPERIMENTAL SYSTEMS

To simulate the ground truth, physics-based equations derived using Lagrangian mechanics is em-
ployed. The equations for n-pendulum and spring systems are given in detail below.

B.1 n-PENDULUM

For an n-pendulum system, n-point masses, representing the bobs, are connected by rigid (non-
deformable) bars. These bars, thus, impose a distance constraint between two point masses as

||xi − xi−1||2 = l2i (7)

where, li represents the length of the bar connecting the (i− 1)th and ith mass. This constraint can
be differentiated to write in the form of a Pfaffian constraint as

(xi − xi−1)(ẋi − ẋi−1) = 0 (8)

Note that such constraint can be obtained for each of the n masses considered to obtain the A(q).

The Lagrangian of this system can be written as

L =
n∑

i=1

(
1/2miẋi

Tẋi −migx
(2)
i

)
(9)

where mi represents the mass of the ith particle, g represents the acceleration due to gravity in the
x(2) direction and x(2) represents the position of the particle in the x(2) direction.

B.2 n-SPRING SYSTEM

Here, n-point masses are connected by elastic springs that deform linearly (elastically) with extension
or compression. Note that similar to the pendulum setup, each mass mi is connected to two masses
mi−1 and mi+1 through springs so that all the masses form a closed connection. The Lagrangian of
this system is given by

L =

n∑
i=1

1/2miẋi
Tẋi −

n∑
i=1

1/2k(||xi−1 − xi|| − r0)
2 (10)

where r0 and k represent the undeformed length and the stiffness, respectively, of the spring.
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B.3 n-BODY GRAVITATIONAL SYSTEM

Here, n point masses are in a gravitational field generated by the point masses themselves. The
Lagrangian of this system is given by

L =

n∑
i=1

1/2miẋi
Tẋi +

n∑
i=1

n∑
j=1,j ̸=i

Gmimj/2(||xi − xj ||) (11)

where G represents the Gravitational constant.

C IMPLEMENTATION DETAILS

C.1 DATASET GENERATION

Software packages: numpy-1.22.1, jax-0.3.0, jax-md-0.1.20, jaxlib-0.3.0, jraph-0.0.2.dev
Hardware: Chip: Apple M1, Total Number of Cores: 8 (4 performance and 4 efficiency), Memory:
8 GB, System Firmware Version: 7459.101.3, OS Loader Version: 7459.101.3

C.2 HYPER-PARAMETERS

The default hyper-parameters used for training each architecture is provided below.

•HNN

Parameter Value
Hidden layer neurons (MLP) 256

Number of hidden layers (MLP) 2
Activation function squareplus

Optimizer ADAM
Learning rate 1.0e−3

Batch size 100

•HGN

Parameter Value
Node embedding dimension 8
Edge embedding dimension 8
Hidden layer neurons (MLP) 16

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing 1
Optimizer ADAM

Learning rate 1.0e−3

Batch size 100

•HGNN

Parameter Value
Node embedding dimension 5
Edge embedding dimension 5
Hidden layer neurons (MLP) 5

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing(pendulum) 2
Number of layers of message passing(spring) 1

Optimizer ADAM
Learning rate 1.0e−3

Batch size 100
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