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Abstract

In the realm of multi-agent reinforcement learning (MARL), achieving high per-
formance is crucial for a successful multi-agent system. Meanwhile, the ability to
avoid unsafe actions is becoming an urgent and imperative problem to solve for
real-life applications. Whereas, it is still challenging to develop a safety-aware
method for multi-agent systems in MARL. In this work, we introduce a novel
approach called Multi-Agent First Order Constrained Optimization in Policy Space
(MAFOCOPS), which effectively addresses the dual objectives of attaining satis-
factory performance and enforcing safety constraints. Using data generated from
the current policy, MAFOCOPS first finds the optimal update policy by solving
a constrained optimization problem in the nonparameterized policy space. Then,
the update policy is projected back into the parametric policy space to achieve
a feasible policy. Notably, our method is first-order in nature, ensuring the ease
of implementation, and exhibits an approximate upper bound on the worst-case
constraint violation. Empirical results show that our approach achieves remarkable
performance while satisfying safe constraints on several safe MARL benchmarks.

1 Introduction

Cooperative multi-agent systems play a significant role in various domains, where a group of agents
coordinate with each other to accomplish tasks and collaboratively optimize cumulative rewards for
the team[1, 2]. Such a setting is frequently employed in many real-life scenarios such as robotics
[3], autonomous vehicles [4], traffic light control [5] and the smart grid [6].Thanks to the recent
remarkable advance of reinforcement learning techniques in various complex tasks [7–9], multi-agent
reinforcement learning (MARL) has attracted substantial attention and quite a few algorithms have
been proposed, including value-based methods [10–14] and policy gradient methods [15–18]. Despite
the notable achievement in academia, most MARL algorithms prioritize policy optimization solely
for reward maximization, while disregarding potential negative or harmful consequences resulting
from the agents’ behaviors. Consequently, these methods can not be directly deployed in practice. In
reality, many applications often require the agents to refrain from taking certain actions or visiting
particular states [19, 20]. For instance, an unmanned car must adhere to traffic regulations by not
crossing a red light, even while pursuing its destination, in order to prioritize safety.

To address the above issues, researchers have been devoted to developing algorithms that learn policies
which adhere to safety constraints and great progress has been made in single-agent RL setting[20–
23]. However, it is still a daunting challenge to develop safe policies for multi-agent systems.
Because of the existence of multiple agents, the environment may suffer from non-stationarity due to
simultaneously learning agents, posing a non-negligible challenge to the training process. Moreover,
ensuring safety in MARL is highly intricate. To provide a better depiction of the inherent challenges,
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Figure 1: An example to illustrate the challenges in safe MARL. Reward distribution is presented in
the policy space for each agent. Green rectangles delineate the individual safe areas for each agent
and the blue ones depict the joint safe area. Green arrows symbolize the update direction for each
agent whereas the dashed ones signify the intended update direction if each agent solely considers its
own objectives and the crosses represent that the dashed update direction is unsuitable in safe MARL.

we show an illustrative example in Figure 1. This figure showcases the policy space for each agent,
wherein the reward distribution is presented. The green rectangles delineate the individual safe areas
for each agent and the blue ones depict the joint safe area. The green arrows symbolize the update
direction for each agent, whereas the dashed ones signify the intended update direction if each agent
solely considers its own objectives. When agents are randomly initialized, they naturally tend to
update the policy along the dashed line arrows to maximize the reward. However, due to the presence
of safety constraints, they must adjust their updates along the solid line arrows to ensure their policies
fall within the safe area. This is non-trivial as it may conflict with their goal of reward maximization.
Furthermore, after individually addressing their safety constraints, the agents must also consider the
safety constraints of others to collectively converge to the joint safe area, adding more complexity to
the optimization process for the entire system. The interplay of these factors underscores the inherent
difficulties in solving the problem of safe MARL.

Recently, as a notable advancement in the field of safe MARL, Multi-Agent Constrained Policy
Optimization (MACPO) [24] has been proposed as a safe and effective solution. MACPO attains the
properties of both monotonic improvement guarantee and safety constraints satisfaction guarantee at
every iteration during training. However, this algorithm involves solving an optimisation problem
using Taylor approximations and inverting a high-dimensional Fisher information matrix. As a
result, the computation is very complex and the policy update often becomes infeasible. To alleviate
this issue, it requires additional recovery steps, which, however, sometimes causes updates to be
backtracked and samples to be wasted.

Taking inspiration from the sequential policy update scheme introduced in HATRPO [18], we
have devised a simpler approach to incorporate safety constraints in solving safe MARL problems
compared with MACPO. The resulting algorithm, Multi-Agent First Order Constrained Optimization
in Policy Space (MAFOCOPS), aims to address the following question of how to achieve the best
constraint-satisfying policy update given the current policy for each agent. Our method follows a two-
step process to give a solution to this problem. First, based on the theoretical foundations presented in
MACPO, we demonstrate that the best policy update has a near-closed form solution when attempting
to solve the optimal policy in the nonparametric policy space. Subsequently, we project the policy
back into the parametric policy space as direct evaluation of the optimal policy is usually not feasible.
This can be realized by sampling from the current policy and evaluating a loss function between the
parameterized policy and the optimal policy obtained in the nonparametric policy space. Notably,
our algorithm only employs first-order approximations, making it straightforward to implement, and
has an approximate upper bound for worst-case constraint violation. To validate the effectiveness of
our approach, we conduct experiments on two safe MARL benchmarks proposed by [24], namely
Safe MAMuJoCo and Safe MAIG. The experimental results demonstrate the superior performance of
MAFOCOPS compared to MACPO, despite being a simpler algorithm.
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2 Related Work

Safety has become a crucial and longstanding concern in the field of reinforcement learning [25]. In
this section, we discuss recent advancements in the domain of safe RL for multi-agent environments.

The realm of safe multi-agent reinforcement learning is a nascent area of research that has gained
increasing importance [26]. Several attempts have been made to tackle safe MARL, but most existing
approaches have limitations. For example, CMIX [27] leverages the value function decomposition
method and modifies the reward function to account for constraint violations, yet this algorithm fails
to provide safety guarantees during training. Another approach is Safe Dec-PG [28] which proposes
a decentralized policy gradient descent-ascent method by means of a consensus network and employs
a primal-dual framework to balance reward maximization and cost minimization. Nevertheless, the
consensus requirement in this work equivalently imposes an extra constraint of parameter sharing
among neighbouring agents, potentially leading to sub-optimal policy [18]. It is noteworthy that
most current safe MARL methods are tailored to robotics tasks, utilizing techniques such as barrier
certificates [29, 30] or model predictive shielding [31] to address safety issues. These methods,
however, are specifically designed for robotics applications. Besides, they often require supervised
learning based approaches or specific assumptions concerning the state space and environment
dynamics.

As a recent remarkable solution, MACPO [24] incorporates a sequential policy update scheme. This
algorithm develops the multi-agent trust region learning based on CPO [20] and provides theoretical
guarantees of both monotonic improvement in reward and compliance with cost constraints in a
multi-agent setting. To achieve practical solutions to the safe MARL problems, the policy for each
agent needs to be parameterized with a neural network, which effectively represents the policy in
policy space. However, achieving parameterized policies in MACPO involves solving optimization
problems using first and second-order Taylor approximation, which includes taking the inverse of
Fisher information matrix, and the computation is implemented by the conjugate gradient method [32].
These operations can introduce nonnegligible approximation errors, thereby compelling MACPO
to undertake additional steps during each update in the training process in order to recover from
constraint violations. In contrast, our algorithm takes a different approach by solving the optimization
problem within the nonparametric space and then projecting the results back into the parameter
space. By leveraging a simple first-order method to eliminate the approximation error, our algorithm
ultimately outperforms MACPO.

3 Problem Formulation

A safe MARL problem can be formulated as a Constrained Markov Decision process, which is
described by a tuple denoted as < N ,S,A, p, ρ0, γ, R,C, c >. Here, N = {1, 2, · · · , n} denotes
the set of agents involved in the system, S is the state space, A = Πn

i=1Ai represents the product of
the action spaces of agents, i.e., joint action space, p : S ×A× S → R is the probabilistic transition
function, ρ0 is the initial state distribution and γ ∈ [0, 1) is the discounted factor. The team reward
function R : S ×A→ R maps state and joint actions to a scalar reward while C = {Ci

j}i∈N
1≤j≤mi is

the set of sets of cost functions denoted in the form Ci
j : S × Ai → R (every agent i has mi cost

functions). The set of corresponding cost-constraining values is given by c = {cij}i∈N
1≤j≤mi . At time

step t, the multi-agent system is situated in state st and every agent i selects an action ait based on its
policy πi(ai|s), forming a joint action at = (a1t , · · · , ant ) and joint policy π(a|s) = Πn

i=1π
i(ai|s).

This leads the environment to transit to a new state st+1 ∼ p(·|st,at) according to the probabilistic
transition function and the system receives the reward R(st, at) while each agent i incurs individual
costs Ci

j ,∀j = 1, · · · ,mi. This study focuses on a fully-cooperative multi-agent setting where all
agents share the same reward function, aimed at maximizing the expected total reward:

J(π) ≜ Es0∼ρ0,a0:∞∼π,s1:∞∼p[

∞∑
t=0

γtR(st,at)].

Moreover, we impose that each agent i satisfies its safety constraint, which is defined as

J i
j(π) ≜ Es0∼ρ0,a0:∞∼π,s1:∞∼p[

∞∑
t=0

γtCi
j(st, a

i
t)] ≤ cij ,∀j = 1, · · · ,mi.
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We define the state-action value and the state-value function in terms of reward as

Qπ(s,a) ≜ Es1:∞∼p,a1:∞∼π[

∞∑
t=0

γtR(st,at)|s0 = s,a0 = a], Vπ(s) ≜ Ea∼π[Qπ(s,a)].

It’s worth noting even though the action ait taken by agent i does not directly impact the costs
{Ck

j (st, a
k
t )}

mk
j=1 of other agents k ̸= i from the above formulation, the total costs can still be

influenced by this action implicitly due to its influence on the subsequent state st+1. This formulation
captures the realistic multi-agent interactions in real world. For instance, when a car runs a red light,
although other cars may not be immediately endangered by this action, the resulting disruption in
traffic flow may lead to potential hazards later on. To illustrate the jth cost function of agent i, we
express the corresponding state-action cost value function and the state cost value function as below:

Qi
j,π(s,a) ≜ Ea−i∼π−i,s1:∞∼p,a1:∞∼π[

∞∑
t=0

γtCi
j(st, a

i
t)|s0 = s, ai0 = ai],

V i
j,π(s) ≜ Ea∼π,a∼π[

∞∑
t=0

γtCi
j(st, a

i
t)|s0 = s].

Notably, although similar in form to traditional Qπ and Vπ, the cost value function Qj,π and Vj,π

involve additional indices i and j, where the subscript i refers to an agent and j denotes the jth cost.

Motivated by the sequential policy update scheme, we pay close attention to determining the con-
tribution of different subsets of agents to overall performance in this study. We denote an arbitrary
subset {i1, · · · , ih} of agents as i1:h while −i1:h refers to its complement. Given the agent subset
i1:h, we define the multi-agent state-action value function:

Qi1:h
π (s,ai1:h) ≜ Ea−i1:h∼π−i1:h [Qπ(s,a

i1:h ,a−i1:h)].

Furthermore, for disjoint sets i1:h and j1:k, the multi-agent advantage function is defined as follows:

Ai1:h
π (s,aj1:k ,ai1:h) ≜ Qj1:k,i1:h

π (s,aj1:k ,ai1:h)−Qj1:k
π (s,aj1:k).

An interesting and critical observation concerning the aforementioned multi-agent advantage function
is that the advantage Ai1:h

π can be written as the sum of sequentially-unfold multi-agent advantages
of individual agents, that is,

Lemma 1 (Multi-agent advantage decomposition [18]) For any state s ∈ S, subsets of agents
i1:h ∈ N and joint action ai1:h , the following identity holds

Ai1:h
π (s,ai1:h) ≜

h∑
j=1

Aj
π(s,a

i1:j−1 , aij ).

4 Method

Expanding on the above foundational concepts and the derivatives of multi-agent trust region learning
with constraints, MACPO provided an important insight. It highlighted that when the policy changes
for all agents are sufficiently small, each agent can learn a better policy π̄i by only considering its
own surrogate return and costs, which is consistent with the sequential policy update scheme. In our
work, building upon the formulas in MACPO, we can deduce that, for agent ih and the index of its
cost functions j, given the joint policy πθk at the kth iteration and updated policies of the previous
agent sets i1:h−1, namely π

i1:h−1

θk+1
, the new policy is obtained by solving the following optimization

problem:
maximize

π
ih
θ

E
s∼ρπθk

,ai1:h−1∼π
i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)], (1)

s.t.J ih
j (πθk) + Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)] ≤ cihj ,∀j ∈ 1, · · · ,mih , (2)

D̄KL(π
ih
θ , πih

θk
) ≤ δ. (3)

where D̄KL(π
ih
θ , πih

θk
) ≜ Es∼ρπθk

[DKL(π
ih
θk
(·|s), πih

θ (·|s))]. A simple proof is presented in Ap-
pendix A. When solving the optimization problem (1-3), we use a two-step approach:
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1. For agent ih, when provided with the joint policy π̄θk and updated policy π
i1:h−1

θk+1
, find an

optimal update policy πih∗ in the nonparameterized policy space, denoted by Π.

2. Project the policy found in previous step back into parameterized policy space Πθ by solving
for the closest policy πθ ∈ Πθ to obtain πih

θk+1
. Here we consider the set of parameterized

policies Πθ = {πθ : θ ∈ Θ} ∈ Π which allows for evaluation and sampling.

4.1 Finding the Optimal Update Policy

In the first step, we aim to find the optimal nonparameterized policy and propose the following
solutions (see Appendix B for proof):

Theorem 1. For agent ih, we define bihj = cihj − J ih
j (πθk). If πθk is a feasible policy, the optimal

policy takes the form

πih∗(a|s) =
π
ih
θk
(a|s)

Zλj ,νj (s)
exp{ 1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))}, (4)

where ηπθk
(s, aih) = E

ai1:h−1∼π
i1:h−1
θk+1

[Aih
πθk

(s, ai1:h−1 , aih)],Zλj ,νj
(s) is the partition function that

ensures Equation 4 to be a valid probability distribution, and λj as well as νj are solutions to the
following optimization problem:

min
λj ,νj≥0

λjδ + νjb
ih
j + λjEs∼ρπθk

,aih∼πih∗ [logZλj ,νj (s)]. (5)

The structure of the optimal policy exhibits an intuitive nature, as it assigns a substantial probability
mass to regions of the state-action space with high returns. This allocation is counterbalanced by a
penalty term multiplied by the cost advantage. Another desirable property of the optimal update policy
is that for feasible policy πθk , it has an upper bound for worst-case guarantee for cost constraint
satisfaction according to Lemma.2 in MACPO [24].

4.2 Approximating the Optimal Update Policy

When addressing the optimization problem 1-3 in the first step, the optimal update policy for agent
ih may not necessarily reside within parameterized policy space Πθ. Consequently, evaluating or
sampling from this policy becomes unfeasible. To this end, in the second step, we need to project the
optimal update policy back into the parameterized policy space by minimizing the loss function:

L(θ) = Es∼ρπθk
[DKL(π

ih
θ ||π

ih∗)(s)]. (6)

In this context, πih
θ ∈ Πθ represents some projected policy that serves as an approximation of the

optimal update policy. To minimize this loss function, first-order methods can be employed. In doing
so, we can leverage the following result as a useful tool in our optimization efforts:

Corollary 1. The gradient of L(θ) takes the form

∇θL(θ) = Es∼ρπθk
[∇θDKL(π

ih
θ ||π

ih∗)[s]], (7)

where

∇θDKL(π
ih
θ ||π

ih∗)[s] = ∇θDKL(π
ih
θ ||π

ih
θk
)− 1

λj
E

a∼π
ih
θk

[
∇θπ

ih
θ (a|s)

π
ih
θk
(a|s)

(ηπθk
(s, aih)−νjAih

j,πθk
(s, aih))].

(8)
The proof is shown in Appendix C.

It’s to be noted that 27 can be estimated by sampling from the trajectories generated by policy πθk ,
which allows us to train our policy using stochastic gradients, a key aspect of our methodology. This
corollary serves as a guiding framework for our algorithm. At every iteration, we begin with a policy
πθk , utilizing it to generate trajectories and collect relevant data. Subsequently, we employ this data
in conjunction with 5 to estimate λj and νj . We then draw a minibatch from the collected data to
estimate∇θL(θ) as outlined in Corollary 1. After taking a gradient step using Equation 27, we draw
another minibatch and repeat the process.
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4.3 Practical Implementation

For agent ih, solving the dual problems presented in 5 is computationally challenging when dealing
with large state/action spaces as calculating the partition function Zλj ,νj (s) often involves evaluating
a high-dimensional integral or sum. Moreover, λj and νj are dependent on the iteration k and need to
be adjusted at every iteration to ensure the effectiveness of optimization.

Based on the structure of the optimal update policy, it is observed that as λj → 0, πih∗ tends to
be greedy while the policy becomes more exploratory when λj increases. We note that λj exhibits
similarities to the temperature term utilized in maximum entropy reinforcement learning [33]. Fixed
values of λ have been demonstrated to yield reasonable outcomes in training [34, 35, 22]. In practical
implementations, we have observed favorable results by using fixed λj through hyperparameter
sweeps. However continuous adaptation of νj during training is necessary to ensure cost constraint
satisfaction. In this regard, we appeal to an intuitive heuristic based on primal-dual gradient methods
[36] to determine the appropriate value of νj . Recall that by strong duality, the optimal λ∗

j and ν∗j
minimizes the dual function 5 which we will denote by L(πih∗, λj , νj). Then we can adopt gradient
descent w.r.t νj to minimize L(πih∗, λj , νj) as follows:

Corollary 2. The derivative of L(πih∗, λj , νj) w.r.t νj is

∂L(πih∗, λj , νj)

∂νj
= b

ih
j − Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)]. (9)

The proof is shown in Appendix D.

The last term in the gradient expression poses a challenge since πih∗ may not locate in parameterized
policy space, leading direct evaluation of the term to be infeasible. Nevertheless, due to the proximity
between πih

θ and πih∗ enforced by the KL divergence constraint, it’s reasonable to assume that
Es∼ρπθk

,aih∼πih∗ [Aih
j,πθk

(s, aih)] ≈ E
s∼ρπθk

,aih∼π
ih
θk

[Aih
j,πθk

(s, aih)] = 0. In practice, we have

observed that setting this term to zero yields favorable outcomes, which gives the update term as
follows:

νj ← proj
νj

[νj − α(c
ih
j − J

ih
j (πθk))], (10)

where α is the step size to control the magnitude of the update. The projection operator projνj

ensures that νj remains within the interval [0, νmax], with νmax chosen to prevent νj from being
excessively large. In practical applications, the estimation of J ih

j (πθk) can be accomplished using
Monte Carlo methods by leveraging trajectories collected from πθk . This approach aligns with the
update rule employed in MACPO [24]. We recall that in 4, νj acts as a cost penalty term where
increasing νj makes the likelihood of state-action pairs with higher costs being sampled by πih∗

diminish. Consequently, the update rule presented in 10 exhibits an intuitive characteristic: it raises
νj if J ih

j (πθk) > cihj , indicating a violation of the cost constraint for πθk , and reduces νj otherwise.
Using the proposed update rule, νj can be updated before updating the policy parameter πih .

To be noted, our algorithm is a first-order method, which implies that the approximations made
are accurate only around the initial condition (i.e., πih

θ = πih
θk

). To better enforce this condition,
we have introduced a per-state acceptance indicator function I(sj) = 1

DKL(π
ih
θ ,π

ih
θk

)≤δ
to 27. This

function helps in rejecting sampled states whose DKL(π
ih
θ , πih

θk
)[s] is too large, thereby improving

the accuracy of the gradient update. The resulting sample gradient update equation is as follows:

∇θL(θ) =
1

N

N∑
j=1

[∇θDKL(π
ih
θ ||π

ih
θk
)[sj ]−

∇θπ
ih
θ (aj |sj)

λπ
ih
θk
(aj |sj)

(η̂πθk
(s, aih)− νjÂ

ih
j,πθk

(s, aih))]I(sj), (11)

where N is the number of samples collected using policy πθk . The estimates of the advantages
functions for the returns and costs, denoted as η̂πθk

and Âih
j,πθk

, are obtained from critic networks
referring to MACPO. We estimate these advantages using Generalized Advantage Estimator (GAE)
[37] and apply stochastic gradient descent using 11. During the training process, our algorithm
employs the early stopping criterion to ensure that the updated policy satisfies the trust region
constraint. Specifically, this criterion is defined as 1

N

∑N
j=1 DKL(π

ih
θ ||π

ih
θk
)[sj ] > δ. To update the

value network, we minimize the Mean Square Error (MSE) between the output and target value. The
procedure of our algorithm is presented in the Appendix E.
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Figure 2: Example tasks in Safe MAMuJoCo and Safe MAIG. (a): Safe 2x4-Ant, (b): Safe 2x3-
HalfCheetah, (c): Safe 2x3-ManyAgent Ant, (d): ShadowHandOver. In each of these tasks, the body
parts of the robots are controlled by different agents. Agents collaborate to manipulate the robot
while ensuring that the safety constraints are not violated.

5 Experiments

We evaluate the effectiveness of our algorithm on two benchmarks of safe MARL: Safe MAMuJoCo
and Safe Multi-Agent Isaac Gym (MAIG). The former is a safety-aware modification of MAMuJoCo
[38], where there exist obstacles in the environment. Meanwhile, Safe MAIG is developed on top of
Issac Gym [39], a GPU-based platform for robotics tasks. Being an extension of DexterourHands [40],
Safe MAIG requires agents to control the robot hands while optimizing both the reward and safety
performance. We present some example tasks in Figure 5 and more details about the environments
are introduced in the appendix.

While our primary aim is to propose a simpler alternative to MACPO, we also evaluate the perfor-
mance of MAPPO-Lagrangian (MAPPO-L), which is put forward alongside MACPO [24]. This
method adopts Lagrangian multipliers to solve optimization problems in MACPO. Without the
requirements of repetitive computation of the Hessian matrix whose size grows quadratically with the
dimension of the parameter vector, the Lagrangian method is also first-order and simple to implement.
However, unlike MACPO and MAFOCOPS, whether this algorithm satisfies any worst-case constraint
guarantees remains unknown. In addition, we compare the results of our algorithm with two standard
MARL baseline algorithms, namely MAPPO [41]and HAPPO [18]. Both sets of experiments are
carried out using the MACPO codebase and our experiments are conducted on GeForce RTX 3090
GPUS. More implementation details can be found in supplementary materials.

5.1 Performance on Safe MAMuJoCo

In this section, we select several experiment scenarios of Safe MAMuJoCo and execute each algorithm
for 10 million samples per task. The cost thresholds are determined by taking 50% of the cost
achieved by standard MARL algorithms after 1 million sample runs. To be noted, while most training
parameters remain the same as those in the codebase, such as the learning rate and settings of
optimizers, we adjusted some certain hyperparameters associated with the cost thresholds to make
the algorithms best suit the experiment scenarios. It is noteworthy that the performance of MAPPO-L
highly relies on the Lagrangian coefficient, rendering it more sensitive to the hyperparameters. In light
of this observation, we adopt distinct hyperparameters for MAPPO-L in different categories of tasks.
In contrast, the other two safe MARL algorithms are implemented with uniform hyperparameter
settings across all experimental scenarios in this benchmark, indicating their potential efficacy.

Due to page limit, we present partial results of our experiments in Figures 3 and more results can
be seen in Appendix G. The experimental results show that all the safety-aware algorithms are
able to satisfy the safety constraints while our proposed MAFOCOPS manages to achieve the best
overall performance across all tasks. Even when our method achieves similar performance to the
other two algorithms in HalfCheetah scenarios, it still exhibits faster learning, demonstrating the
advantages of our approach. For MAPPO-Lagrangian, we note that this baseline algorithm always
achieves a similar performance as MAPPO, except in HalfCheetah scenarios where the cost threshold
is significantly smaller compared to cost achieved by HAPPO and MAPPO. This may be due to
that MAPPO-Lagrangian being built upon Lagrangian multiplier combined with standard MARL
algorithms, leading to a performance more similar to safety-unaware MARL algorithms. In addition,
from our discussion about MAPPO-L algorithm, we can know that it maintains a rather soft safety
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(a) ManyAgent Ant 2x3, ManyAgent Ant 3x2, ManyAgent Ant 6x1, Ant 2x4d

(b) Ant 2x4, Ant 4x2, HalfCheetah 2x3, HalfCheetah 3x2

Figure 3: Performance comparisons on tasks of Safe ManyAgent Ant, Ant, and HalfCheetah in terms
of cost and reward. The safety constraint values for these presented tasks are set to be 25, 50 and
30, respectively.The solid line shows the median performance across 5 seeds and the shaded areas
correspond to the 25-75% percentiles.

awareness, but the other two algorithms reaches safety via hard constraints. Therefore, MACPO and
MAFOCOPS possess more promising properties, thus being the focus of our study.

Interestingly, our intuition suggests that a higher number of agents usually leads to increased com-
plexity of the environment and hence worse performance. However, this phenomenon is not always
observed. We assume that this is because, in the same type of map, the multi-agent system has to
control the same robot, and the number of agents determines how the robot is partitioned. Fewer
agents means that each agent has to control more parts of the robot, making the difficulty of the envi-
ronment non-linearly dependent on the number of agents. Whereas, in scenarios of 6x1 ManyAgent
Ant, we still note that as the number of agents increases, there exists a degradation in the performance
of MACPO, which can attributed to the complexity of the computation worsening with the growth
in the number of agents. As for MAFOCOPS, our first-order method shows stronger resistance to
task complexity, showing the advantages of our algorithm when coping with multi-agent problems.
What’s more, we provide videos of the trained policies of both our algorithm and MACPO in the
supplementary materials to intuitively demonstrate the benefits that our approach brings.

5.2 Performance on Safe MAIG

Apart from experiments in Safe MAMuJoCo, we also conduct experiments in the Safe MAIG
benchmark. In this part of experiment, the cost thresholds are set as 25% of the cost obtained by
standard MARL algorithms after running for one-tenth of the entire training process. The total
training settings are the same as those in Safe MAMuJoCo, while some specific hyperparameter
values are adjusted considering the great difference between these two experiment environments.

Experiment results in this benchmark are presented in Figure 4. Under this complicated environment,
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Figure 4: Performance comparisons on tasks of Safe MAIG. The safety constraint value for Shad-
owHandOver is set to be 15 and that for another task is set to be 110. The solid line shows the median
performance across 5 seeds and the shaded areas correspond to the 25-75% percentiles.

it can be observed that the soft constraint algorithm, MAPPO-L, exhibits a delay in guaranteeing
safety. Notably, in ShadowHandReOrientation task, it experiences a sudden drop in cost, which
significantly impacts the reward. Conversely, although similar phenomenon occurs with MAFOCOPS,
our method manages to optimize the reward in this condition and attains an acceptable performance.
Although the reward of MACPO remains relatively stable, its final performance is not as favorable as
our method. The different performance between MAPPO-L and the other two algorithms indicates
that the property of upper bound violation is important in safe reinforcement learning, which also
demonstrates the significance of our work.

5.3 Efficiency Analysis between MAFOCOPS and MACPO

As a first-order method, our MAFOCOPS not only eliminates the approximation errors when solving
the optimization problems, leading to better performance, but also significantly reduces the compu-
tation cost. In this part, we evaluate the memory cost and frame per second (FPS), which is often
adopted to measure the training efficiency of reinforcement learning algorithms, between MAFOCPS
and MACPO. For simplicity, we adopt memory monitor tools to track memory utilization after
200000 samples and record the average FPS metric.

Due to the page limit, the results are shown in Appendix H of supplementary materials. From the
results, it is evident that our algorithm obtains substantial improvement in computational efficiency
and shows the ability to effectively save memory resources, especially when the number of agents
grows. Consequently, we can infer that when confronted with tasks with multiple agents, second-order
algorithms may be ill-suited due to their substantial computational costs. In contrast, our proposed
method can successfully address such scenarios without succumbing to the computational burden.

5.4 Sensitivity Analysis

Based on the description provided in Section 4, it is apparent that the Lagrange multipliers, λj

and νmax, are crucial to the performance of our approach. In addition, analyzing the sensitivity
of our algorithm to changes in the safety bound is also meaningful. Hence, we seek to investigate
the sensitivity of our algorithm to these hyperparameters as well as the safety bound. In this way,
we conduct some ablation studies using some scenarios of Safe MAMuJoCo and more details are
presented in Appendix I.

Considering the intricacy of multi-agent environments, it is difficult to delineate the correlation
between the performance of our method and the hyperparameters λj and νmax. Nonetheless, choosing
hyperparameters in proximity to the optimal values that we employed typically leads to favorable
outcomes. Moreover, our approach’s effectiveness is relatively insensitive to variations in these
hyperparameter values. As an illustration, even setting νmax = ∞ does not significantly affect
the reward achieved by our method, only resulting in an average 6.7% degradation. This finding
indicates the robustness of our method, and further underscores its superiority over other approaches.
What’s more, from the sensitivity of our method to safety bound, we learn that although the reward
performance of MAFOCOPS decreases with the stricter safety constraints, the algorithm’s overall
effectiveness remains unchanged across different safety levels.

6 Conclusion

In this paper, we introduce a novel method for training multi-agent systems while incorporating safety
constraints. Building upon the problem formulation and sequential update scheme established in the
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MACPO framework [24], our algorithm offers rigorous theoretical guarantees and relies exclusively
on first-order optimization techniques, thereby ensuring simplicity in its implementation. Different
from MACPO, which relies on second-order optimization to achieve parameterized policies, our
work proposes a fundamentally different way to tackle the optimization problem, complemented
by the comprehensive provision of derivatives. The empirical experiment results demonstrate the
outstanding performance and computation efficiency of our algorithm, compared to the more intricate
second-order method. To sum up, our paper offers a novel and distinct contribution to the realm of
safe multi-agent reinforcement learning, as evidenced by the distinctions in methodology, proofs, and
experimental results in comparison with previous work.

Because the benchmarks we adopt only return one cost for agents, the performance of our algorithm
across multiple costs is not evaluated. In the future, we plan to test our approach in more environments
and physical settings. Moreover, there exist a number of promising prospects for future research
such as incorporating off-policy data to further enhance the training efficiency. Designing methods
aimed at offline settings, which precludes interactions with environments, represents another valuable
direction for study.
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A Proof of the Optimization problem

According to the problem formulation, we give a definition of the “surrogate” cost, which aligns with
what is employed in MACPO [24]:

Definition. Let π be a joint policy, and π̄i be some other policy of agent i.Then for any of its costs of
index j ∈ 1, · · · ,mi, we define

Li
j,π(π̄

i) = Es∼ρπ,ai∼π̄i [Ai
j,π(s, a

i)].

In this way, consider π and π̄ be joint policies, i ∈ N be an agent and j ∈ 1, · · · ,mi be an index of
one of its costs. From the proof of Theorem 1 in TRPO [42], (in particular, equations (41) ∼ (45)),
applying it to joint policies π and π̄, we can conclude that

J i
j(π̄) ≤ J i

j(π) + Es∼ρπ,a∼π̄[A
i
j,π(s, a

i)] +
4α2γmaxs,ai |Ai

j.π(s, a
i)|

(1− γ)2
, (12)

where α = Dmax
TV (π, π̄) = maxsDTV (π(·|s), π̄(·|s)). According to the definition of total variance

divergence, defined by DTV (p||q) = 1
2

∑
i |pi − qi|, we can know that DTV (p||q) = DTV (q||p).

Using Pinsker’s inequality DTV (p||q)2 ≤ DKL(p||q)
2 [43], we can change the order of policy in the

divergence computation and obtain:

J i
j(π̄) ≤ J i

j(π) + Es∼ρπ,a∼π̄[A
i
j,π(s, a

i)] +
2γmaxs,ai |Ai

j.π(s, a
i)|

(1− γ)2
Dmax

KL (π̄,π). (13)

It’s to be noted that Es∼ρπ,a∼π̄[A
i
j,π(s, a

i)] = Es∼ρπ,ai∼π̄i [Ai
j,π(s, a

i)] as the actions of
other agents than i do not change the value of the variable inside of the expectation. Fur-
thermore, Dmax

KL (π̄,π) = maxsDKL(π̄(·|s),π(·|s)) = maxs(
∑n

l=1 DKL(π̄
l(·|s), πl(·|s))) ≤∑n

l=1 maxsDKL(π̄
l(·|s), πl(·|s))) =

∑n
l=1 D

max
KL (π̄l, πl). Setting νij =

2γmaxs,ai |Ai
j.π(s,ai)|

(1−γ)2 , we
can finally obtain:

J i
j(π̄) ≤ J i

j(π) + Li
j,π(π̄

i) + νij

n∑
l=1

Dmax
KL (π̄l, πl) (14)

The aforementioned equation is similar to Lemma 2 in MACPO, with the only difference being the
order of policies in the Kullback-Leibler (KL) divergence term. However, this variation does not
impact the subsequent derivations. To this end, we can establish the ultimate optimization problem
presented in our work as follows:

maximize
π
ih
θ

E
s∼ρπθk

,ai1:h−1∼π
i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)] (15)

s.t.J ih
j (πθk) + Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)] ≤ cihj ,∀j ∈ 1, · · · ,mih (16)

D̄KL(π
ih
θ , πih

θk
) ≤ δ. (17)

where D̄KL(π
ih
θ , πih

θk
) ≜ Es∼ρπθk

[DKL(π
ih
θk
(·|s), πih

θ (·|s))].

B Proof of Theorem 1

We first demonstrate the optimization problem to be solved when finding optimization problem within
nonparameterized policy space:

maximize
πih

E
s∼ρπθk

,ai1:h−1∼π
i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)] (18)

s.t.J ih
j (πθk) + Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)] ≤ cihj ,∀j ∈ 1, · · · ,mih (19)

D̄KL(π
ih , πih

θk
) ≤ δ (20)

Proof. We initiate our analysis by demonstrating the convexity of Problem (18-20) is convex w.r.t.
πih . Here we know that πθk and θ

i1:h−1

k+1 are given and J ih
j (πθk) remains constant w.r.t. πih . In this

13



way, E
s∼ρπθk

,ai1:h−1∼π
i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)] and Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)]

are similar so that we only need to consider the latter one. We can divide this formula like this:
Es∼ρπθk

,aih∼πih [A
ih
j,πθk

(s, aih)] =
∑

s ρπθk
(s)

∑
aih πih(aih |s)Aih

j,πθk
(s, aih), where ρπθk

(s)

represents state visitation frequencies. We easily know that ρπθk
(s) is not affected by πih . Similarly,

for each action of agent ih, the Aih
j,πθk

(s, aih) is also not relative to πih . To this end, when πθk and

θ
i1:h−1

k+1 are given, Es∼ρπθk
,aih∼πih [A

ih
j,πθk

(s, aih)] is convex to πih . Applying these analysis, the
convexity of Equation 18 and 19 can be confirmed. Concerning constraint 20, it can be rewritten
as

∑
s ρπθk

(s)DKL(π
ih , πih

θk
)[s] ≤ δ. Notably, KL divergence is convex w.r.t. its first argument,

hence constraint 20 can be represented as a linear combination of convex functions, confirming its
convexity as well. As πih

θk
fulfills constraint 19 and serves as an interior point within the set defined

by constraint 20, therefore Slater’s constraint qualification holds and strong duality holds.

Based on above discussion, we can solve for the optimal value for the problem (18 - 20) p∗ by solving
the corresponding dual problem. We define bihj = cihj − J ih

j (πθk), then

L(π, λj , νj) = λjδ + νjb
ih
j + Es∼ρπθk

[E
ai1:h−1∼π

i1:h−1
θk+1

,aih∼πih
[Aih

πθk
(s, ai1:h−1 , aih)]

− νjEaih∼πih [A
ih
j,πθk

(s, aih)]− λjDKL(π
ih ||πih

θk
)]

(21)

Therefore,
p∗ = max

πih
∈Π

min
λj ,νj≥0

L(π, λj , νj) = min
λj ,νj≥0

max
πih

∈Π
L(π, λj , νj) (22)

where we invoked strong duality in the second equality. According to the theory of convex optimiza-
tion [44], if πih∗, λ∗

j , ν
∗
j are optimal for 22, πih∗ is also optimal for Problem 18-20.

Consider the inner maximization problem in 22, we can decompose this problem into separate
problems, one for each s.

maximize
πih

Eaih∼πih [Eai1:h−1∼π
i1:h−1
θk+1

[Aih
πθk

(s, ai1:h−1 , aih)]− νjA
ih
j,πθk

(s, aih)

− λj(logπ
ih(a|s)− logπih

θk
(a|s))],

∑
πih(a|s) = 1

(23)

As E
ai1:h−1∼π

i1:h−1
θk+1

[Aih
πθk

(s, ai1:h−1 , aih)] is irrelevant to πih , we rename this term as ηihπθk
(s, aih)

for simplicity. This is clearly a convex optimization problem which can be solved using a simple
Lagrangian argument. We can then get

G(πih) =
∑
a

πih(a|s)[ηihπθk
(s, aih)− νjA

ih
j,πθk

(s, aih)− λj(logπ
ih(a|s)− logπih

θk
(a|s)) + ζ]− ζ

(24)
where ζ is the Lagrange multiplier associated with the constraint

∑
πih(a|s) = 1. Differentiating

G(π) w.r.t for some a:
∂G

∂πih(a|s)
= ηihπθk

(s, aih)− νjA
ih
j,πθk

(s, aih)− λj(logπ
ih(a|s)− logπih

θk
(a|s)) + ζ (25)

Set 25 to 0 and similar to FOCOPS, we can know

πih∗(a|s) =
πih
θk
(a|s)

Zλj ,νj
(s)

exp{ 1
λj

(ηπθk
(s, aih)− νjA

ih
j,πθk

(s, aih))} (26)

where Zλj ,νj
(s) is the partition function that ensures πih∗ to be a probability function, i.e.,∑

a π
ih∗(a|s) = 1. Putting this π∗ back into equation 22, we can get

p∗ = min
λj ,νj≥0

λjδ + νjb
ih
j + Es∼ρπθk

,aih∼πih∗ [ηihπθk
(s, aih)− νjA

ih
j,πθk

(s, aih)− λj(logπ
ih∗(a|s)− logπih

θk
(a|s))]

= min
λj ,νj≥0

λjδ + νjb
ih
j + Es∼ρπθk

,aih∼πih∗ [ηihπθk
(s, aih)− νjA

ih
j,πθk

(s, aih)− λj(logπ
ih
θk
(a|s)− logZλj ,νj

+
1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))− logπih
θk
(a|s))]

= min
λj ,νj≥0

λjδ + νjb
ih
j + λjEs∼ρπθk

,aih∼πih∗ [logZλj ,νj (s)]
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What’s more, we give a simple description to show that for feasible policy πθk , the optimal policy
update πih∗ has an upper bound for worst-case guarantee for cost constraint satisfaction. For
agent ih, according to Equation 14, after getting the optimal joint update policy for all agents,
J i
j(π

∗) ≤ J i
j(πθk) + Li

j,πθk
(πih∗) + νihj

∑n
l=1 D

max
KL (πl∗, πl

θk
) can be obtained. According to

the definition of Li
j,π(π̄

i) and the constraint 16 in the optimization problem, we can know that
J i
j(πθk) + Li

j,πθk
(πih∗) ≤ cihj , thus leading to J i

j(π
∗) ≤ cihj + νihj

∑n
l=1 D

max
KL (πl∗, πl

θk
). In

addition, we can know that the kl divergence between update policy and πθk for each agent l has an

upper bound, which we call δl. To this end, we achieve J i
j(π

∗) ≤ cihj +
2γmaxs,ai |Ai

j.π(s,ai)|
(1−γ)2

∑n
l=1 δ

l

, which is the upper bound for worst-case guarantee for cost constraint satisfaction. According to the
result, we can know that with more agents, the upper bound for worst-case guarantee is higher, which
means that optimization for more agents is more challenging, consistent with our intuition.

C Proof of Corollary 1

Corollary 1. The gradient of L(θ) takes the form

∇θL(θ) = Es∼ρπθk
[∇θDKL(π

ih
θ ||π

ih∗)[s]] (27)

where

∇θDKL(π
ih
θ ||π

ih∗)[s] = ∇θDKL(π
ih
θ ||π

ih
θk
)− 1

λj
E

a∼π
ih
θk

[
∇θπ

ih
θ (a|s)

πih
θk
(a|s)

(ηπθk
(s, aih)−νjAih

j,πθk
(s, aih))]

(28)
Proof. Using the definition of KL divergence, we note that

DKL(π
ih
θ ||π

ih∗) = −
∑
a

πih
θ (a|s)logπih∗(a|s)+

∑
a

πih
θ (a|s)logπih

θ (a|s) = H(πih
θ , πih∗)[s]−H(πih

θ )[s]

(29)
where H(πih

θ )[s] is the entropy and H(πih
θ , πih∗)[s] is the cross-entropy. We expand the cross-entropy

term which gives us:

H(πih
θ , πih∗)[s] = −

∑
a

πih
θ (a|s)logπih∗(a|s)

= −
∑
a

πih
θ (a|s) ∗ log(

πih
θk
(a|s)

Zλj ,νj

exp{ 1
λj

(ηπθk
(s, aih)− νjA

ih
j,πθk

(s, aih))})

= −
∑
a

πih
θ (a|s) ∗ logπih

θk
(a|s) + logZλj ,νj

(s)− 1

λj

∑
a

πih
θ (a|s) ∗ (ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))

Then put this term back into Equation29:

DKL(π
ih
θ ||π

ih∗)[s] = −
∑
a

πih
θ (a|s) ∗ logπih

θk
(a|s) +

∑
a

πih
θ (a|s)logπih

θ (a|s) + logZλj ,νj (s)

− 1

λj

∑
a

πih
θ (a|s) ∗ (ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))

= DKL(π
ih
θ ||π

ih
θk
) + logZλj ,νj (s)−

1

λj
E

a∼π
ih
θk

[
πih
θ (a|s)

πih
θk
(a|s)

(ηπθk
(s, aih)− νjA

ih
j,πθk

(s, aih))]

In this way, take the gradient on both sides and we can get:

∇θDKL(π
ih
θ ||π

ih∗)[s] = ∇θDKL(π
ih
θ ||π

ih
θk
)− 1

λj
E

a∼π
ih
θk

[
∇θπ

ih
θ (a|s)

πih
θk
(a|s)

(ηπθk
(s, aih)−νjAih

j,πθk
(s, aih))]

(30)
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D Proof of Corollary 2

Corollary 2. The derivative of L(πih∗, λj , νj) w.r.t νj is

∂L(πih∗, λj , νj)

∂νj
= bihj − Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)] (31)

Proof. From the definition of L(πih∗, λj , νj) and above discussion, we can know that

L(πih∗, λj , νj) = min
λj ,νj≥0

λjδ + νjb
ih
j + λjEs∼ρπθk

,aih∼πih∗ [logZλj ,νj (s)] (32)

The first two terms is an affine function for νj we focus on the expectation in the last term.

∂πih∗(a|s)
∂νj

=
πih
θk
(a|s)

Z2
λj ,νj

(s)
[Zλj ,νj

(s) ∗
∂exp( 1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih)))

∂νj

− exp(
1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))) ∗
∂Zλj ,νj (s)

∂νj
]

For simplicity, we record exp( 1
λj
(ηπθk

(s, aih) − νjA
ih
j,πθk

(s, aih))) as e(x), so πih∗(a|s) =

π
ih
θk

(a|s)
Zλj,νj

(s) ∗ e(x). In this way,

∂πih∗(a|s)
∂νj

=
πih
θk
(a|s)

Z2
λj ,νj

(s)
[−

Aih
j,πθk

(s, aih)

λj
Zλj ,νj

(s)e(x)− e(x)
∂Zλj ,νj (s)

∂νj
]

= −
Aih

j,πθk
(s, aih)

λj
πih∗(a|s)− πih∗(a|s)

∂logZλj ,νj (s)

∂νj

(33)

Therefore, the derivative of the expectation in the last term of L(πih∗, λj , νj) can be written as:

∂

∂νj
Es∼ρπθk

,aih∼πih∗ [logZλj ,νj (s)] = E
s∼ρπθk

,aih∼π
ih
θk

[
∂

∂νj
(
πih∗(a|s)

πih
θk
(a|s)

logZλj ,νj (s))]

= E
s∼ρπθk

,aih∼π
ih
θk

[
1

πih
θk
(a|s)

(
∂πih∗(a|s)

∂νj
logZλj ,νj

(s) + πih∗(a|s)
∂logZλj ,νj (s)

∂νj
)]

= E
s∼ρπθk

,aih∼π
ih
θk

[
πih∗(a|s)
πih
θk
(a|s)

(−
Aih

j,πθk
(s, aih)

λj
logZλj ,νj

(s)−
∂logZλj ,νj (s)

∂νj
logZλj ,νj

(s)) +
∂logZλj ,νj (s)

∂νj
)]

= Es∼ρπθk
,aih∼πih∗(a|s)[−

Aih
j,πθk

(s, aih)

λj
logZλj ,νj

(s)−
∂logZλj ,νj (s)

∂νj
logZλj ,νj

(s)) +
∂logZλj ,νj (s)

∂νj
]

In addition, according to the definition of Zλj ,νj , we can get:

∂Zλj ,νj(s)

∂νj
=

∂

∂νj
(
∑
a

πih
θk
(a|s)exp{ 1

λj
(ηπθk

(s, aih)− νjA
ih
j,πθk

(s, aih))}

= −
∑
a

πih
θk
(a|s)

Aih
j,πθk

(s, aih))

λj
e(x) = −

∑
a

Aih
j,πθk

(s, aih))

λj

πih
θk
(a|s)

Zλj ,νj
(s)

e(x)Zλj ,νj (s)

= −
∑
a

Aih
j,πθk

(s, aih))

λj
πih∗(a|s)Zλj ,νj

(s)

= −
Zλj ,νj

(s)

λj
Eaih∼πih∗ [Aih

j,πθk
(s, aih))]

What’s more,

∂logZλj ,νj (s)

∂νj
=

∂Zλj ,νj (s)

∂νj

1

Zλj ,νj
(s)

= − 1

λj
Eaih∼πih∗ [Aih

j,πθk
(s, aih))] (34)
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Putting this result to above equation, we can get
∂

∂νj
Es∼ρπθk

,aih∼πih∗ [logZλj ,νj
(s)]

= Es∼ρπθk
,aih∼πih∗(a|s)[−

Aih
j,πθk

(s, aih)

λj
logZλj ,νj (s) +

Aih
j,πθk

(s, aih)

λj
logZλj ,νj (s)−

Aih
j,πθk

(s, aih)

λj
]

= − 1

λj
Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)]

To sum up, the derivative of νj to function L(πih∗, λj , νj) can be written:
∂L(πih∗, λj , νj)

∂νj
= bihj − Es∼ρπθk

,aih∼πih∗(a|s)[A
ih
j,πθk

(s, aih)] (35)

where bihj = cihj −J ih
j (πθk). In this way, we can update νj by νj ← projνj

[νj−α(cihj −J ih
j (πθk))]

E Procedure of MAFOCOPS

In this section, we describe the procedure of our algorithm, outlined in Algorithm 1. To be noted,
hyperparameters for each agent are identical throughout the algorithm.

Algorithm 1 MAFOCOPS

Require: number of agents n, number of updates K, minibatch size B, temperature {λj}1≤j≤mi ,
initial cost constraint parameter {νj}1≤j≤mi , cost constraint parameter bound vmax, learning
rate for cost constraint parameter αν , trust region bound δ, cost bound bj

1: InitializeInitializeInitialize, policy networks {πi
θ0
, i ∈ N}, global value network {ϕ0} and cost value networks

{ϕi
j,0}i∈N

1≤j≤mi , replay buffer B
2: for k = 0, 1, . . . do
3: Generate trajectories τ ∼ πθkπθkπθk , save the data into the buffer and sample a batch of data;
4: Estimate the C-returns ĴC by averaging over the cost return for all episodes.
5: Compute the advantage functions Âπθk

(s,aaa) and Âi
j,πθk

(s, ai) using GAE;
6: Draw a permutation i1:n of agents at random.
7: Set M i1(s,a) = Âπθk

(s,aaa)
8: for agent ih = i1, i2, · · · , in do
9: Update νj by νj by νj ← projνj

[νj − α(cihj − Ĵ ih
C,j(πθkπθkπθk))],∀j = 1, · · · ,mih

10: for K epochs do
11: for each minibatch data of size B do
12: Update value networks (and cost value networks analogously) by minimizing the MSE

loss ϕk+1 = argminϕ

∑T
t=0(Vϕk

(st)− R̂t)
2, where R̂ is the target return.

13: Update policy network by the derived equation of∇θL(θ) (Eq. 11), where η̂πθk
(s, aih)

is estimated by M i1:h(s,a).
14: end for
15: if D̄KL(π

ih , πih
θk
) ≥ δ then

16: Break
17: end if
18: end for

19: Compute M i1:h+1(s,a) =
π
ih

θ
ih
k+1

(aih |oih )

π
ih

θ
ih
k

(aih |oih )
M i1:h(s,a), unless h = n

20: end for
21: end for

F Experiment Environment Introduction

In this section, we introduce the environments that we adopt in the experiments.
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Figure 5: Specific tasks in Safe MAMuJoCo. (a): Ant Task: Ant 4x2 with three folding Jagged (30◦)
line walls, (b): HalfCheetah Task: HalfCheetah 2x3 with the moving obstacles, (c): ManyAgent Ant
Task: ManyAgent Ant 2x3 inside one folding line walls (corridor width is 9 m).

F.1 Safe MAMuJoCo

This environment is an extension of MAMuJoCo [38], maintaining the background environment,
agents, physics simulator, and reward function. However, in the Safe MAMuJoCo setting, additional
obstacles such as walls or pitfalls are introduced, and the environment emits cost with the increasing
risk of an agent stumbling upon an obstacle. Here, we mainly introduce the scenarios that we employ
in our work and present them in Figure 5.

ManyAgent Ant task & Ant task The corridor in the environment is bounded by two walls, with
a width of 9 m for ManyAgent Ant and 10 m for Ant. The environment emits the cost of 1 for an
agent, if the distance between the robot and the wall is less than 1.8 m, or when the robot topples
over, which can be described as

ct =

{
1, 0.2 ≤ ztorso,t+1 ≤ 1.0, zrot > −0.7, ||xtorso,t+1 − xwall||2 ≥ 1.8
0, otherwise

, (36)

where ztorso,t+1 and xtorso,t+1 is the robot’s torso’s z-coordinate and x-coordinate at time t + 1,
zrot is the robot’s rotation’s z-coordinate and xwall denotes the x-coordinate of the wall.

HalfCheetah task In these maps, the HalfCheetah agents move inside a corridor (which constraints
their movement, but does not induce costs). Concurrently, there are pitfalls within the corridor that
also move. When an agent is too close to a pitfall, specifically when the distance between an agent
and a pitfall is less than 9 m, a cost of 1 will be emitted.

ct =

{
1, ||ytorso,t+1 − yobstacle||2 ≥ 9
0, otherwise

, (37)

where the y-coordinate of the robot’s torso is represented by ytorso,t+1 and yobstacle denotes the
y-coordinate of the moving obstacles.

F.2 Safe Multi-Agent Isaac Gym

This environment builds upon Issac Gym platform [39], renowned for its GPU-accelerated capabili-
ties, and leverages the powerful Nvidia PhysX engine. Extending from the existing framework of
DexterousHands [40], Safe MAIG requires agents to control the robot hands while optimizing both
the reward and safety performance. Similarly, we also give an introduction of the specific scenarios
in our experimental evaluations.

ShadowHandOver This task revolves around a dual-hand setup, with each hand occupying a fixed
position. The primary objective entails the first hand, holding an object, navigating a suitable
trajectory to transfer the item to the second hand while the second hand aims to acquire a successful
grasp of the object. To be noted, this task incorporates safety constraints pertaining to the range of
motion of one of the fingers on the first hand. Formally, the cost function can be expressed as follows:

ct =

{
1, ||Fa4,t+1|| ≥ 0.1
0, otherwise

, (38)

where Fa4,t+1 is the first hand’s fourth fingers’s motion degree.
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ShadowHandReOrientation Within the context of this task, both hands are equipped with two items.
The fundamental objective for the agents is to execute rotational movements between these two items
around each other and the safety constraints remain the same as Equation 38.

Figure 6: Performance comparisons on tasks of Ant 2x4, 2x4d, 4x2 and 8x1. The safety bound is 50,
except for Ant 8x1 whose cost threshold is set as 70. The solid line shows the median performance
across 5 seeds and the shaded areas correspond to the 25-75% percentiles.

G Performance on Safe MAMuJoCo

In this section, we present the comprehensive results of experiments in Safe MAMuJoCo environment
in Figure 6-9. It can be observed that our proposed MAFOCOPS consistently demonstrates superior
overall performance across all tasks. Even when our method achieves similar performance compared
to the other two algorithms in HalfCheetah scenarios, it still exhibits faster learning, demonstrating
the advantages of our approach. As is discussed in the Experiment section, MAPPO-L algorithm
always achieves the similar performance as MAPPO, except in HalfCheetah scenarios where the cost
threshold is significantly smaller compared to cost achieved by HAPPO and MAPPO. This may be due
to that MAPPO-Lagrangian being built upon Lagrangian multiplier combined with standard MARL
algorithms, leading to a performance more similar to safety-unaware MARL algorithms. Regarding
the other two hard constraint algorithm, their performance would degrade with the increasing number
of agents. However, MAFOCOPS consistently outperforms MACPO, proving the effectiveness of
our method. What’s more, we provide additional videos of the trained policies of both our algorithm
and MACPO in supplementary materials.

Figure 7: Performance comparisons on tasks of HalfCheetah 2x3, 3x2 and 6x1. The safety bound is
30. The solid line shows the median performance across 5 seeds and the shaded areas correspond to
the 25-75% percentiles.
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Figure 8: Performance comparisons on tasks of ManyAgent Ant 2x3, 3x2 and 6x1. The safety bound
is 25. The solid line shows the median performance across 5 seeds and the shaded areas correspond
to the 25-75% percentiles.

Figure 9: Performance comparisons on tasks of ManyAgent Ant 2x4, 4x2 and 8x1. The safety bound
is 80. The solid line shows the median performance across 5 seeds and the shaded areas correspond
to the 25-75% percentiles.

H Efficiency Analysis

In this section, we evaluate the training efficiency, which is measured by frame per second (FPS),
and the memory cost between MACPO and our MAFOCOPS. To be specific, we record the time
and samples spent for each update to calculate average FPS and employ memory monitor tools to
track memory utilization after 200000 samples. To ensure a fair comparison, both algorithms are
executed on the same GPU device, thereby minimizing the influence of other variables. The results
obtained from these evaluations are presented in Table 1 and Table 2 with a precision of two decimal
places. Based on the obtained results, it is evident that an increase in the number of agents leads
to a noticeable escalation in computational cost for MACPO. Whereas, our algorithm showcases
substantial improvement in computational efficiency and demonstrates the ability to effectively
conserve memory resources, especially in scenarios involving a larger number of agents.

I Sensitivity Analysis

We test the sensitivity of our algorithm to hyperparameters, i.e., λj and νmax, as well as the safety
bound. To be noted, because the benchmarks that we adopt only involve a single cost, we only need
to set one value for λj and νmax. In future works, we may explore the performance of our method in
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Scenarios Ant Task HalfCheetah Task

FPS
Config

2x4d 2x4 4x2 8x1 2x3 3x2 6x1

MACPO 231 218 130 73 298 192 106
MAFOCOPS 322 270 160 115 340 229 162

Improvement(%) 39.3939.3939.39 23.8523.8523.85 23.0823.0823.08 57.5357.5357.53 14.0914.0914.09 19.2719.2719.27 52.8352.8352.83
Scenarios ManyAgent Ant Task

FPS
Config

2x3 3x2 6x1 – 2x4 4x2 8x1

MACPO 244 167 98 – 232 135 73
MAFOCOPS 271 249 149 – 253 193 115

Improvement(%) 11.0711.0711.07 49.1049.1049.10 52.0452.0452.04 – 9.059.059.05 42.9642.9642.96 57.5357.5357.53

Table 1: Average FPS between MACPO and MAFOCOPS and the bold results demonstrate the
improvement brings by our algorithm.

Scenarios Ant Task HalfCheeath Taks

Memory (MiB)
Config

2x4d 2x4 4x2 8x1 2x3 3x2 6x1

MACPO 18.85 23.60 31.24 66.25 16.54 30.20 52.08
MAFOCOPS 18.97 21.82 24.23 56.99 19.34 27.26 39.15

Saved Memory -0.12 1.771.771.77 7.017.017.01 9.269.269.26 -2.80 2.932.932.93 12.9312.9312.93
Scenarios ManyAgent Ant Task

Memory (MiB)
Config

2x3 3x2 6x1 – 2x4 4x2 8x1

MACPO 25.32 32.64 55.27 – 27.31 38.90 65.02
MAFOCOPS 24.45 30.88 44.38 – 24.62 34.73 60.71

Saved Memory 0.870.870.87 1.761.761.76 10.8910.8910.89 – 2.692.692.69 4.174.174.17 4.314.314.31

Table 2: Memory cost of MACPO and MAFOCOPS and the bold results demonstrate the memory
saved by our algorithm.

environments with multiple costs. We choose several scenarios in Safe MAMuJoCo to conduct the
ablation studies.

The sensitivity to the hyperparameters is evaluated across several different values for λj and νmax

while keeping all other parameters fixed. For ease of comparison, we normalized the results based on
the return and cost achieved by [18], namely if our method yields a return of x and HAPPO achieves
a return of y, the normalized result is reported as x

y . The results report the final performance of the
models after training for 10 million steps and are showcased in Table 3 and Table 4 with a precision
of three decimal places. Given the complexity inherent in multi-agent environments, it is difficult to
delineate the correlation between the performance of our method and the hyperparameters λj and
νmax. It can be observed that different scenarios have different sensitivity to these hyperparameters
from the results. Overall, the reward achieved under different settings is relatively insensitive as even
setting these parameters across a broad range only leads to an average degradation of less than 10%.
On the other hand, the cost may be more sensitive to these parameters, highlighting the inherent
challenges in ensuring safety guarantees in safe multi-agent reinforcement learning to some degree.

Furthermore, we select some maps to examine the sensitivity of our algorithm to the safety bound.
To be mentioned, hyperparameters in this experiment remain unchanged as the main experiments.
From the results depicted in Figure 10, we can see that setting the safety bound too high could
lead to increased oscillations in cost performance, although it may yield better reward performance.
This observation is reasonable since higher safety bounds may allow agents to explore actions with
potentially higher returns but less safety. If the safety bound is low enough, the agents will take
actions that are definitely safe, leading to less vibration. Whereas, from a global perspective, the
effectiveness of our algorithm remains consistent across these different safety levels. In general, we
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Ant 2x4 HalfCheetah 2x3 ManyAgent Ant 2x3 ManyAgent Ant 2x4 All envs
λ Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost
1 0.913 0.212 0.599 0.049 0.889 0.137 0.781 0.082 0.796 0.120
2 0.975 0.188 0.658 0.056 0.946 0.131 0.882 0.212 0.865 0.147

2.2 0.964 0.091 0.668 0.049 0.947 0.090 0.802 0.166 0.845 0.099
3 0.983 0.183 0.699 0.073 0.958 0.059 0.879 0.178 0.880 0.123
5 1.004 0.113 0.694 0.078 0.871 0.070 0.784 0.267 0.838 0.132

Table 3: Performance of MAFOCOPS for different λ and the “all envs” column presents the averaged
performance across these four scenarios.

Figure 10: Performance comparisons on Ant 2x4, 2x4d, 4x2 with different safety bound.

need to strike a balance between ensuring safety and achieving a good reward performance when
applying safe RL algorithms.

Ant 2x4 HalfCheetah 2x3 ManyAgent Ant 2x3 ManyAgent Ant 2x4 All envs
νmax Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

1 1.042 0.074 0.680 0.029 0.981 0.067 0.859 0.328 0.891 0.125
1.3 0.964 0.091 0.668 0.049 0.947 0.090 0.802 0.166 0.845 0.099
2 0.908 0.222 0.627 0.040 0.962 0.137 0.910 0.206 0.852 0.151
3 0.923 0.097 0.579 0.042 0.936 0.077 0.844 0.123 0.821 0.085
5 0.793 0.175 0.606 0.063 1.013 0.102 0.800 0.256 0.803 0.149
∞ 0.873 0.209 0.588 0.048 0.959 0.100 0.749 0.146 0.792 0.126

Table 4: Performance of MAFOCOPS for different νmax and the “all envs” column presents the
averaged performance across these four scenarios.

J Details of Settings for Experiments

The majority of settings have been described in detail in the Experiments section; however, we
provide some additional information here. As our implementation is based on the codebase provided
by MACPO [24], and thus most hyperparameters remain consistent with their original values. For
MAFOCOPS, the Lagrange multipliers, namely λ and νmax, we utilize are 2.2 and 1.3, respectively,
which can found in Table 3 and 4. For the other two safe MARL algorithms, MACPO and MAPPO-
L, we modify the relevant hyperparameters to ensure their compatibility with the safety bound As
mentioned in the Experiments section, for the two benchmarks, we adopt distinct hyperparameters
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for MAPPO-L in different categories of tasks, as the safety bound is relative to the cost achieved by
standard MARL algorithms. However, MAFOCOPS and MACPO both use unchanged parameters,
indicating the robustness of these two methods. We present the specific hyperparameters that we use
in our experiments in Table 5 (as most parameters are unchanged, we only report the changed ones or
unique parameters in our algorithm).

Safe MAMuJoCo MACPO MAPPO-L MAFOCOPS

kl-threshold 0.008 / 0.0125
lambda lagr / [0.38a, 0.46b, 0.59c, 0.52d] /

λ / / 2.2
νmax / / 1.3
ν lr / / 0.00005

fraction coef 0.3 / /
minibatch size / / 256

update numbers / / 5
Safe MAIG MACPO MAPPO-L MAFOCOPS

kl-threshold 0.009 / 0.01
lambda lagr / [0.14a, 0.68b] /

lagrangian coef rate / [1e− 7a, 9e− 7b] /
λ / / 2

νmax / / 1.4
ν lr / / 0.001

fraction coef 0.26 / /
minibatch size / / 8192

update numbers / / 3

Table 5: Different hyperparameters used for MACPO, MAPPO-L and MAFOCOPS. As MAPPO-L
employs different hyperparameters, the changed ones are represented in the list. In Safe MAMuJoCo
domains, a means Ant tasks, b corresponds to HalfCheetah tasks, c represents ManyAgent Ant 2x3
tasks and d represents denotes ManyAgent Ant 2x4 tasks. In Safe MAIG domains, a represents
ShadowHandOver task and b denotes ShadowHandReOrientation task.
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