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Abstract

Tree ensembles are one of the most widely used model classes. However, these mod-
els are susceptible to adversarial examples, i.e., slightly perturbed examples that
elicit a misprediction. There has been significant research on designing approaches
to construct such examples for tree ensembles. But this is a computationally chal-
lenging problem that often must be solved a large number of times (e.g., for all
examples in a training set). This is compounded by the fact that current approaches
attempt to find such examples from scratch. In contrast, we exploit the fact that
multiple similar problems are being solved. Specifically, our approach exploits the
insight that adversarial examples for tree ensembles tend to perturb a consistent but
relatively small set of features. We show that we can quickly identify this set of
features and use this knowledge to speedup constructing adversarial examples.

1 Introduction

One of the most popular and widely used classes of models is tree ensembles which encompasses
techniques such as gradient boosting [16] and random forests [3]. However, like other flexible model
classes such as (deep) neural networks [28, 17], they are susceptible to evasion attacks [23]. That is,
an adversary can craft an imperceptible perturbation that, when applied to an otherwise valid input
example, elicits a misprediction by the ensemble. As an example, consider a bank that uses a learned
model to assess whether to approve or deny loan applications. In this setting, an evasion attack could
entail slightly altering a potential customer’s data (e.g., adding one month to their work seniority)
that results in the model making a different decision on the customer’s application. The slightly
modified customer record is an adversarial example. There is significant interest in reasoning about
tree ensembles to both generate such adversarial examples [15, 36] and perform empirical robustness
checking [23, 8, 10] where the goal is to determine how close the nearest adversarial example is.

Generating adversarial examples is an NP-hard problem [23], which has spurred the development of
approximate techniques [8, 36, 10]. These methods exploit the structure of the trees to find adversarial
examples faster, e.g., by using graph transformations [8] or discrete (heuristic) search [36, 10, 12].
Still, these techniques can be slow, particularly if there is a large number of attributes in the domain.
This is compounded by the fact that one often wants to generate large sets of adversarial examples.

A weakness to existing approaches is that they ignore the fact that adversarial example generation
is often a sequential task where multiple similar problems are being solved in a row. That is, one
has access to a large number of “normal” examples each of which should be perturbed to elicit
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a misprediction. Alas, existing approaches treat each considered example in isolation and solve
the problem from scratch. However, there are likely regularities among the problems, meaning
that the algorithms perform redundant work. If these regularities can be identified efficiently and
this information can be exploited to guide the search for an adversarial example, then the run time
performance of repeated adversarial example generation can be improved.

Studying these regularities in order to make adversarial example generation faster is an important
problem. First, it advances our understanding of the nature of adversarial examples in tree ensembles
and their generation methods. This might inspire improvements to generation methods, and in turn
lead to better defense or detection methods. Second, model evaluation by verification [26, 29, 10] is
quickly becoming important as machine learning is applied in sensitive application areas. Being able
to efficiently generate adversarial examples is crucial for computing empirical robustness (e.g., [10]),
adversarial accuracy (e.g., [32]), and for model hardening (e.g., [23]). Third, some scenarios exist
where an attacker would want to perform a large scale evasion attack. For example, some DNS
registries use models to flag new domain registrations as potentially malicious (e.g., for phishing,
fake webshops) [27] and scammers likely need to register many such domains. Finally, techniques in
the planning community for analyzing policy safety through predicate abstraction involve performing
repeated verification queries on the same model [30, 31, 22].

We propose a novel approach that analyzes previously solved adversarial example generation tasks
to inform the search for subsequent tasks. Our approach is based on the observation that for a fixed
learned tree ensemble, adversarial examples tend to be generated by perturbing the same, relatively
small set of features. We propose a theoretically grounded manner to quickly find this set of features.
We then propose two novel strategies to use the identified features to guide the search for adversarial
examples, one of which is guaranteed to produce an adversarial example if it exists. We apply
our proposed approach to two different algorithms for generating adversarial examples [23, 10].
Empirically, our approaches result in speedups of up to 36x/21x and on average of 9x/4x (± 8x/3x).
The source code for the presented algorithms and all the experiments is publicly available at https:
//github.com/lorenzocascioli/faster-repeated-evasion-tree-ensembles.

2 Preliminaries

We briefly explain tree ensembles, evasion attacks, and the two adversarial generation methods
used in the experiments. We assume a d-dimensional input space X ⊆ Rd and binary output space
Y = {−1, 1}. We focus on binary classification because most existing methods for generating
adversarial examples for tree ensembles are designed for this setting [1, 23, 10].

Tree Ensembles Tree ensembles include algorithms such as (gradient) boosted decision trees
(GBDTs) [16, 9] and random forests [3, 25]. A tree ensemble contains a number of trees and most
implementations only learn binary trees. A binary tree T contains two types of nodes. Internal nodes
store references to a left and a right sub-tree, and a split condition on some attribute f in the form of
a less-than comparison Xf < τ , where τ is the split value. Leaf nodes have no children and only
contain an output value. Each tree starts with a root node, the only one without a parent.

Given an example x, an individual tree is evaluated recursively starting from the root node. In each
internal node, the split condition is applied and if it is satisfied, then the example is sorted to the left
subtree and if not it is sorted to the right one. This procedure terminates when a leaf node is reached.
The final prediction of the ensemble T (x) is obtained by combining the predicted leaf values for each
tree in the ensemble. In gradient boosting, the class probability is computed by applying a sigmoid
transformation to the sum of the leaf values.

Evasion Attacks An evasion attack involves manipulating valid inputs x into adversarial examples
x̃ in order to elicit a misprediction [23]. Following existing work on tree ensembles [23, 7, 10], we
say that x̃ is an adversarial example for normal example x when (1) ∥x̃− x∥∞ < δ where δ is a
user-selected maximum distance (i.e., the two are sufficiently close), (2) the ensemble predicts the
correct label for x, and (3) the model’s predicted labels for x̃ and x differ.

We briefly describe the two existing adversarial example generation methods A : (T , x, δ, tmax)→
{SAT (x̃),UNSAT ,TIMEOUT} used in this paper: kantchelian [23] and veritas [10]. These
methods take as input an ensemble T , a normal example x, a maximum perturbation size δ, and a
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timeout tmax. They output SAT (x̃), where x̃ is an adversarial example for x, UNSAT , indicating
that no adversarial example exists, or TIMEOUT , indicating that no result could be found within
tmax. Timeouts are explicitly handled because adversarial example generation is NP-hard [23].

kantchelian formulates the adversarial example generation task as a mixed-integer linear program
(MILP) and uses a generic MILP solver (e.g., Gurobi [20]). Specifically, kantchelian directly
minimizes the δ = ∥x− x̃∥∞ value. Given an example x, it computes:

min
x̃
∥x− x̃∥∞ subject to T (x) ̸= T (x̃). (1)

This approach exploits the fact that a tree ensemble can be viewed as a set of linear (in)equalities.
Three sets of MILP variables are used. Predicate variables pi represent the split conditions, i.e., each
pi logically corresponds to a split on an attribute f : pi ≡ f < τ . Leaf variables li indicate whether a
leaf node is active. The bound variable b represents the l∞ distance between the original example x
and the adversarial example x̃. Constraints between the variables encode the structure of the tree. A
set of predicate consistency constraints encode the ordering between splits. For example, if two split
values τ1 < τ2 appear in the tree for attribute f , and p1 ≡ f < τ1 and p2 ≡ f < τ2, then p1 =⇒ p2.
Leaf consistency constraints enforce that a leaf is only active when the splits on the root-to-leaf path
to that leaf are satisfied. Lastly, the mislabel constraint requires the output to be a certain class: for
leaf values vi,

∑
i vili ≶ 0. The objective directly minimizes the bound variable.

veritas improves upon kantchelian in terms of run time by formulating the adversarial example
generation problem as a heuristic search problem in a graph representation of the ensemble (originally
proposed by [8]). The nodes in this graph correspond to the leaves in the trees of the ensemble.
Guided by a heuristic, the search then repeatedly selects compatible leaves. Leaves of two different
trees are compatible when the conjunction of the split conditions along the root-to-leaf paths of the
leaves are logically consistent. For a given δ, veritas solves the following optimization problem:1

optimize
x̃

T (x̃) subject to ∥x− x̃∥∞ < δ (2)

The output of the model T (x̃) is maximized when the target class for x̃ is positive, and minimized
otherwise. While veritas can also directly optimize δ, in this paper we will use a predefined δ for
veritas. To the best of our knowledge, veritas is the fastest approximate evasion attack for tree
ensembles (see Appendix B.1).

3 Method

Adversarial example generation methods are often applied in the following setting:

Given a tree ensemble T , a set of test examples D, and a maximum perturbation size δ
Generate adversarial examples for each x ∈ D.

The goal of this paper is to exploit the fact that adversarial examples are sequentially generated for each
example in D. By analyzing previously found adversarial examples, we aim to improve the efficiency
of adversarial example generation algorithms by biasing the search towards the perturbations that are
most likely to lead to an adversarial example.

Our hypothesis is that some parts of the ensemble are disproportionately sensitive to small perturba-
tions, i.e., crossing the thresholds of split conditions in these parts of the ensemble results in large
changes in the predicted value. Prior work has hypothesized that robustness is related to fragile
features and that such features are included in models because learners search for any signal that
improves predictive performance [21]. One would expect that the attributes used in the split condi-
tions in these disproportionately sensitive parts are exploited by adversarial examples more frequently
than other attributes. Figure 1 illustrates this point by showing how often each attribute is perturbed
in a set of a 10 000 adversarial examples generated by kantchelian for two datasets. The bar plots
distinguish among attributes are (1) never modified by any adversarial example (left), (2) modified by
at least one but at most 5% of all adversarial examples (middle), and (3) modified by more than 5%
of the adversarial examples (right). Less than 10% of the attributes are used by more than 5% of the
adversarial examples. The figure shows that regularities exist in constructed adversarial examples:
examples generated for different normal examples tend to exhibit perturbations to the same small set
of attributes. Thus the two questions are how can one identify these frequently-modified attributes
and how can algorithms exploit this knowledge to more quickly generate adversarial examples.

1We are abusing terminology: here, T (x) is the predicted probability. Previously, it was the predicted label.
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Figure 1: Bar plots showing that most attributes are not modified by the majority of adversarial
examples on the mnist and webspam datasets. The leftmost bar shows the number of attributes that
are never changed by any of the 10 000 adversarial examples generated by kantchelian’s approach.
The middle bar shows the number of attributes that are modified at least once but at most by 5% of
the adversarial examples. The rightmost bar shows the number of frequently modified features.

Our proposed approach has two parts. The first part simplifies the search for adversarial examples by
only allowing perturbations to a limited subset of features. Namely, we exploit the knowledge that
certain feature values are fixed to simplify the ensemble, by pruning away branches that can never be
reached. The second part identifies a subset of commonly perturbed features by counting how often
each feature is perturbed by adversarial examples. The size of this subset is determined by applying a
theoretically grounded statistical test.

3.1 Modifying the Search Procedure

Our proposed approach speeds up the adversarial example generation procedure by limiting the scope
of the adversarial perturbations to a subset of features FS . This section assumes that we are given
such a subset of features. The next section covers how to identify these features.

We consider three settings: full, pruned, and mixed. The full setting is the original configuration of
kantchelian and veritas: the methods may perturb any attribute within a certain maximum distance δ.
That is, for each attribute f ∈ F with value xf , the attribute values are limited to [xf − δ, xf + δ].
Algorithm 1 summarizes the pruned and mixed approaches. We now describe both in greater detail.

Algorithm 1 Fast repeated adversarial example generation
1: parameters: maximum perturbation size δ, timeouts tfullmax and tprunmax for full and pruned, genera-

tion method A : (T , x, δ, t)→ {SAT (x̃),UNSAT ,TIMEOUT}
2: function GENERATE(Tfull ,D, FS ,mixed flag)
3: D̃ ← ∅
4: for x ∈ D do
5: Tprun ← PRUNE (Tfull , FS , x) (Sec. 3.1)
6: α← A (Tprun , x, δ, t

prun
max )

7: if α ̸= SAT (x̃) ∧ mixed flag set then
8: α← A

(
Tfull , x, δ, t

full
max

)
9: end if

10: D̃ ← D̃ ∪ {α}
11: end for
12: return: D̃
13: end function

Pruned Approach The pruned setting disallows modifications to the attributes in the non-selected
set of attributes FNS = F \ FS . We accomplish this by pruning the trees in the ensemble. Any
node splitting on attributes in FNS is removed. Its parent node is directly connected to the only
child node that can be reached by examples with the fixed value for the attribute. Figure 2 shows an
example of this procedure. We refer to this procedure as PRUNE(T , FS , x). The adversarial example
generation methods can be applied as normal to the pruned ensemble, but they will only generate
adversarial examples with perturbations to the attributes in FS . Pruning simplifies the MILP problem
of kantchelian because all predicate variables pi that correspond to splits in internal nodes of pruned
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Figure 2: An example tree using two attributes HEIGHT and AGE (left). Suppose FNS = {AGE}.
Given an example where AGE = 55, we can prune away the internal node splitting on AGE. In the
resulting tree (right), subtree (b) is pruned because it is unreachable given that AGE = 55 and only
subtrees (a) and (c) remain.

subtrees, and leaf variables li that correspond to leaves of pruned subtrees can be removed from the
mathematical formulation. For veritas, the search space is reduced in size because the pruned leaves
are removed from the graph representation of the ensemble. Hence, for both systems, on average, the
problem difficulty is reduced by pruning the ensembles.

Pruning the trees does not affect the validity of generated adversarial examples: if x̃ is an adversarial
example for a normal example x generated on a pruned ensemble, then x̃ is also an adversarial
example for the full ensemble.

Proposition 3.1. Given normal example x that is correctly classified by the full ensemble Tfull .
Let Tprun = PRUNE(Tfull , FS , x) and x̃ = A(Tprun , x, δ, tmax) (i.e., Tprun(x) ̸= Tprun(x̃) and
∥x− x̃∥∞ < δ). Then it holds that Tfull(x) ̸= Tfull(x̃).

Proof. Because only branches not visited by x are removed, Tprun(x) = Tfull(x). The values for
features in FNS are fixed, so these values are equal between x and x̃. Hence, x̃ only visits branches
in Tfull that are also in Tprun . Therefore, Tprun(x̃) = Tfull(x̃).

However, an UNSAT generated on a pruned ensemble is inconclusive: it might still be the case that
an adversarial example exists for the full ensemble, albeit one with perturbations to features in FNS .
The pruned setting generates a false negative if it reports UNSAT , yet the full setting reports SAT .

Mixed Approach The mixed setting takes advantage of the fast adversarial generation capabilities
of the pruned setting, but falls back to the full setting when the pruned setting returns an UNSAT
or times out. A much stricter timeout tprunmax is used for the pruned setting to fully take advantage of
the fast SAT s, while avoiding spending time on an uninformative UNSAT . The mixed setting is
guaranteed to find an adversarial example if the full setting can find one.

Theorem 3.2. Assume a normal example x and maximum distance δ. If an adversarial example
can be found for the full ensemble Tfull , then the mixed setting is guaranteed to find an x̃ such that
∥x− x̃∥∞ < δ and Tfull(x) ̸= Tfull(x̃).

Proof. The mixed setting first operates on the pruned ensemble Tprun using a tight timeout and
optimizes Equation 1 or 2 using kantchelian or veritas respectively. This returns (1) an adversarial
example x̃, (2) an UNSAT or (3) times out. In case (1), the generated adversarial example x̃ is also
an adversarial example for the full ensemble (Prop 3.1). In cases (2) and (3), the mixed setting falls
back to the full setting operating on the full ensemble Tfull with the same timeout. Hence, it inherits
the full method’s guarantees.

3.2 Identifying Relevant Features

A good subset of relevant attributes FS should satisfy two properties. First, it should minimize the
number of false negatives, which occur when the pruned approach reports UNSAT , but the full
approach reports SAT . Second, the feature subset should be small. The smaller FS is, the more the
ensemble can be pruned, and the larger the speedup is. These two objectives are somewhat in tension.
Including more features will reduce the number of false negatives but limit the speedups, whereas
using a very small subset will restrict the search too much resulting in many false negatives (or slow
calls to the full search in the mixed setting). The procedure is given in Algorithm 2.
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We address the first requirement by adding features to the subset that are frequently perturbed by
adversarial examples. We rank features by counting how often each one differs between the perturbed
adversarial examples in D̃ so far and their corresponding normal examples in D.

The second requirement is met by statistically testing whether the identified subset guarantees that the
false negative rate is smaller than a given threshold τ with probability at least 1− η, for a specified
confidence parameter η. If it is not guaranteed, then the subset is expanded. This is done at most
4 times for subsets of 5%, 10%, 20%, 30% of the features (EXPANDFEATURESET(FS ,D, D̃) in
Algorithm 2). If all tests fail, then a final feature subset of 40% of the most commonly modified
features is used. We do not go beyond 40% because using the full feature set is then more efficient.
Each test is executed on a small set of n generated adversarial examples. A first zeroth set is used
merely for obtaining the first feature counts.

The statistical tests are performed as follows. The null hypothesis is that FNR is greater than
the threshold τ . Take DF = (x1, x2, . . . , xN ) the dataset we use to find the feature subset FS .
We define v = (v1, v2, . . . , vN ) to be the binary vector such that vi = 1 if the pruned search
with the feature subset FS returns UNSAT for the example xi but the full search returns SAT ,
and vi = 0 otherwise. Then the true false negative rate corresponding to FS can be written as
FNR = 1

N

∑N
i=1 vi. The small set of n examples from which we are estimating the false negative

rate is a random vector X = (X1, X2, . . . , Xn) sampled without replacement from DF . We also
define V = (V1, V2, . . . , Vn) where Vi is the binary random variable defined analogically to how we
defined vi. It follows that

∑n
i=1 Vi is distributed as a hypergeometric random variable. We use the

method of inversion of acceptance intervals to find a one-sided confidence interval [0;∆] for the false
negative rate with confidence level equal to a given 1− η (see, e.g., Section 5.2 in [2]), exploiting
the fact that the cumulative distribution function of a hypergeometric distribution can be computed
efficiently (CONFIDENCEINTERVAL(v̄, n, η) in Algorithm 2). We reject the null hypothesis if the
confidence interval does not contain the threshold τ . It follows from the basic properties of confidence
intervals that this yields the desired test with confidence 1− η. Since we execute the test 4 times in
the algorithm, we apply a union-bound correction of factor 4 (we use confidence level 0.9). Note that
there is a trade-off. The higher n, the better the statistical estimates and the counts are, but also the
more examples we process with a potentially suboptimal feature subset.

Algorithm 2 Find feature subset
1: parameters: set of normal examples D, sample size n, acceptable false negative rate τ , confi-

dence parameter η

2: FS ← ∅
3: for k ∈ 0..4 do
4: D̃ ← GENERATE(T ,D[kn, k(n+ 1)], FS , true)

5: v̄ ← 1
n× number of false negatives in D̃

6: [0;∆]← CONFIDENCEINTERVAL(v̄, n, η)

7: if the threshold τ is in [0;∆], then EXPANDFEATURESET(FS ,D, D̃)
8: else break the loop
9: end for

10: return: FS

4 Experiments

Empirically, we address three questions: (Q1) Is our approach able to improve the run time of gener-
ating adversarial examples? (Q2) How does ensemble complexity affect our approach’s performance?
(Q3) What is our empirical false negative rate?

Because the described procedure is based on identifying a subset of relevant features, it makes sense
to exploit it only when the dataset has a large number of dimensions. Therefore, we present numerical
experiments for ten binary classification tasks on high-dimensional datasets, using both tabular data
and image data, as shown in Table 1.

Experimental Setup We apply 5-fold cross validation for each dataset. We use four of the folds
to train an XGBoost [9], random forest [3, 25] or GROOT forest (a robustified ensemble type [32])
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ensemble T . From the test set, we randomly sample 10 000 normal examples and attempt to generate
adversarial examples by perturbing each one using the kantchelian or veritas attack. Table 1 also
reports the adopted values of maximum perturbation δ and the hyperparameters of the learned
ensembles, which were selected via tuning using the grid search described in Appendix B. The
experiments were run on an Intel(R) E3-1225 CPU with 32GiB of memory.

Table 1: Datasets’ characteristics: N and #F are the number of examples and the number of features.
higgs and prostate are random subsets of the original, bigger datasets. Multi-class classification
datasets were converted to binary classification: for covtype we predict majority-vs-rest, for mnist
and fmnist we predict classes 0-4 vs. classes 5-9, and for sensorless classes 0-5 vs. classes 6-10. We
also report adopted values of max allowed perturbation δ and learners’ tuned hyperparameters after
the grid search described in Appendix B. Each ensemble T has maximum tree depth d and contains
M trees. The learning rate for XGBoost is η. GROOT robustness is defined by ϵ.

XGBoost RF GROOT

Dataset N #F δ M d η δ M d δ M d ϵ

covtype 581k 54 0.1 50 6 0.9 0.3 50 10 0.4 50 10 0.01
fmnist 70k 784 0.3 50 6 0.1 0.3 50 10 0.4 50 10 0.3
higgs 250k 33 0.08 50 6 0.1 0.08 50 10 0.4 50 10 0.01
miniboone 130k 51 0.08 50 6 0.1 0.08 50 10 0.5 50 10 0.01
mnist 70k 784 0.3 50 6 0.5 0.3 50 10 0.4 50 10 0.3
prostate 100k 103 0.1 50 4 0.5 0.2 50 10 0.2 50 10 0.01
roadsafety 111k 33 0.06 50 6 0.5 0.12 50 10 0.2 50 10 0.05
sensorless 58.5k 48 0.06 50 6 0.5 0.12 50 10 0.2 50 10 0.01
vehicle 98k 101 0.15 50 6 0.1 0.15 50 10 0.4 50 10 0.1
webspam 350k 254 0.04 50 5 0.5 0.06 50 10 0.1 50 10 0.01

The pruned and mixed settings work as follows. We use the procedure from Section 3.2 to select a
subset of relevant features. We use τ = 0.25, n = 100 and η = 0.1. We then apply Algorithm 2: we
generate 5 sets of n adversarial examples to (1) find which features are perturbed most often and (2)
determine the size of the feature subset FS . Therefore the extracted feature set gives us a 1−η = 90%
confidence that our true false negative rate is below 25%. After Algorithm 2 terminates, FS is fixed,
and we run the pruned and mixed settings on all the remaining test examples (Algorithm 1). We set
a timeout of one minute for the full setting, and a much stricter timeout of 1 (kantchelian) or 0.1
(veritas) seconds in the pruned setting. We can be stricter with veritas as it is an approximate method
that is faster than the exact kantchelian.2

Q1: Run Time Table 2 reports the average run time for the full setting and the average speedup
given by the pruned and mixed settings. We present here results for XGBoost and random forest, and
report results for GROOT together with more extended results in Appendix C. Considering all three
model types and both attacks, speedups for the pruned setting are in the range 1.4x-36.2x with an
average of 9x (± 8x), and for the mixed in the range 1.1x-20.5x with an average of 4x (± 3x).

We notice that generating adversarial examples is more difficult for random forests (RF) than XGB.
This leads to our strategies offering larger wins for RF than for XGB, with average speedups of
9.4x/3.5x (± 7.2x/1.6x) for RF and 4.7x/2.7x (± 3.4x/1.2x) for XGB. The robustified GROOT forests
are even harder to attack, meaning our methods offer even larger improvements with average speedups
of 11.4x/4.9x (± 9.9x/5.0x).3

Tables 5 and 6 in the supplement also report additional statistics on the presented experiments. On
average, the mixed setting falls back to the full search 10.5% of the time. The model and attack
type do not seem to have a strong influence on the proportion of calls to the full search. This helps
it achieve a speedup by taking advantage of the fast SAT results of the pruned setting while still
offering the theoretical guarantee from Theorem 3.2.

We also report the attack success rate, which is the fraction of times where our methods generate
an adversarial example given that a valid adversarial example exists for the full model. The pruned
search has an average success rate of 90% (± 6%). The mixed search has success rate 100% by
definition (Theorem 3.2).

2Appendix D provides a sensitivity analysis for the hyperparameter settings of the statistical test and timeouts.
3See Tables 5 and 6 in the supplement.
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Table 2: Average run times and speedups when attempting to generate 10 000 adversarial examples
using kantchelian/veritas on an XGBoost/random forest ensemble for full, pruned and mixed. A *
means that the dataset exceeded the global timeout of six hours.

Kantchelian XGB Kantchelian RF Veritas XGB Veritas RF

full pruned mixed full pruned mixed full pruned mixed full pruned mixed

covtype 9.9m 3.3× 2.1× 25.7m 11.0× 3.7× 5.3s 1.7× 1.4× 45.0s 6.0× 2.9×
fmnist 1.5h 4.9× 3.9× 56.2m 7.8× 4.3× 43.6s 1.4× 1.3× 6.6m 3.6× 3.0×
higgs 3.3h 4.1× 1.8× 5.1h 3.0× 1.4× 20.4s 2.9× 2.4× 41.8m 21.4× 2.5×
miniboone 6.0h* 10.9× 3.4× 6.0h* 9.4× 5.2× 1.2m 8.4× 5.9× 12.9m 11.8× 6.4×
mnist 23.9m 6.9× 5.1× 36.6m 5.7× 4.8× 47.9s 2.5× 2.1× 3.3m 3.2× 2.9×
prostate 12.8m 3.4× 2.8× 6.0h* 11.8× 5.2× 9.9s 2.5× 2.2× 23.7m 16.9× 2.6×
roadsafety 10.7m 3.0× 2.0× 45.2m 5.4× 2.3× 11.4s 2.7× 2.1× 40.6m 33.5× 3.1×
sensorless 29.8m 2.3× 2.1× 52.5m 5.7× 3.6× 12.1s 2.9× 1.8× 4.1m 4.7× 1.5×
vehicle 2.5h 5.9× 3.4× 3.8h 7.1× 5.8× 19.4m 15.6× 1.9× 42.8m 9.1× 1.1×
webspam 24.2m 5.7× 3.7× 1.5h 7.3× 5.7× 18.8s 2.6× 2.1× 12.9m 3.9× 1.2×

Figure 3 shows the number of executed searches as a function of time for four combinations of attack
algorithm and model type.4 For XGB, both attacks benefit. Moreover, the mixed setting is typically
very close in run time to the pruned. On RF, the pruned setting offers larger speedups. However, we
see a more noticeable difference between the pruned and the mixed search on several datasets. This
indicates that the mixed strategy falls back more often to an expensive full search.
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Figure 3: Average run times for 10 000 calls to full, pruned and mixed for kantchelian (top) and
veritas (bottom). Results are given for both XGBoost and random forest for four selected datasets.

Finally, it is natural to wonder how the quality of the generated adversarial examples is affected by
the modified search procedure. While this is difficult to quantify, Figure 4 provides some examples
of constructed adversarial examples for the mnist dataset and an XGBoost ensemble. Visually, the
examples constructed by full and pruned settings for both attacks are very similar. The examples
constructed using kantchelian look more similar to the base example than those for veritas because
kantchelian finds the closest possible adversarial example whereas veritas has a different objective: it
constructs an adversarial example that will elicit a highly confident misprediction. See Appendix E
for more generated examples.

Q2: Scaling Behavior Two key hyperparameters of tree ensembles are the maximum depth of
each learned tree and the number of trees in the ensemble. We explore how varying these affects
our approach, employing the same setup as described in Q1. We use the mnist dataset and omit

4The supplement shows these plots for all datasets plus for GROOT forests (see Appendix C).
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Figure 4: Generated adversarial examples for an mnist digit and an XGBoost ensemble, using both
attacks (full vs pruned).

kantchelian with RFs due to its computational cost. Figure 5 (top) shows how the run time to perform
10 000 searches varies as function of the maximum tree depth for a fixed ensemble size of 50. The run
times for the pruned and mixed approaches grow very slowly as the depths are increased. In contrast,
the full search scales worse: deeper trees lead to higher run times. Figure 5 (bottom) shows how the
run time to perform 10 000 searches varies as function of the ensemble size for a fixed maximum
tree depth of 6 for XGB and 10 for RF. Again, the pruned and mixed approaches show much better
scaling behavior. Note that veritas’s full search shows a very large jump on RF when moving from 75
to 100 trees. These results indicate that our approaches will offer even better run time performance
than the standard full search for more complex ensembles.
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Figure 5: Run time of full, mixed and pruned settings using veritas XGB, veritas RF, kantchelian
XGB on mnist, and varying the max depth (top) and number of estimators in the ensemble (bottom).

Q3: Empirical FNR We use Algorithm 2 to bound the false negative rate to be less than 25% with
high probability. Tables 5 and 6 in the supplement report the empirical false negative rates for all
experiments. The average false negative rate is 7.5% and the maximum is 17.1%. Hence, empirically
we achieve better results than the theory guarantees. Neither the ensemble method nor the attack type
strongly influence the false negative rate. These small false negative rates still allow dramatically
reducing the number of considered features. On average, FS contains 17% of the features. Out of 300
experiments,5 we only select the maximum percentage of features 17 times. Generally, kantchelian
requires slightly more features than veritas and RF models requires slightly more features than
XGB/GROOT models.

To provide a better intuition on the relationship between the empirical FNR and the speedup, Figure 6
shows this tradeoff on two datasets using XGBoost. In essence, higher FNRs correspond to smaller
feature subsets, hence larger speedups.

5 Related Work

Adversarial examples have been theoretically studied and defined in multiple different ways [14, 18].

Approaches to reason about learned tree ensembles have received substantial interest in recent
years including algorithms to perform evasion attacks [23, 15] (i.e., generate adversarial examples),

55 folds x 10 datasets x 3 ensemble types x 2 attacks
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Figure 6: Speedups achieved by the pruned setting when attempting to generate 10 000 adversarial
examples using kantchelian (left) and veritas (right) on an XGB ensemble, varying the empirical
false negative rate. The dotted horizontal line corresponds to a speedup of 1x, i.e., same run time of
the full setting.

perform robustness checking [8], and verify that the ensembles satisfy certain criteria [11, 10, 26, 29].
Kantchelian et al. [23] were the first to show that tree ensembles are susceptible to evasion attacks.
Their MILP formulation is still the most frequently used method to check robustness and generate
adversarial examples. Beyond this exact approach, several approximate approaches exist [8, 10, 35,
36] though not all of them are able to generate concrete adversarial examples (e.g., [8, 35]).

Other work focuses on making tree ensembles more robust. Approaches for this include adding
generated adversarial examples to the training data (model hardening) [23], or modifying the splitting
procedure [7, 4, 32]. Gaining further insights into how evasion attacks target tree ensembles, like
those contained in this paper, may inspire novel ways to improve the robustness of learners.

Another line of work aims at directly training tree ensembles that admit verification in polynomial
time [5, 13]. However, a drawback to current approaches is that they result in (large) decreases in
predictive performance.

Finally, performing evasion attacks has been studied for other model classes with deep neural networks
receiving particular attention [28, 17, 24, 6]. However, state-of-the-art algorithms are tailored to one
specific model type as they typically exploit specific properties of the model, e.g., the work on tree
ensembles often exploits the logical structure of a decision tree.

6 Conclusions

This paper explored two methods to efficiently generate adversarial examples for tree ensembles. We
showed that considering only the same subset of features is typically sufficient to generate adversarial
examples for tree ensemble models. We proposed a simple procedure to quickly identify such a subset
of features, and two generic approaches that exploit it to speed up adversarial examples generation.
We showed how to apply them to an exact (kantchelian) and approximate (veritas) evasion attack on
three types of tree ensembles, and discussed their properties and run time performances.

Limitations. Our approach speeds up evasion attacks in the specific scenario when the same model
is repeatedly attacked. Plus, it excels on high-dimensional datasets. Our evaluation only considered
l∞ attacks, whereas other norms such l1 and l2 are also relevant.

Impact Statement. While this work does make attacking tree ensembles faster, it is also important to
understand what attackers may do. This work also targets increasing the applicability of robustness
checking and hardening techniques, which can lead to approaches for training more robust models.
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A Analysis of the Problem Setting

Adversarial examples are often generated for tasks like computing adversarial accuracy [32], com-
puting empirical robustness [10], and performing model hardening [23]. The effect of using the
approximation proposed in this paper differs for each task.

Computing the adversarial accuracy of a classifier only requires determining whether an adversarial
example x̃ exists within the given δ for each provided normal example x. Because the mixed strategy
reverts to the original complete search when the pruned approach returns an UNSAT , as stated in
Theorem 3.2 it is guaranteed to find an adversarial example if it exists. Hence, the mixed strategy can
speed up computing the adversarial accuracy without affecting its value.

Computing the empirical robustness of a classifier requires finding the nearest adversarial example
x̃ for each normal example x. Because the pruned approach does not consider all features and the
mixed approach may not, they may return an adversarial example that is further away than if the
full search space was considered. Hence, when using an exact attack like kantchelian, the empirical
robustness computed using the mixed strategy is an overestimate of the true empirical robustness. We
show this and we study what happens with an approximate method in Appendix E.

In model hardening, a large number of adversarial examples are generated and added to the training
data [23]. The pruned approach can be used to generate a lot more adversarial examples in a fixed
amount of time.

B Employed Datasets, Models and Attacks

We expand the discussion on Table 1, which reports the characteristics of the employed datasets and
models. In our experiments, we use ten high-dimensional datasets where the number of dimensions
is greater than 25. We verified that our approach does not bring consistent run time improvements
for datasets with less than 25 features, or with a fully categorical domain (where the l∞ norm loses
meaning).

Table 1 also reports the hyperparameters of the learned ensembles, which are tuned through grid
search. For all model types, we choose the number of trees in {10, 20, 50}. Max depth is chosen in
the range [3, 6] for XGBoost, and in {5, 7, 10} for random forest and GROOT forest (which typically
need deeper trees to work better). XGBoost learning rate is chosen among {0.1, 0.5, 0.9}. GROOT
forest ϵ is chosen among {0.01, 0.05, 0.1, 0.3, 0.5}, and we select the model with the largest ϵ such
that GROOT forest accuracy does not drop below 90% of the corresponding RF accuracy. Note that
in GROOT a bigger ϵ corresponds to a more robust model, hence accuracy drops up to a point where
the model can become useless in practice.

When running kantchelian on random forests and GROOT forests, we had to limit the number of
estimators to 25 due to the extremely long run times.

While the model sizes are smaller, these ensembles are already challenging for the full settings of
kantchelian and veritas. This is also highlighted in Q2 from Section 4 where we empirically study
the effect of increasing the ensemble size on performance. Those results show that the full procedures
becomes increasingly slower as the ensemble complexity grows, and our method offers larger wins.

Table 3 gives specific reference to each of the considered datasets.

B.1 Comparison with LT Attack

We evaluate our two methods on a representative set of scenarios, varying the model type (XGBoost,
random forest, GROOT forest), and the evasion attack variant (one exact (kantchelian) and one
approximate (veritas)). Given the fact that (1) it is reasonable to expect that most evasion attacks will
benefit from smaller pruned models, and (2) we see improvement across all these settings, we are
confident that run time improvements also translate to other evasion attack methods.

In practice, other approximate attacks alternative to veritas exist. To the best of our knowledge, no
alternative outperforms veritas run times. Computationally, we have compared veritas to another
popular state-of-the-art method: LT-attack [36]. On the full setting, they have the same success rate
and veritas is 25 to 60 times faster, as shown in Table 4 for XGBoost ensembles.
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Table 3: References to all the ten datasets used in the experiments.

Dataset link

covtype https://www.openml.org/d/1596
fmnist https://www.openml.org/d/40996
higgs https://www.openml.org/d/42769
miniboone https://www.openml.org/d/44128
mnist https://www.openml.org/d/554
prostate https://www.openml.org/d/45672
roadsafety https://www.openml.org/d/45038
sensorless https://archive.ics.uci.edu/dataset/325
vehicle https://www.openml.org/d/357
webspam https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#webspam

Table 4: Average run times for generating 10 000 adversarial examples using LT-attack and veritas in
the full search setting.

mnist prostate roadsafety sensorless

LT 48m 10.5m 5.0m 7.1m
veritas 0.8m 0.2m 0.2m 0.2m

C Expanded Experimental Results

Tables 5 (kantchelian) and 6 (veritas) report the average times and speedups when attempting to
generate 10 000 adversarial examples in each of our experimental scenarios. The averages are
computed over five folds. There is one table for each combination of attack (kantchelian, veritas) and
ensemble type (XGB, random forest, GROOT forest). For each dataset, we also report the average
size of the relevant feature subset FS , the percent of searches in the mixed setting that require making
a call to the full search, the false negative rate (proportion of times that pruned returns UNSAT but
full returns SAT ), the pruned setting success rate (i.e., an adversarial example can be generated with
the full search, and the pruned setting finds a valid adversarial example), and the percent of examples
that were skipped due to the full search reaching the global timeout of six hours. The pruned and
mixed settings never reach the global timeout. Note that the mixed setting has attack success rate of
100% by definition.

Figures 7 (kantchelian) and 8 (veritas) show the number of executed searches as a function of time for
kantchelian and veritas on all ten datasets. Each plot contains the results for XGB (top), RF (middle)
and GROOT forest (bottom). Hence these plots show the complete set of results from Figure 3 in the
main paper.

C.1 Run Time Standard Deviation and Timeouts

Tables 7 (kantchelian) and 8 (veritas) extend the run time results of the presented experiments by
additionally reporting standard deviations.

Tables 7 (kantchelian) and 8 (veritas) also show the percentage of searches that timed out for each
dataset, ensemble type and method. In short, XGBoost ensembles are on average easier to verify, and
the searches almost never time out. On the other hand, random forests and GROOT forests are more
challenging. It can happen that with a strict timeout, the pruned setting is not able to find a solution,
as the task remains complex even working with a reduced feature set. In those cases, pruned ends
with a TIMEOUT and mixed will have to execute the full search.

C.2 Tradeoff FNR vs Speedup

We further extend Figure 6 from Q3 in Section 4, which explicitly shows the relationship between the
empirical false negative rate and the speedup of the pruned setting.
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Table 5: Average run times (and speedups) when attempting to generate 10 000 adversarial examples
using kantchelian on an XGBoost/random forest/GROOT forest ensemble for all three approaches:
full, pruned and mixed. We also report the average size of the relevant feature subset, the number of
calls to the full setting during mixed (= number of UNSAT + number of TIMEOUT for pruned), the
number of false negatives (pruned returns UNSAT , but full returns SAT ), the pruned attack success
rate (i.e., pruned succeeds in generating an adversarial example if an example can be generated for
the full ensemble), and the percent of examples that were skipped due to the full search reaching
the global timeout of six hours. Experiments that exceeded the timeout are starred. The pruned and
mixed settings never reach the global timeout.

Kantchelian, XGBoost

full pruned mixed % rel. feats % full calls % false neg. % pruned attack % full skip
success rate

covtype 9.9m 3.0m 3.3× 4.7m 2.1× 5.6% 11.7% 11.3% 88.7% 0 %
fmnist 1.5h 18.5m 4.9× 22.9m 3.9× 14.6% 3.9% 3.9% 96.1% 0 %
higgs 3.3h 47.7m 4.1× 1.8h 1.8× 18.0% 20.0% 9.8% 80.4% 0 %
miniboone 6.0h* 55.5m 9.0× 2.8h 3.4× 33.2% 9.2% 4.3% 91.7% 43.1%
mnist 23.9m 3.4m 6.9× 4.7m 5.1× 8.8% 4.0% 4.0% 96.0% 0 %
prostate 12.8m 3.8m 3.4× 4.6m 2.8× 11.8% 7.6% 6.6% 93.3% 0 %
roadsafety 10.7m 3.6m 3.0× 5.4m 2.0× 23.1% 12.9% 12.7% 87.2% 0 %
sensorless 29.8m 12.8m 2.3× 14.4m 2.1× 33.8% 7.4% 7.0% 92.9% 0 %
vehicle 2.5h 25.7m 5.9× 44.2m 3.4× 27.4% 12.2% 12.2% 87.8% 0 %
webspam 24.2m 4.3m 5.7× 6.6m 3.7× 7.2% 8.7% 8.7% 91.3% 0 %

Kantchelian, RF

full pruned mixed % rel. feats % full calls % false neg. % pruned attack % full skip
success rate

covtype 25.7m 2.3m 11.0× 6.9m 3.7× 5.6% 11.0% 8.5% 91.3% 0 %
fmnist 56.2m 7.2m 7.8× 13.0m 4.3× 14.0% 8.8% 8.8% 91.2% 0 %
higgs 5.1h 1.7h 3.0× 3.6h 1.4× 30.0% 27.6% 7.1% 73.0% 0 %
miniboone 6.0h* 52.0m 9.4× 1.9h 5.2× 32.0% 5.3% 2.1% 95.3% 56.1%
mnist 36.6m 6.4m 5.7× 7.6m 4.8× 10.5% 2.4% 2.4% 97.6% 0 %
prostate 6.0h* 56.4m 11.8× 2.5h 5.2× 11.4% 13.9% 4.2% 88.3% 64.2%
roadsafety 45.2m 8.4m 5.4× 19.7m 2.3× 27.1% 14.8% 13.5% 86.3% 0 %
sensorless 52.5m 9.2m 5.7× 14.8m 3.6× 32.6% 10.9% 10.9% 89.1% 0 %
vehicle 3.8h 31.8m 7.1× 39.3m 5.8× 43.0% 2.6% 2.6% 97.4% 0 %
webspam 1.5h 12.4m 7.3× 15.9m 5.7× 10.2% 2.6% 2.6% 97.4% 0 %

Kantchelian, GROOT

full pruned mixed % rel. feats % full calls % false neg. % pruned attack % full skip
success rate

covtype 8.1m 1.9m 4.3× 2.4m 3.4× 6.2% 3.8% 3.5% 96.5% 0 %
fmnist 3.1h 15.6m 11.7× 21.4m 8.6× 5.3% 2.7% 2.7% 97.3% 0 %
higgs 6.0h* 2.0h 3.6× 4.6h 1.6× 41.1% 25.6% 5.8% 74.5% 16.8%
miniboone 2.0h 17.8m 6.8× 20.9m 5.8× 20.7% <1 % <1 % 99.6% 0 %
mnist 50.0m 5.5m 9.2× 16.3m 3.1× 5.4% 13.3% 13.3% 86.7% 0 %
prostate 6.0h* 1.2h 10.3× 2.8h 4.5× 11.4% 14.7% 5.0% 86.5% 61.7%
roadsafety 6.7m 1.5m 4.4× 4.2m 1.6× 35.4% 34.3% 15.2% 81.3% 0 %
sensorless 55.6m 8.6m 6.4× 12.7m 4.4× 13.2% 10.9% 10.6% 89.4% 0 %
vehicle 2.7h 29.7m 5.5× 53.8m 3.0× 23.3% 9.0% 8.9% 91.0% 0 %
webspam 1.8h 18.6m 5.8× 24.1m 4.5× 10.9% 7.1% 7.1% 92.9% 0 %
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Table 6: Average run times (and speedups) when attempting to generate 10 000 adversarial examples
using veritas on an XGBoost/random forest/GROOT forest ensemble for all three approaches: full,
pruned and mixed. We also report the average size of the relevant feature subset, the number of calls
to the full setting during mixed (= number of UNSAT + number of TIMEOUT for pruned), the
number of false negatives (pruned returns UNSAT , but full returns SAT ), the pruned attack success
rate (i.e., pruned succeeds in generating an adversarial example if an example can be generated for
the full ensemble), and the percent of examples that were skipped due to the full search reaching
the global timeout of six hours. Experiments that exceeded the timeout are starred. The pruned and
mixed settings never reach the global timeout.

Veritas, XGBoost

full pruned mixed % rel. feats % full calls % false neg. % pruned attack % full skip
success rate

covtype 5.3s 3.1s 1.7× 3.8s 1.4× 5.9% 12.1% 11.7% 88.3% 0 %
fmnist 43.6s 31.9s 1.4× 33.6s 1.3× 9.3% 3.8% 3.7% 96.2% 0 %
higgs 20.4s 7.1s 2.9× 8.6s 2.4× 20.0% 3.4% 2.9% 97.1% 0 %
miniboone 1.2m 8.5s 8.4× 12.0s 5.9× 14.8% 4.0% 3.8% 96.2% 0 %
mnist 47.9s 19.0s 2.5× 22.4s 2.1× 5.2% 7.5% 7.5% 92.5% 0 %
prostate 9.9s 3.9s 2.5× 4.4s 2.2× 11.2% 7.1% 6.1% 93.8% 0 %
roadsafety 11.4s 4.2s 2.7× 5.4s 2.1× 31.9% 9.8% 9.7% 90.3% 0 %
sensorless 12.1s 4.2s 2.9× 6.6s 1.8× 17.5% 15.1% 14.7% 85.2% 0 %
vehicle 19.4m 1.2m 15.6× 10.0m 1.9× 18.6% 13.9% 13.6% 86.2% 0 %
webspam 18.8s 7.3s 2.6× 9.0s 2.1× 5.3% 10.2% 10.2% 89.8% 0 %

Veritas, RF

full pruned mixed % rel. feats % full calls % false neg. % pruned attack % full skip
success rate

covtype 45.0s 7.5s 6.0× 15.4s 2.9× 5.9% 5.7% 4.4% 95.5% 0 %
fmnist 6.6m 1.8m 3.6× 2.2m 3.0× 10.7% 10.9% 7.4% 89.1% 0 %
higgs 41.8m 2.0m 21.4× 16.8m 2.5× 31.3% 8.8% 6.8% 92.0% 0 %
miniboone 12.9m 1.1m 11.8× 2.0m 6.4× 19.2% 6.0% 4.8% 94.2% 0 %
mnist 3.3m 1.1m 3.2× 1.2m 2.9× 10.5% 4.8% 3.5% 95.2% 0 %
prostate 23.7m 1.4m 16.9× 9.3m 2.6× 13.1% 11.5% 10.0% 89.1% 0 %
roadsafety 40.6m 1.2m 33.5× 13.0m 3.1× 18.8% 11.6% 11.1% 88.9% 0 %
sensorless 4.1m 52.3s 4.7× 2.8m 1.5× 21.2% 12.1% 11.2% 87.9% 0 %
vehicle 42.8m 4.7m 9.1× 38.9m 1.1× 23.0% 32.8% 17.1% 67.3% 0 %
webspam 12.9m 3.3m 3.9× 10.6m 1.2× 10.6% 13.9% 2.8% 86.2% 0 %

Veritas, GROOT

full pruned mixed % rel. feats % full calls % false neg. % pruned attack % full skip
success rate

covtype 15.9s 5.8s 2.8× 7.7s 2.1× 5.6% 4.7% 4.4% 95.6% 0 %
fmnist 32.2m 53.4s 36.2× 1.6m 20.5× 5.5% 2.1% 1.6% 97.9% 0 %
higgs 4.1h* 11.6m 21.8× 31.5m 8.1× 24.7% 7.9% 3.8% 90.8% 16.4%
miniboone 2.6m 6.1s 25.8× 9.7s 16.2× 7.2% 2.6% 2.6% 97.4% 0 %
mnist 3.1m 1.8m 1.7× 2.5m 1.2× 6.2% 11.8% 7.7% 88.2% 0 %
prostate 33.9m 4.2m 8.1× 15.7m 2.2× 12.5% 19.7% 7.3% 80.4% 0 %
roadsafety 1.0m 11.4s 5.5× 48.6s 1.3× 39.4% 18.7% 16.4% 83.2% 0 %
sensorless 3.4m 8.6s 23.8× 1.9m 1.8× 10.0% 11.5% 11.1% 88.8% 0 %
vehicle 4.0h* 8.2m 29.6× 2.1h 2.0× 19.0% 20.9% 9.7% 79.4% 1.4%
webspam 9.5m 2.2m 4.3× 4.6m 2.1× 9.0% 14.8% 8.2% 85.2% 0 %
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Figure 7: Run times to attempt to generate adversarial examples for 10 000 test examples with
the three presented settings (full, pruned and mixed), using kantchelian on an XGBoost/random
forest/GROOT forest ensemble, averaged over 5 folds.

In Figure 9, we show the empirical FNR on the x-axis versus the speedup of the pruned approach on
the y-axis, using an XGB ensemble on four selected datasets. The empirical FNR is the fraction of
times the pruned approach returns UNSAT but the full approach returns SAT . Going from left to
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Figure 8: Run times to attempt to generate adversarial examples for 10 000 test examples with the
three presented settings (full, pruned and mixed), using veritas on an XGBoost/random forest/GROOT
forest ensemble, averaged over 5 folds.

right along the x-axis, higher values of the FNR correspond to smaller subsets of selected features,
hence more aggressive pruning. Using less features, the pruned search becomes faster, at the cost of
more false negatives.
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Table 7: Average run times (with standard deviations) when attempting to generate 10 000 adversarial
examples using kantchelian on an XGBoost/random forest/GROOT forest ensemble for all three
approaches: full, pruned and mixed. The average fraction of timeouts incurred during the search is
also reported.

Kantchelian, XGBoost

run times % timeouts

full pruned mixed full pruned mixed

covtype 9.9m± 23.0s 3.0m± 12.3s 4.7m± 8.4s 0% 0% 0%
fmnist 1.5h± 4.1m 18.5m± 11.4m 22.9m± 9.5m 0% <1% 0%
higgs 3.3h± 3.3m 47.7m± 32.6m 1.8h± 42.7m 0% 9.6% 0%
miniboone 6.0h± 1.8s 55.5m± 24.2m 2.8h± 52.3m 0% <1% 0%
mnist 23.9m± 1.3m 3.4m± 52.1s 4.7m± 24.1s 0% 0% 0%
prostate 12.8m± 14.3s 3.8m± 20.5s 4.6m± 11.0s 0% 0% 0%
roadsafety 10.7m± 28.2s 3.6m± 40.9s 5.4m± 35.3s 0% 0% 0%
sensorless 29.8m± 2.8m 12.8m± 58.0s 14.4m± 1.2m <1% 0% 0%
vehicle 2.5h± 5.0m 25.7m± 9.2m 44.2m± 4.3m 0% <1% 0%
webspam 24.2m± 1.7m 4.3m± 2.1m 6.6m± 35.4s 0% 0% 0%

Kantchelian, RF

run times % timeouts

full pruned mixed full pruned mixed

covtype 25.7m± 6.2m 2.3m± 29.0s 6.9m± 1.9m 0% 0% 0%
fmnist 56.2m± 2.3m 7.2m± 4.1m 13.0m± 1.2m 0% 0% 0%
higgs 5.1h± 27.5m 1.7h± 12.6m 3.6h± 42.7m 0% 19.7% 0%
miniboone 6.0h± 2.8s 52.0m± 4.8m 1.9h± 26.7m 0% 0% 0%
mnist 36.6m± 1.8m 6.4m± 22.6s 7.6m± 22.7s 0% 0% 0%
prostate 6.0h± 2.0s 56.4m± 1.6m 2.5h± 4.6m <1% <1% 0%
roadsafety 45.2m± 2.6m 8.4m± 3.2m 19.7m± 2.2m <1% 0% 0%
sensorless 52.5m± 2.7m 9.2m± 1.2m 14.8m± 1.0m 0% 0% 0%
vehicle 3.8h± 2.5m 31.8m± 12.4m 39.3m± 11.2m 0% 0% 0%
webspam 1.5h± 5.0m 12.4m± 1.4m 15.9m± 1.6m 0% 0% 0%

Kantchelian, GROOT

run times % timeouts

full pruned mixed full pruned mixed

covtype 8.1m± 50.7s 1.9m± 27.2s 2.4m± 26.5s 0% 0% 0%
fmnist 3.1h± 8.5m 15.6m± 1.8m 21.4m± 3.0m 0% 0% 0%
higgs 6.0h± 0.9s 2.0h± 12.0m 4.6h± 1.2h 0% 18.9% 0%
miniboone 2.0h± 44.7m 17.8m± 2.6m 20.9m± 1.2m 0% 0% 0%
mnist 50.0m± 2.2m 5.5m± 3.7s 16.3m± 2.5m 0% 0% 0%
prostate 6.0h± 0.9s 1.2h± 10.5m 2.8h± 7.3m 0% <1% 0%
roadsafety 6.7m± 1.0m 1.5m± 28.2s 4.2m± 52.0s 0% 0% 0%
sensorless 55.6m± 2.8m 8.6m± 6.0m 12.7m± 4.9m 0% 0% 0%
vehicle 2.7h± 4.6m 29.7m± 8.4m 53.8m± 3.5m <1% <1% 0%
webspam 1.8h± 5.7m 18.6m± 1.4m 24.1m± 1.6m 0% 0% 0%

There are cases where false negatives are less problematic, such as when one simply needs to generate
a lot of adversarial examples for model hardening [23]. In these cases, the pruned approach really
excels at offering run time improvements.

Note that for the considered datasets, FNR values higher than 25% are rare and only occur for very
small subsets of features (e.g., 5 out of the 784 features in mnist).

D Sensitivity Analysis

We briefly discuss how sensitive our algorithm is to the choice of its hyperparameters, namely the
threshold and confidence for the statistical test in the feature selection process (see 3.2) and the
timeout for the pruned setting.
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Table 8: Average run times (with standard deviations) when attempting to generate 10 000 adver-
sarial examples using veritas on an XGBoost/random forest/GROOT forest ensemble for all three
approaches: full, pruned and mixed. The average fraction of timeouts incurred during the search is
also reported.

Veritas, XGBoost

run times % timeouts

full pruned mixed full pruned mixed

covtype 5.3s± 0.1s 3.1s± 0.2s 3.8s± 0.2s 0% 0% 0%
fmnist 43.6s± 1.1s 31.9s± 5.4s 33.6s± 3.0s 0% <1% 0%
higgs 20.4s± 0.3s 7.1s± 0.1s 8.6s± 0.4s 0% 0% 0%
miniboone 1.2m± 8.0s 8.5s± 2.4s 12.0s± 2.5s 0% 0% 0%
mnist 47.9s± 1.7s 19.0s± 0.6s 22.4s± 1.1s 0% 0% 0%
prostate 9.9s± 0.2s 3.9s± 0.1s 4.4s± 0.0s 0% 0% 0%
roadsafety 11.4s± 2.7s 4.2s± 0.1s 5.4s± 0.5s 0% 0% 0%
sensorless 12.1s± 1.1s 4.2s± 0.8s 6.6s± 0.5s 0% 0% 0%
vehicle 19.4m± 7.3m 1.2m± 40.5s 10.0m± 4.2m <1% <1% <1%
webspam 18.8s± 0.8s 7.3s± 0.6s 9.0s± 0.3s 0% 0% 0%

Veritas, RF

run times % timeouts

full pruned mixed full pruned mixed

covtype 45.0s± 5.5s 7.5s± 0.3s 15.4s± 2.8s 0% 0% 0%
fmnist 6.6m± 1.2m 1.8m± 19.3s 2.2m± 19.0s <1% 3.4% <1%
higgs 41.8m± 32.7m 2.0m± 1.1m 16.8m± 12.2m <1% 1.1% <1%
miniboone 12.9m± 1.6m 1.1m± 38.2s 2.0m± 1.0m <1% <1% 0%
mnist 3.3m± 9.5s 1.1m± 5.7s 1.2m± 5.8s 0% 1.3% 0%
prostate 23.7m± 1.7m 1.4m± 28.2s 9.3m± 2.4m <1% <1% <1%
roadsafety 40.6m± 14.7m 1.2m± 28.1s 13.0m± 5.6m <1% 0% 0%
sensorless 4.1m± 1.9m 52.3s± 19.1s 2.8m± 1.7m 0% <1% 0%
vehicle 42.8m± 18.9m 4.7m± 1.6m 38.9m± 19.7m <1% 15.6% <1%
webspam 12.9m± 2.5m 3.3m± 27.4s 10.6m± 2.1m <1% 11.0% <1%

Veritas, GROOT

run times % timeouts

full pruned mixed full pruned mixed

covtype 15.9s± 1.4s 5.8s± 0.2s 7.7s± 1.9s 0% 0% 0%
fmnist 32.2m± 8.4m 53.4s± 4.4s 1.6m± 23.2s <1% <1% <1%
higgs 4.1h± 1.7h 11.6m± 8.7m 31.5m± 13.0m 1.1% 4.0% <1%
miniboone 2.6m± 3.7m 6.1s± 2.9s 9.7s± 6.5s 0% 0% 0%
mnist 3.1m± 59.0s 1.8m± 25.4s 2.5m± 54.8s <1% 4.1% <1%
prostate 33.9m± 2.1m 4.2m± 36.4s 15.7m± 1.2m <1% 12.3% <1%
roadsafety 1.0m± 16.8s 11.4s± 2.1s 48.6s± 18.5s 0% 0% 0%
sensorless 3.4m± 4.2m 8.6s± 3.6s 1.9m± 2.7m <1% 0% 0%
vehicle 4.0h± 1.9h 8.2m± 3.7m 2.1h± 50.4m 1.2% 10.7% <1%
webspam 9.5m± 51.9s 2.2m± 1.1m 4.6m± 1.3m <1% 6.6% <1%

D.1 Sensitivity to Statistical Test Parameters

The statistical test described in 3.2 takes as hyperparameters the acceptable false negative rate τ and
the confidence 1− η. We perform a sensitivity analysis where we vary τ ∈ [0.05, 0.1, 0.25, 0.5] and
1− η ∈ [0.8, 0.9, 0.95] on the miniboone dataset.

Table 9 shows the mixed speedup for (veritas, XGBoost) for all combinations of the considered
values for τ (FNR) and 1− η (confidence). For all settings, our approach improves upon the run time
of always running a full search (i.e., speedup is always > 1). When τ = 0.05, many features are
selected and hence there is less pruning. τ = 0.1 and τ = 0.25 perform identically. When τ = 0.5,
the value of 1− η impacts the selected feature set. A confidence of 0.95 keeps the same feature set of
τ = 0.1 and τ = 0.25. However, a lower confidence results in an even smaller feature set, which
degrades the performance of the mixed setting because there are more calls to the full search.

Hence more in general, the threshold on the false negative rate τ is inversely proportional to the
number of chosen features: the larger the selected feature subset, the lower the FNR will be. This
is in tension with the goal of using as small of a feature subset as possible, to speed up the pruned
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Figure 9: Speedups introduced by the pruned setting when attempting to generate 10 000 test
examples using kantchelian (top) and veritas (bottom) on an XGB ensemble, varying the empirical
false negative rate. Higher FNRs correspond to smaller feature subsets. The dotted horizontal line
corresponds to a speedup of 1x, i.e., same run time of the full setting.

setting. Moreover, a larger confidence 1− η can increase the number of selected features as it shrinks
the confidence interval for the empirical FNR.

Table 9: Speedup of the mixed setting when attempting to generate 10 000 adversarial examples for
miniboone using (veritas, XGBoost), for different values of τ (threshold on the allowed false negative
rate) and 1− η (confidence of the statistical test).

τ 1− η mixed speedup

0.05
0.8 3.7x
0.9 3.7x
0.95 3.7x

0.10
0.8 6.3x
0.9 6.3x
0.95 6.3x

0.25
0.8 6.3x
0.9 6.3x
0.95 6.3x

0.50
0.8 1.9x
0.9 1.9x
0.95 6.3x

D.2 Sensitivity to Timeouts

Timeouts always need to be explicitly handled, due to the hardness of the evasion problem [23]. While
Tables 7 and 8 show that in most of our experiments timeouts are rare or totally absent, to complete
the discussion we perform a sensitivity analysis on the value used for the pruned setting timeout. We
vary tprunmax ∈ [0.001, 0.01, 0.1, 1] seconds when attempting to generate 10 000 adversarial examples
on the fmnist dataset. We only consider veritas for RF in this experiment.

Table 10 shows the fraction of timeouts for the pruned setting as well as the pruned speedup and the
mixed speedup for each value of tprunmax . The smaller tprunmax , the larger the number pruned timeouts,
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which corresponds to a faster (but less accurate) pruned search. If the timeout value is too low, this
adversely affects mixed search because it leads to more calls to the full procedure. Conversely, if
tprunmax is too large, the search becomes slower as the pruned setting starts losing time on a few slow
instances.

Thus the ideal tprunmax lays in between the two extremes. In the presented case, tprunmax = 0.01 works
best. The best choice likely depends on the specific dataset, model, and attack type. However, tuning
its value is time consuming (i.e., negates the benefits of the proposed approach).

Table 10: Fraction of pruned timeouts and speedup of the pruned and mixed settings when attempting
to generate 10 000 adversarial examples for fmnist using (veritas, random forest), for different values
of the pruned setting timeout tprunmax (in seconds).

tprunmax (s) % pruned timeouts pruned speedup mixed speedup

0.001 24% 7.9× 2.8×
0.01 12% 5.8× 3.2×
0.1 4% 2.8× 2.3×
1 1% 1.1× 1.1×

E Quality of Generated Adversarial Examples

We extend Figure 4 by further discussing the quality of generated adversarial examples, providing
more examples, and looking in detail at their distance with respect to the base examples.

Figure 10 shows a large set of adversarial examples generated for mnist digits using kantchelian and
veritas on an XGBoost ensemble. For each attack, we plot the base example x and the two adversarial
examples generated with the full and the pruned setting.

E.1 Empirical Robustness

Tables 11 (kantchelian) and 12 (veritas) show the average empirical robustness in all the performed
experiments for the full, pruned and mixed settings. An ensemble’s empirical robustness is defined as
the average distance to the nearest adversarial example for each x in a test set. We use adversarial
examples generated with the experiments presented in Q1 in Section 4 (and Appendix C).

The objective of the kantchelian attack is to find the closest adversarial example. Given that the
method is exact, the full setting returns the optimal solution. The pruned search works with a restricted
feature set, thus it might not be able to find the closest adversarial example, if that requires altering
features not included in the selected feature subset. As a consequence, the empirical robustness
values for the pruned and mixed search are overestimates of the true value given by the full setting.

Unlike kantchelian, veritas does not try to find the closest adversarial example. Instead, it maximizes
the confidence that the ensemble assigns to the incorrect label. In this case, there is little difference in
the empirical robustness values among all considered settings, with the pruned and mixed settings
typically managing to even lower the distance to the base example.

E.2 Change in Predicted Probability for Adversarial Examples

veritas tries to generate an adversarial example such that the ensemble assigns as high a probability
as possible to the incorrect label. Hence, a natural empirical measure for the quality of the generated
examples is to compare the difference in the ensembles probabilistic predictions for the adversarial
examples generated by each approach. Namely, we compute T (x̃) - T (x̃′) where x̃ is generated by
the full search, x̃′ is generated by the pruned (mixed) search, and (in an abuse of notation) T (x)
returns the probability an example belongs to most likely class.

Table 13 shows the average differences in predicted probability between full and pruned/mixed
adversarial examples.

Using kantchelian, adversarial examples generated with our approaches are assigned very similar
probabilities to those generated with the full search. In veritas, differences are typically higher, as the
model output is directly optimized.

22



Table 11: Average empirical robustness (i.e., distance to the closest adversarial example) for the
full, mixed and pruned methods using kantchelian attack on XGBoost/random forest/GROOT forest
ensembles.

Kantchelian, XGBoost

full pruned mixed

covtype 0.018± 0.0 0.038± 0.0 0.038± 0.0
fmnist 0.034± 0.002 0.056± 0.012 0.056± 0.012
higgs 0.011± 0.0 0.015± 0.002 0.016± 0.002
miniboone 0.001± 0.0 0.001± 0.0 0.001± 0.0
mnist 0.006± 0.001 0.021± 0.007 0.02± 0.007
prostate 0.02± 0.0 0.037± 0.001 0.038± 0.001
roadsafety 0.005± 0.0 0.014± 0.003 0.015± 0.003
sensorless 0.006± 0.001 0.008± 0.001 0.009± 0.0
vehicle 0.017± 0.001 0.045± 0.013 0.042± 0.011
webspam 0.002± 0.0 0.006± 0.002 0.006± 0.002

Kantchelian, RF

full pruned mixed

covtype 0.102± 0.003 0.113± 0.002 0.117± 0.001
fmnist 0.02± 0.002 0.046± 0.013 0.045± 0.012
higgs 0.016± 0.0 0.016± 0.001 0.019± 0.0
miniboone 0.001± 0.0 0.001± 0.0 0.001± 0.0
mnist 0.006± 0.001 0.023± 0.002 0.023± 0.002
prostate 0.058± 0.0 0.089± 0.0 0.094± 0.0
roadsafety 0.022± 0.001 0.025± 0.004 0.028± 0.003
sensorless 0.017± 0.002 0.032± 0.001 0.032± 0.001
vehicle 0.015± 0.001 0.033± 0.006 0.033± 0.006
webspam 0.003± 0.0 0.006± 0.001 0.006± 0.001

Kantchelian, GROOT

full pruned mixed

covtype 0.124± 0.001 0.136± 0.002 0.139± 0.002
fmnist 0.295± 0.001 0.309± 0.002 0.309± 0.002
higgs 0.109± 0.008 0.122± 0.015 0.127± 0.01
miniboone 0.025± 0.0 0.048± 0.014 0.048± 0.014
mnist 0.277± 0.001 0.296± 0.001 0.298± 0.0
prostate 0.063± 0.0 0.091± 0.003 0.096± 0.003
roadsafety 0.092± 0.006 0.075± 0.011 0.092± 0.007
sensorless 0.051± 0.003 0.077± 0.013 0.079± 0.013
vehicle 0.149± 0.001 0.165± 0.003 0.168± 0.002
webspam 0.034± 0.001 0.052± 0.002 0.052± 0.002

F Expanded Related Work

Adversarial examples have been theoretically studied and defined in multiple different ways [14, 18].
More specifically, Ilyas et al. showed how certain features in a dataset might be fragile and thus
naturally lead to adversarial examples [21]. Approaches to reason about learned tree ensembles
have received substantial interest in recent years. These include algorithms for performing evasion
attacks [23, 15] (i.e., generate adversarial examples), perform robustness checking [8], and verify
that the ensembles satisfy certain criteria [11, 10, 26, 29]. Kantchelian et al. [23] were the first to
show that, just like neural networks, tree ensembles are susceptible to evasion attacks. Their MILP
formulation is still the most frequently used method to check robustness and generate adversarial
examples. Other notable methods for adversarial example generation are SMT-based systems [15, 11].
These approaches propose varying ways to encode a tree ensemble in a set of logical formulas using
the primitives from Satisfiability Modulo Theories (SMT). While the formulation of an ensemble in
SMT is very elegant, it tends to perform worse than MILP in practice.

Because MILP and SMT are exact approaches,6 they search for the optimal answer which in certain
cases can be difficult (i.e., time consuming) to find. Often an approximate answer will be sufficient
and several approximate methods have been proposed that are specifically tailored to tree ensembles.
Chen et al. proposed a K-partite graph representation in which a max-clique corresponds to a specific
output of the ensemble [8, 35]. They introduced a fast method to approximately evaluate robustness,

6MILP is technically anytime, but the approximate solutions are not useful in practice for this problem
setting, see [10].
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Table 12: Average empirical robustness (i.e., distance to the closest adversarial example) for the full,
mixed and pruned methods using veritas attack on XGBoost/random forest/GROOT forest ensembles.

Veritas, XGBoost

full pruned mixed

covtype 0.094± 0.0 0.088± 0.001 0.088± 0.001
fmnist 0.287± 0.002 0.275± 0.004 0.276± 0.004
higgs 0.071± 0.0 0.061± 0.003 0.061± 0.003
miniboone 0.06± 0.003 0.026± 0.013 0.029± 0.012
mnist 0.289± 0.003 0.253± 0.016 0.257± 0.013
prostate 0.097± 0.0 0.095± 0.0 0.095± 0.0
roadsafety 0.057± 0.0 0.055± 0.0 0.056± 0.0
sensorless 0.055± 0.0 0.047± 0.006 0.049± 0.004
vehicle 0.14± 0.0 0.133± 0.003 0.134± 0.002
webspam 0.038± 0.0 0.035± 0.001 0.035± 0.001

Veritas, RF

full pruned mixed

covtype 0.272± 0.001 0.249± 0.006 0.251± 0.006
fmnist 0.293± 0.0 0.277± 0.004 0.278± 0.004
higgs 0.07± 0.001 0.065± 0.002 0.066± 0.002
miniboone 0.061± 0.002 0.038± 0.01 0.04± 0.01
mnist 0.289± 0.002 0.275± 0.004 0.276± 0.004
prostate 0.194± 0.0 0.186± 0.002 0.188± 0.002
roadsafety 0.11± 0.001 0.094± 0.006 0.097± 0.005
sensorless 0.113± 0.0 0.101± 0.004 0.103± 0.003
vehicle 0.138± 0.0 0.129± 0.004 0.134± 0.003
webspam 0.058± 0.0 0.054± 0.001 0.055± 0.001

Veritas, GROOT

full pruned mixed

covtype 0.359± 0.002 0.329± 0.006 0.331± 0.006
fmnist 0.394± 0.0 0.382± 0.003 0.383± 0.003
higgs 0.37± 0.002 0.354± 0.008 0.357± 0.007
miniboone 0.459± 0.047 0.223± 0.049 0.233± 0.051
mnist 0.397± 0.0 0.389± 0.003 0.39± 0.003
prostate 0.196± 0.0 0.19± 0.001 0.192± 0.0
roadsafety 0.191± 0.001 0.187± 0.001 0.188± 0.001
sensorless 0.189± 0.0 0.166± 0.009 0.17± 0.007
vehicle 0.392± 0.0 0.378± 0.01 0.382± 0.007
webspam 0.098± 0.0 0.096± 0.001 0.097± 0.0

but it cannot generate concrete adversarial examples. Devos et al. further improved upon this work by
proposing a heuristic search procedure in this graph which is capable of finding concrete adversarial
examples very effectively [10]. Zhang et al. propose a method based on a greedy discrete search
through the space of leaves specifically optimized for fast adversarial example generation [36].

Other work focuses on making tree ensembles more robust. There are multiple approaches: adding
generated adversarial examples to the training data (model hardening) [23], modifying the splitting
procedure [7, 4, 32], using the framework of optimal decision trees to encode robustness constraints
[33], relabeling and pruning the leaves of the trees [34], simplifying the base learner [1] and using
a robust 0/1 loss [19]. Gaining further insights into how evasion attacks target tree ensembles, like
those contained in this paper, may inspire novel ways to improve the robustness of learners.

Another line of work aims at directly training tree ensembles that admit verification in polynomial
time [5, 13]. However, a drawback to current approaches is that they result in (large) decreases in
predictive performance.

Finally, performing evasion attacks has been studied for other model classes with deep neural networks
receiving particular attention [28, 17, 24, 6]. However, state-of-the-art algorithms are tailored to one
specific model type as they typically exploit specific properties of the model, e.g., the work on tree
ensembles often exploits the logical structure of a decision tree.
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Table 13: Average difference in predicted probability between an adversarial example generated using
kantchelian/veritas with the full setting and an adversarial example generated with the pruned/mixed
setting, for the same base example. All adversarial examples are those generated during the experi-
ments from Section 4 and Appendix C.

Kantchelian

XGBoost RF GROOT

pruned mixed pruned mixed pruned mixed

covtype 0.093± 0.001 0.082± 0.002 0.01± 0.002 0.009± 0.002 0.011± 0.001 0.011± 0.001
fmnist 0.023± 0.004 0.021± 0.003 0.012± 0.001 0.011± 0.0 0.019± 0.002 0.018± 0.002
higgs 0.012± 0.001 0.01± 0.001 0.005± 0.0 0.003± 0.0 0.007± 0.002 0.005± 0.003
miniboone 0.013± 0.001 0.011± 0.001 0.006± 0.0 0.006± 0.0 0.005± 0.0 0.005± 0.0
mnist 0.109± 0.011 0.103± 0.011 0.02± 0.002 0.019± 0.002 0.018± 0.004 0.016± 0.004
prostate 0.026± 0.0 0.023± 0.0 0.004± 0.0 0.003± 0.0 0.003± 0.0 0.003± 0.0
roadsafety 0.135± 0.025 0.115± 0.019 0.013± 0.002 0.011± 0.001 0.033± 0.016 0.027± 0.014
sensorless 0.045± 0.001 0.041± 0.002 0.008± 0.0 0.007± 0.0 0.009± 0.001 0.008± 0.001
vehicle 0.015± 0.004 0.013± 0.003 0.005± 0.0 0.005± 0.0 0.005± 0.001 0.004± 0.001
webspam 0.049± 0.006 0.044± 0.004 0.007± 0.0 0.006± 0.0 0.006± 0.0 0.005± 0.0

Veritas

XGBoost RF GROOT

pruned mixed pruned mixed pruned mixed

covtype 0.129± 0.02 0.112± 0.012 0.069± 0.007 0.065± 0.006 0.054± 0.005 0.051± 0.005
fmnist 0.228± 0.065 0.213± 0.056 0.373± 0.011 0.327± 0.009 0.379± 0.009 0.367± 0.01
higgs 0.071± 0.006 0.067± 0.005 0.062± 0.009 0.054± 0.007 0.057± 0.01 0.051± 0.009
miniboone 0.246± 0.042 0.231± 0.036 0.178± 0.027 0.164± 0.028 0.104± 0.022 0.1± 0.019
mnist 0.196± 0.026 0.179± 0.022 0.294± 0.012 0.275± 0.009 0.241± 0.022 0.21± 0.021
prostate 0.237± 0.01 0.218± 0.009 0.225± 0.024 0.195± 0.016 0.214± 0.006 0.169± 0.006
roadsafety 0.17± 0.04 0.146± 0.031 0.083± 0.009 0.071± 0.009 0.059± 0.006 0.048± 0.003
sensorless 0.142± 0.053 0.116± 0.039 0.143± 0.021 0.122± 0.013 0.13± 0.012 0.113± 0.01
vehicle 0.21± 0.026 0.175± 0.017 0.207± 0.048 0.135± 0.036 0.087± 0.024 0.065± 0.018
webspam 0.274± 0.008 0.244± 0.009 0.267± 0.013 0.226± 0.01 0.276± 0.023 0.231± 0.016
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Figure 10: Adversarial examples generated for mnist with both attacks (kantchelian and veritas) on
an XGBoost ensemble, to show the quality of generated examples.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction we claim that we can identify a subset of
relevant features to perform faster repeated evasion attacks by only perturbing those features.
Q1 in Section 4 supports our claim. We provide further evidence in Appendix C.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed methods are discussed in the paper. In
Sections 1 and 3 we clearly state that our approach speeds up adversarial example generation
in scenarios where a lot of repeated evasion attacks need to be performed. We discuss the
specific scenarios where this is the case in Sections 1, 3 and in Appendix A. At the beginning
of Section 4, we also point out that our approach works best on high-dimensional datasets.
We summarize these limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results are only present in Section 3, which also reports the needed
references and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the paper we clearly describe all the adopted tree ensemble types (XGB,
RF, GROOT, Section 2), evasion attacks (kantchelian and veritas, Section 2), and datasets
(Section 4 and Appendix B). The method is described in Section 3 with the aid of Algorithms
1 and 2. We then describe our experimental methodology in Section 4. Table 1 reports all
datasets characteristics, each tuned model’s hyperparameters, and the max perturbation size
δ for each attack. Finally, Table 3 points toward the publicly available sources we gathered
the datasets from.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide full access to the code that implements our method and repro-
duces all the experiments from the paper at https://github.com/lorenzocascioli/
faster-repeated-evasion-tree-ensembles.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We perform 5-fold cross validation as described in Section 4. Appendix B
reports the full grid employed to tune all our ensembles through grid search. Plus, it discusses
the choice of the employed evasion attacks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Given that our key performance metric is run time, we always report standard
deviations on run times and related metrics (e.g., when we discuss speed ups in Sections 1
and 4). Tables 7 and 8 in the supplement report run time standard deviations for all the
performed experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute worker characteristics and memory are specified in Section 4.
Run times are the key performance metric, hence they are thoroughly discussed in Section 4
and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are aware of the code of ethics and do not violate any clause.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification:
We included an impact statement in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Only the authors contributed to this paper. The adopted datasets (Table 3),
models and attack methods (Section 2) are all publicly available and properly referenced.
The license has been selected for submission in OpenReview (CC BY 4.0).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code implementing our new method (described in Section 3) as
well as all the presented experiments are publicly distributed at https://github.com/
lorenzocascioli/faster-repeated-evasion-tree-ensembles.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33


	Introduction
	Preliminaries
	Method
	Modifying the Search Procedure
	Identifying Relevant Features

	Experiments
	Related Work
	Conclusions
	Analysis of the Problem Setting 
	Employed Datasets, Models and Attacks
	Comparison with LT Attack

	Expanded Experimental Results
	Run Time Standard Deviation and Timeouts
	Tradeoff FNR vs Speedup

	Sensitivity Analysis
	Sensitivity to Statistical Test Parameters
	Sensitivity to Timeouts

	Quality of Generated Adversarial Examples
	Empirical Robustness
	Change in Predicted Probability for Adversarial Examples

	Expanded Related Work

