

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MANY CAN BEAT ONE: MOE-LINEAR ATTENTION FOR FULL MLP IMAGE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Although Transformer-based models have achieved significant success in image generation tasks, the computation of scaled dot-product attention for token interactions incurs substantial computational overhead. To address this issue, researchers have attempted to directly optimize the attention matrix using methods like gradient descent, treating the attention matrix as a set of learnable parameters. However, the attention matrix learned through this approach aims to capture a global interaction pattern. Specifically, for all input images, the tokens interact based on a single learned attention matrix. Since the distribution, size, and other characteristics of objects in each image can vary, the attention matrix learned in this way is often suboptimal. To overcome this limitation, we propose MoE-MLP, which introduces two novel components: **1) MoE-Linear Attention Module:** We design multiple learnable attention matrices and adaptively assign a weight to each matrix for every image. These matrices are then linearly combined to form the final attention matrix. Given that there are numerous possible combinations of weights, the model can learn a more suitable combination for each image; **2) Multi-Head Module:** We partition the original channels into several heads and perform MoE-Linear Attention on each head separately. This significantly increases the diversity of attention matrix combinations for different images. Finally, we conduct experiments on MS-COCO datasets, and the results demonstrate that our method achieves 7.43 FID (with **1.19** improvement), which significantly outperforms traditional MLP-based approaches (8.62 FID), with only negligible additional computational cost.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have dominated both natural language processing (Kenton & Toutanova, 2019; Touvron et al., 2023a;b), computer vision (Dosovitskiy et al., 2021; Pu et al., 2022; Li et al., 2022b), and multi-modal (Li et al., 2022a; 2023; Lin et al., 2024; Liu et al., 2023) tasks. These model architectures have demonstrated exceptional scalability and flexibility, replacing traditional models such as RNNs (Gregor et al., 2015) and CNNs (Odena et al., 2017; Goodfellow et al., 2014; Gulrajani et al., 2017). The success of the Transformer lies in its multi-head self-attention mechanism (Vaswani et al., 2017), which facilitates token-wise information interaction by using scaled dot-product attention. Despite the impressive expressive power of the Transformer, the self-attention mechanism is computationally expensive and complex. Furthermore, this mechanism has no direct counterpart in biological neural networks, as the human brain does not perform token-wise dot-product operations (Hu & Rostami, 2024).

To address the computational challenges, some works (Touvron et al., 2022; Tolstikhin et al., 2021; Hou et al., 2022; Yu et al., 2022) attempt to directly optimize the attention matrix using gradient descent, treating the attention matrix as a set of learnable parameters. While full MLP-based models perform well in simpler tasks, such as image classification (Tolstikhin et al., 2021), they struggle to achieve Transformer-comparable results in more complex tasks, such as image generation (Hu & Rostami, 2024). The reason lies in the fact that these models aim to learn a global token interaction pattern *i.e.*, an attention matrix that applies to all images within the distribution. However, due to the significant variations in object positions, sizes, and other features across images, it is difficult to apply a single, global token interaction pattern to all images, leading to suboptimal performance.

To address the limitations of the single token interactions pattern, we propose two novel modules: the MoE-Linear Attention module and the Multi-Head module. Specifically, for the **MoE-Linear**

054 **Attention module**, we design several learnable attention matrices and adaptively assign learnable
 055 weights to each matrix for every image. These matrices are then linearly combined to form the
 056 final attention matrix (different image has different combination weights). As illustrated in Figure 1,
 057 even with just two learnable attention matrices, the model can adaptively learn an infinite number of
 058 linear combinations. For the **Multi-Head module**, we partition the original channels into multiple
 059 heads and perform MoE-Linear Attention on each head separately (different heads do not share the
 060 learnable attention matrices), significantly increasing the diversity of attention matrix combinations
 061 across different images. The main contributions of this paper can be summarized as follows:

062 1) We introduce the MoE-MLP, which includes the MoE-Linear Attention module and the Multi-Head
 063 module, significantly enhancing the diversity of token interaction patterns in full MLP models.
 064 2) By leveraging the property of linear combination, we reduce the complexity of MoE-Linear
 065 Attention from EHL^2D to $L^2D + HELD$, where E , H , L , and D are the number of experts,
 066 the number of heads, sequence length, and hidden dimension, respectively. Experimentally, our
 067 MoE-MLP (2 Experts 4 Heads) only brings about 0.01 extra GFLOPs for each MoE-MLP block.
 068 3) We conduct extensive text-to-image experiments on the MS-COCO dataset, and our results
 069 demonstrate that our approach achieves new state-of-the-art performance within the MLP architecture.

071 2 RELATED WORKS

072 In this section, we briefly review works about visual MLP and transformer-based diffusion models.

073 **Visual MLP models.** MLP-based models (Tolstikhin et al., 2021; Yu et al., 2022) have gained
 074 attention as a strong alternative to traditional CNNs and ViTs for vision tasks in the past years. By
 075 leveraging the simplicity and computational efficiency of MLPs, these models achieve competitive
 076 results across a range of applications. The MLP-Mixer (Tolstikhin et al., 2021) was among the first to
 077 propose the idea of mixing tokens and channels via separate MLPs, challenging the conventional
 078 reliance on convolutions and attention mechanisms for high performance in visual classification.
 079 gMLP (Liu et al., 2021) enhanced the MLP framework by introducing gating mechanisms, which
 080 improved gradient propagation and increased model expressiveness. resMLP (Touvron et al., 2022)
 081 addressed the vanishing gradient issue by integrating residual connections into the MLP design,
 082 enabling the training of deeper networks. S2MLP (Yu et al., 2022) introduced a spatial-shift operation,
 083 which better captures spatial relationships between pixels. CycleMLP (Chen et al., 2022) utilized
 084 cyclic shifting to efficiently capture long-range dependencies and contextual information. Vision
 085 Permutator (ViP) (Hou et al., 2022) proposed a novel permutation-based approach that enables
 086 the model to permute the input image, allowing it to learn complex patterns in the data. These
 087 MLP-based models have primarily been applied to simple tasks *e.g.*, image classification, where the
 088 moderate information loss is acceptable. However, when applying them to more complex tasks, *e.g.*,
 089 image generation (Hu & Rostami, 2024), these models have not been shown comparable results to
 090 Transformers, and even worse than CNN (Rombach et al., 2022).

091 **Transformer-based diffusion architectures.** Recently, there has been a notable shift towards
 092 adopting Transformer-based (Chen et al., 2024; Peebles & Xie, 2023; Bao et al., 2023) architectures,
 093 which are gradually replacing the traditional UNet architecture (Ho et al., 2020; Ronneberger et al.,
 094 2015; Nichol & Dhariwal, 2021) in both image and video generation tasks (Yang et al., 2025). These
 095 Transformer-based models leverage powerful attention mechanisms to better capture long-range
 096 dependencies and hierarchical structures within the data, leading to improved performance and
 097 flexibility in generating diverse visual content. Among these works, U-ViT (Bao et al., 2023) and
 098 DiT (Peebles & Xie, 2023) propose the long skip connection and adaptive layer normalization to
 099 enhance the generated quality and controllability, respectively. The two methods provided a solid
 100 foundation for later transformer-based diffusion approaches (Esser et al., 2024; Crowson et al., 2024).

101 3 METHODS

102 3.1 PRELIMINARY

103 **Diffusion Models.** These models (*e.g.* the seminal work (Ho et al., 2020; Lu et al., 2022)) gradually
 104 inject noise into data and then reverse this process to generate data from noise. The noise-injection
 105 process is also called the forward process. Given clean data \mathbf{x}_0 , the forward process can be written as:

$$q(\mathbf{x}_{1:T} | \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1}) \quad (1)$$

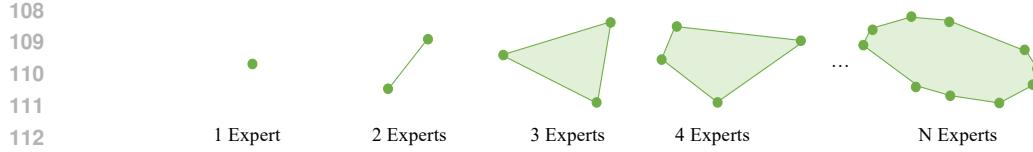


Figure 1: Motivation of the MoE architecture. We observed that traditional Transformer-free approaches (Hu & Rostami, 2024; Tolstikhin et al., 2021) use a single matrix for information propagation between tokens (we represent each learnable attention matrix with a single dot). However, a single matrix struggles to adapt to different images (as different images contain varying content). In contrast, our proposed method leverages MoE to learn weighted combinations of different matrices, thereby enabling unlimited kinds of attention matrices to better adapt to diverse images.

where q is the forward process and $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t | \sqrt{\alpha_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$, and α and β represent the noise schedule and $\alpha + \beta = 1$. $\mathcal{N}(0, 1)$ means the standard Gaussian noise. To reverse this process, a Gaussian model $p(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1} | \mu_t(\mathbf{x}_t), \sigma_t^2 \mathbf{I})$ is adopted to approximate the ground truth reverse transition $q_{\mathbf{x}_{t-1} | \mathbf{x}_t}$. Specifically, the optimal mean value of \mathbf{x}_t can be written as:

$$\mu_t^*(\mathbf{x}_t) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}} \mathbb{E}[\epsilon | \mathbf{x}_t] \right) \quad (2)$$

where $\overline{\alpha_t} = \prod_{i=1}^t \alpha_i$, and ϵ is the standard Gaussian noises injected to \mathbf{x}_t . Thus, the learning is equivalent to a noise prediction task. Formally, a noise prediction network $\epsilon_\theta(\mathbf{x}_t, t)$ is used to learn $\mathbb{E}[\epsilon | \mathbf{x}_t]$ by minimizing the noise prediction objective. For l_2 loss, we can formulate the objective of noise prediction task as $\min_\theta \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \|\epsilon - \epsilon_\theta(\mathbf{x}_t, t)\|_2^2$, where t is uniformly sampled between 1 and T . On the basis of the plain diffusion models, LDM (Rombach et al., 2022) proposes to add noise and denoise in the latent space, which greatly improves the training efficiency. Followed by LDM, U-ViT (Bao et al., 2023) proposes to replace CNN-based U-net (Ronneberger et al., 2015) with ViTs (Dosovitskiy et al., 2021) to estimate the backward process in diffusion models.

3.2 THE PROPOSED MOE-MLP

We propose MoE-MLP, which is a simple block composed of full MLP modules without the dot-product attention mechanism. Given an image $\mathbf{x} \in \mathbb{R}^{H_r \times W_r \times 3}$, we first use the pretrained VAE encoder to extract the latent embeddings $\mathbf{z} \in \mathbb{R}^{H_l \times W_l \times C}$ of \mathbf{x} , where $H_l < H_r$ and $W_l < W_r$. Then, the latent representations are divided into several patches and fed into the linear layer to obtain the input sequence $\mathbf{z} \in \mathbb{R}^{L \times D}$, where L is the number of patches and D is the model’s hidden dimension.

MoE-MLP blocks. Given a sequence of tokens $\mathbf{z} \in \mathbb{R}^{L \times D}$, the input tensors are separately fed into two branches, which we call MoE-Linear Attention $MoE - FC_S$ (spatial) and FC_C (channel). For the channel branch, we directly feed the embeddings \mathbf{z} into FC_C , which can be written as:

$$\mathbf{z}_C = FC_C(\mathbf{z}) = \mathbf{z} \mathbf{W}_C + \mathbf{B}_C \quad (3)$$

where the weight $\mathbf{W}_C \in \mathbb{R}^{D \times D}$ and bias $\mathbf{B}_C \in \mathbb{R}^D$ are two learnable parameters in a linear layer.

MoE-Linear Attention. Different from the channel transformation, the spatial transformation plays the role of message passing between all tokens. It’s difficult to learn a global token-wise interaction pattern, which is proper for all images. Therefore, we propose MoE-Linear Attention on the spatial dimension. Specifically, given the input sequence $\mathbf{z} \in \mathbb{R}^{L \times D}$, we first permute the sequence to obtain $\mathbf{z}' \in \mathbb{R}^{D \times L}$. Then, \mathbf{z}' is fed into the spatial branch $MoE - FC_S$, which can be written as:

$$\mathbf{z}_S = MoE - FC_S(\mathbf{z}') = \sum Softmax(\mathbf{z}' \mathbf{W}_\sigma)(\mathbf{z}' \mathbf{W}_S) \quad (4)$$

where $\mathbf{W}_S \in \mathbb{R}^{L \times L \times E}$ and $\mathbf{W}_\sigma \in \mathbb{R}^{L \times E}$ are the learnable parameters. Both summation and *Softmax* operation are conducted on the expert dimension. E is the number of experts.

Multi-Head MoE-MLP. The multi-head mechanism has been proven effective on transformer-like architectures (Vaswani et al., 2017), since different heads can attend to different tokens. Inspired by



Figure 2: Framework of the proposed MoE-MLP. We illustrate the architecture of each MoE-MLP block (left) and the overall architecture of the proposed MoE-MLP (right). For simplicity, we only illustrate MoE-MLP with 5 blocks. Text and time tokens are directly concatenated with image tokens.

this, we propose multi-head MoE-Linear Attention, which divides the channel into several heads, and the features in different heads use individual experts. Specifically, given the permuted feature \mathbf{z}' , we first divide the feature into several heads, and we denote $\mathbf{z}'_i \in \mathbb{R}^{\frac{D}{H} \times L}$ as the features of the i -th head. Then, we can separately feed the features into the proposed MoE-Linear Attention, which can be written as:

$$\begin{aligned} \mathbf{z}'_i &= MoE - FC_S(\mathbf{z}'_i) = \sum Softmax(\mathbf{z}'_i \mathbf{W}_\sigma)(\mathbf{z}'_i \mathbf{W}_S) \\ \mathbf{z}'_L &= ConCat(\mathbf{z}'_1, \mathbf{z}'_2, \dots, \mathbf{z}'_H) \end{aligned} \quad (5)$$

where the *ConCat* operation is conducted on the channel dimension, and $\mathbf{z}'_L \in \mathbb{R}^{D \times L}$.

Branch Embeddings Fusion. Similar to previous MLP-like architectures (Hu & Rostami, 2024), we directly add the two branch outcomes, followed by a linear layer, which can be expressed as:

$$\mathbf{z}_o = Linear(Permute(\mathbf{z}'_L) + \mathbf{z}_R) \quad (6)$$

where *Permute*(\cdot) is the permutation operation to transpose the \mathbf{z}'_L to obtain matrix in $\mathbb{R}^{L \times D}$. Similar to the standard transformer blocks, we use the residual connections in each block:

$$\mathbf{z} = FFN_C(\mathbf{z} + \mathbf{z}_o) + \mathbf{z} + \mathbf{z}_o \quad (7)$$

where FFN_C is the Feed-forward-Neural-Networks on the channel dimension.

3.3 SKIP CONNECTION AND OBJECTIVE

Skip connection. Inspired by the success of the U-Net in CNN and Transformer models, our MoE-MLP also adopts similar long skip connections between the shallow and deep blocks. Intuitively, the long skip connections provide shortcuts for the low-level features and therefore ease the training of the noise prediction network. After obtaining the output of the final blocks, a 3×3 convolutional layer is employed before output. This is intended to prevent the potential artifacts in images produced by FFN (This operation is widely used in Transformer (Bao et al., 2023) and MLP-based (Hu & Rostami, 2024) diffusion models).

Diffusion objective. Given the latent representations \mathbf{z} processed by VAE encoder, we first sample a noise ϵ and the timestep t from the standard Gaussian distribution and the uniform distribution from

```

216
217 # H: num_heads, E: numExperts, D: dimension, L: sequence_length
218 def __init__(self, D, L, H, E, s):
219     self.norm1 = norm_layer(D)
220     self.norm2 = norm_layer(L)
221     weight = torch.zeros(H, E, L, L)
222     self.l_weight = nn.Parameter(weight)
223     self.l_gate = nn.Linear(L, E)
224     self.r = nn.Linear(L, E)           # For channel transformation
225     self.proj = nn.Linear(D, D)
226     self.mlp = Mlp(in_feat=D, hidden_feat=s*D)
227 # x: input tensor: B, L, D
228 def forward(self, x):
229     xperm = x.permute(0, 2, 1)           # B D L
230     x, xperm = self.norm1(x), self.norm2(x)
231     gate = self.l_gate(xperm).view(B, H, D, E)
232     gate = gate.mean(dim=2).softmax(dim=-1)
233     ls = einsum('bemn, bhe->bhmn', self.l_weight, gate)
234     xperm = xperm.view(B, H, D, L)
235     l = einsum('bhmn, bhdm->bhdn', ls, xperm)
236     l = l.view(B, H * D, L).permute(0, 2, 1)
237     r = self.r(x)
238     x = x + self.proj(l + r)           # Merge two branches
239     x = x + self.mlp(self.norm1(x))    # Residual
240
241     return x

```

Algorithm 1: PyTorch-like pseudo code for the proposed MoE-MLP. For simplicity, B, L, D, E are directly set as global variables. s is the expansion factor in the MLP (channel) architecture.

1 \sim T , respectively. Then, we add the noise to the latent representations by:

$$\mathbf{z}_t = \sqrt{\alpha_t} \mathbf{z}_0 + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \in \mathcal{N}(0, \mathbf{I}) \quad (8)$$

where α_t is the pre-defined diffusion hyperparameters. Then, the noisy input \mathbf{z}_t will be patchified and fed into the proposed MoE-MLP. Finally, the diffusion objective can be written as:

$$\mathcal{L}_{Diff} = \mathbb{E}_{t, \mathbf{x}_0, \boldsymbol{\epsilon}} \|\boldsymbol{\epsilon} - f_{\theta}(\mathbf{z}_t, t)\|_2^2 \quad (9)$$

where $f_{\theta}(\mathbf{z}_t, t)$ is the predicted noised, and θ is the training parameters of MoE-MLP. Figure 2 shows the framework of each block and the overall architecture of the proposed MoE-MLP, and Algorithm 1 shows the PyTorch-like pseudo code of the proposed MoE-MLP block.

3.4 EMPIRICAL ANALYSIS

Advantages of MoE-Linear Attention over Single Linear Attention. We analyze why the proposed MoE-MLP architecture theoretically surpasses traditional MLP-based approaches in image generation. A key limitation of prior MLP methods is their reliance on a single, fixed matrix W to approximate the attention mechanism. However, the ideal attention matrix should dynamically adapt to the diverse content distributions across different images. Forcing all images to share the same attention pattern, which inevitably leads to suboptimal token-wise information propagation, as the rigid weighting fails to capture the variability in spatial relationships (see Figure 1).

In contrast, MoE-MLP overcomes this constraint by leveraging a Mixture of Experts (MoE) to enable infinitely many attention matrix combinations. This design dramatically expands the attention mechanism's degrees of freedom, allowing the model to adaptively learn input-specific attention patterns. Consequently, MoE-MLP achieves more precise and expressive information propagation.

Analysis on computational costs. In summary, we introduce two novel modules for full-MLP architectures: **MoE-Linear Attention** (Spatial dimension) and the **Multi-Head** mechanism (Channel dimension). Below, we analyze the computational overhead of the proposed two modules.

- **Multi-head Mechanism.** Given an input matrix of size $D \times L$, we split it into H heads, reshaping it into $H \times \frac{D}{H} \times L$. Each sub-matrix of size $\frac{D}{H} \times L$ is then multiplied by a learnable $L \times L$ matrix \mathbf{W} , with a computational complexity of $L^2 \frac{D}{H}$ per head. Aggregating

270

271
272
Table 1: Efficiency comparisons between Transformer block, full MLP block, and the proposed
MoE-MLP. Note that H and E are significantly lower than L and D . s is the expansion ratio in MLP.

Model	Architecture	Complexity	# Params (P)	GFLOPs ↓
Transformer Block (Bao et al., 2023)	ViT-S/2	$(3 + 2s)L D^2 + 2L^2 D$	$(4 + 2s)D^2$	33.67
MLP Block (Hu & Rostami, 2024)	ViT-S/2	$(2 + 2s)L D^2 + L^2 D$	$(2 + 2s)D^2 + L^2$	17.54
MoE-MLP Block (Ours)	ViT-S/2	$(2 + 2s)L D^2 + L^2 D + 2H E L D$	$(2 + 2s)D^2 + H E L^2$	17.55

273

277
Table 2: FID scores comparisons between different generative models trained on MS-COCO dataset.
278
279
For MLP-based models, CNN is only used for pre- and post-processing in VAE pretrained by
280
SD (Rombach et al., 2022). VAE is frozen in the training process. E and H mean the number of
281
experts and heads, respectively.

Model	FID ↓	Type	Model Architecture	#Param.
AttnGAN (Xu et al., 2018)	35.49	GAN	CNN + Attention	230M
DM-GAN (Zhu et al., 2019)	32.64	GAN	CNN + Memory Network	46M
VQ-Diffusion (Gu et al., 2022)	19.75	Diffusion	CNN + Transformer	370M
XMC-GAN (Zhang et al., 2021)	9.33	GAN	CNN + Attention	166M
LAFITE (Zhou et al., 2022)	8.12	GAN	CNN + Transformer	75M + 151M
LDM (Rombach et al., 2022)	7.32	Latent diffusion	CNN + Cross-attention	53M (Backbone) + 207M (VAE)
DiT-S/2 (Peebles & Xie, 2023)	6.23	Latent diffusion	CNN + Transformer	45M (Backbone) + 207M (VAE)
U-ViT-S/2 (Bao et al., 2023)	5.95	Latent diffusion	CNN + Transformer	45M (Backbone) + 207M (VAE)
MLP-based model				
gMLP (Liu et al., 2021)	>100	Latent diffusion	CNN + MLP	45M (Backbone) + 207M (VAE)
MLP-Mixer (Tolstikhin et al., 2021)	>100	Latent diffusion	CNN + MLP	45M (Backbone) + 207M (VAE)
UL-MLP (Hu & Rostami, 2024)	8.62	Latent diffusion	CNN + MLP	47M (Backbone) + 207M (VAE)
MoE-MLP (2E1H) (Ours)	7.61	Latent diffusion	CNN + MLP	49M (Backbone)s + 207M (VAE)
MoE-MLP (4E1H) (Ours)	7.51	Latent diffusion	CNN + MLP	52M (Backbone)s + 207M (VAE)
MoE-MLP (4E2H) (Ours)	7.43	Latent diffusion	CNN + MLP	60M (Backbone)s + 207M (VAE)

294

295

296
297
across all H heads, the total complexity remains $L^2 D$ -identical to non-head (single-matrix)
298
version. Thus, the multi-head design **incurs no additional computational cost**.

299

300

301

- **MoE-Linear Attention.** For the $D \times L$ input matrix \mathbf{z} , we first route it through gating linear layers with weight matrices of size $L \times H \times E$, where E denotes the number of experts and H is the number of heads (Note that different heads do not share the experts). The input is then processed by these E expert models. Fortunately, for linear combination, we have:

302

303

304

$$\sum_i \lambda_i \mathbf{w}_i \mathbf{z} = (\sum_i \lambda_i \mathbf{w}_i) \mathbf{z} = \mathbf{W}_{MoE-Linear} \mathbf{z} \quad (10)$$

305

306

307

308

where λ is the gating matrix. Then, we can first derive the MoE-Linear attention matrix $\mathbf{W}_{MoE-Linear}$, and these calculations result in $HELD$ computational costs. Finally, the attention matrix multiplies the input matrix, which results in the total complexity of $L^2 D$. Therefore, our method only brings an extra $HELD$ computational complexity.

309

310

311

312

313

314

315

316

We report the complexity of transformer block (Bao et al., 2023), traditional MLP block (Hu & Rostami, 2024) and the proposed MoE-MLP ($E = 4, H = 1$) in Table 1. Although our method introduces more parameters ($(HE - 1)L^2$) for each block than traditional MLP blocks, the overall computation increases by only 0.01 GFLOPs. Furthermore, the computational cost of each Transformer block is nearly double that of a single block in our proposed MoE-MLP. Notably, as the attention mechanism has matured, there are now several open-source libraries (*e.g.*, xFormers (Lefauveux et al., 2022), Flash Attention (Dao et al., 2022; Dao, 2024)) designed to accelerate attention computation, which leads to faster training speeds (iterations per second) compared to MLPs.

317

318

4 EXPERIMENTS

319

320

4.1 MAIN RESULTS

321

322

323

Main results. We report the FID results of our method under different numbers of experts and heads in Table 2. The experimental results show that, with the same number of parameters, our method achieves comparable performance to the CNN-based architecture LDM (Rombach et al., 2022). Moreover, by adding only a single expert (*i.e.*, introducing just roughly one additional

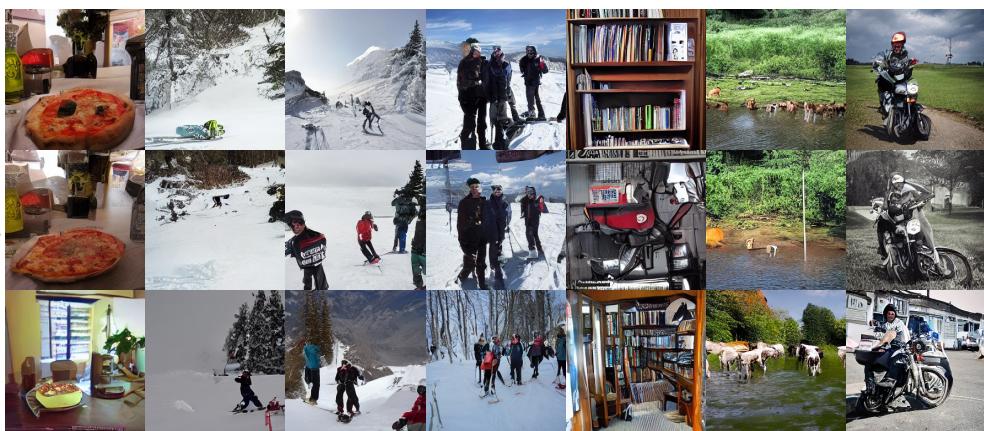


Figure 3: Qualitative comparisons between the proposed MoE-MLP (4 Experts and 1 Head), U-ViT (Bao et al., 2023) and L-MLP (Hu & Rostami, 2024). All methods are trained on the MS-COCO.

Table 3: FID scores comparisons between different model architectures trained on MS-COCO dataset.

Model	FID ↓	Complexity	# Params	#Speed (Iter. / Sec.)
Arch. (Fig. 8a)	124.282	$2HLD + 2sLD^2 + L^2D$	48M (Model) + 207M (VAE)	17.371
Arch. (Fig. 8b)	16.482	$2HLD + (4s + 2)LD^2 + L^2D$	62M (Model) + 207M (VAE)	14.918
Arch. (Fig. 8c) (Ours)	14.973	$2HLD + (2s + 2)LD^2 + L^2D$	52M (Model) + 207M (VAE)	17.125

learnable matrix with shape $L \times L$ per block), we achieve an FID improvement of **1.01** over the original MLP-based method (Hu & Rostami, 2024). Figure 3 shows the qualitative comparisons of the proposed MoE-MLP with previous MLP-based method (Hu & Rostami, 2024) and U-ViT (Bao et al., 2023), where the images generated by MoE-MLP are of similar quality to those generated by U-ViT, while the images generated by L-MLP tend to have more noise artifacts. We also illustrate more images generated by our MoE-MLP in Appendix A for further comparisons.

4.2 ABLATION STUDIES

Effect on heads. Setups. To systematically evaluate the impact of multi-head attention mechanisms in our model, we conducted a comprehensive ablation study by varying the number of attention heads while keeping the number of experts fixed. Specifically, we compared configurations with head counts ranging from 1 to 8 to assess their influence on model performance. Due to computational constraints, we limited the training to 100,000 iterations with a fixed learning rate of 2e-5. The training process utilized a batch size of 256, distributed across 8 GPUs (32 samples per GPU) to optimize parallel efficiency. During inference, we adopted a Classifier-Free Guidance (CFG) ratio of 1.0 for stable sampling. To ensure robust evaluation, we randomly sampled 30,000 generated images and computed their Fréchet Inception Distance (FID) against the validation set, providing a reliable measure of image quality and diversity. **Results.** As illustrated in Figure 4, our experimental results demonstrate that increasing the number of attention heads leads to consistent and significant improvements in FID compared to the baseline model (1 Expert, 1 Head). Notably, when using a smaller number of heads (e.g., 2–4), our approach achieves competitive performance gains without introducing substantial additional parameters or significantly increasing computational overhead. This suggests that our method maintains an efficient trade-off between model capacity and computational cost, particularly in scenarios where resource efficiency is critical. These findings highlight the effectiveness of our architecture in leveraging multi-head attention while preserving scalability, making it suitable for practical applications where both performance and efficiency are key considerations.

Effect on experts. Setups. We conducted a systematic investigation into the impact of varying the number of experts in our proposed MoE-Linear framework. To isolate the effect of expert count, we held the number of attention heads constant (fixing it at either 1 or 2) while progressively increasing the number of experts from 1 to 8. Consistent with our previous experiments, all models were trained for 100,000 iterations on the MS-COCO dataset under identical hyperparameter settings.

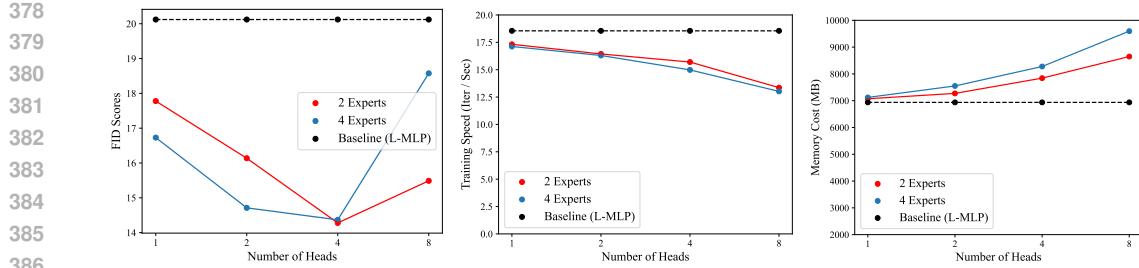


Figure 4: FID (left plot), training speed (middle plot), and memory costs (right plot) comparisons of different numbers of heads with baselines (Hu & Rostami, 2024). We fix the number of experts and change the number of heads (1 ~ 8). For FID comparisons on the MS-COCO dataset, we randomly sample 30K images.

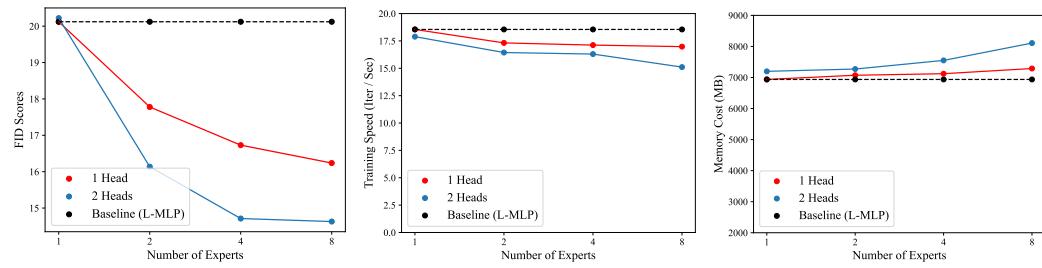
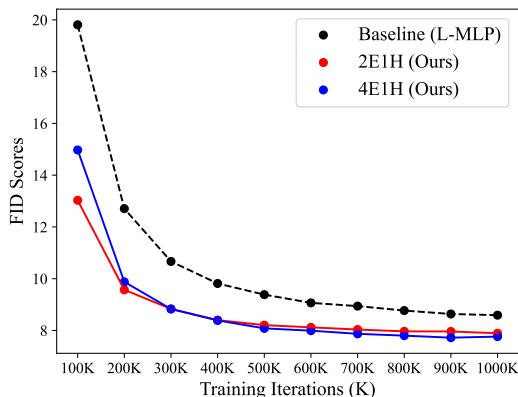


Figure 5: FID (left plot), training speed (middle plot), and memory costs (right plot) comparisons of different numbers of experts with L-MLP. We fix the number of experts and change the number of heads (1 ~ 8). For FID comparisons on the MS-COCO dataset, we randomly sample 30K images.

Results. As demonstrated in Figure 5, we observed several key findings: 1) The FID score exhibited consistent improvement as we increased the number of experts, indicating enhanced model capacity for image generation; 2) This performance gain came with a gradual increase in both training time and parameter count, attributable to the linear growth of $L \times L$ transformation matrices with respect to the number of experts. Notably, even when scaling to 8 experts, our MoE-MLP architecture maintained remarkable parameter efficiency. The most significant performance leap occurred when increasing from 1 to 2 experts, where the FID score improved dramatically from 20.121 to 17.779 at 100k iterations - a substantial gain achieved by adding just one additional $L \times L$ transformation matrix for each MoE-MLP block. These findings collectively validate that our MoE-Linear modification represents an efficient and effective method for enhancing traditional full MLP-based architectures, achieving significant quality improvements with minimal computational overhead.

Model Architecture. Setups. To further validate our design choices, we conducted a comprehensive ablation study examining different network architectures for latent diffusion models. As illustrated in Figure 8 in the Appendix A, we evaluated three distinct configurations: (a) Modified Transformer Baseline: We replaced the standard attention mechanism in a conventional transformer architecture with our proposed MoE-Linear Attention, incorporating an additional softmax operation on the parameters. This variant served to investigate the compatibility of our approach with traditional transformer frameworks. (b) Parallel MLP Branch Design: This architecture introduced two parallel MLP branches, with their outputs concatenated and fused through a linear projection layer. The design aimed to explore alternative feature integration strategies while maintaining the MoE-Linear components. (c) Proposed Architecture: Representing our main experimental configuration (as detailed in Section 3), this architecture served as the reference for comparative evaluation. For all variants, we maintained consistent hyperparameters: 4 experts and 1 head in each MoE-Linear Attention layer, trained for 100k iterations on the MSCOCO dataset. The quantitative comparisons are presented in Table 3. **Results.** Variant (c) achieved superior results, demonstrating the effectiveness of our proposed architecture. The significant performance gap (FID difference of $\Delta = 3.21$) between variants (c) and (a) suggests that simply transplanting MoE-Linear Attention into traditional transformer frameworks may be suboptimal. The particularly poor performance of variant (a) indicates potential incompatibility between softmax normalization and fully MLP-based architectures. This

432 observation aligns with recent findings in L-MLP (Hu & Rostami, 2024) regarding attention-like
 433 operations in full MLP models.
 434



448 Figure 6: FID scores of L-MLP and the proposed
 449 MoE-MLP with different training iterations.

450 though the model with 2 Experts achieves better results than the one with 4 Experts after 100 training
 451 iterations, the performance of the model with 4 Experts surpasses that of the 2 Experts model as
 452 training progresses. This can be attributed to the fact that the 2 Experts settings may exhibit faster
 453 convergence, whereas the 4 Experts setup provides greater flexibility, allowing the network to auto-
 454 matically learn a broader range of possible Linear Attention combinations in later stages of training.
 455 As a result, the attention matrix becomes more precise, leading to improved overall performance on
 456 the MS-COCO dataset.

457 **Using load balancing loss. Setups.** The load
 458 balancing objective consists of two key compo-
 459 nents: **i) Coefficient of Variation (CV) term**,
 460 which penalizes imbalanced expert usage by
 461 measuring the normalized standard deviation
 462 of gating probabilities, and **ii) Cross-entropy**
 463 **term**, which can be written as: $\mathcal{L}_{Balance} =$

464 $\left(\frac{\sigma_u}{\mu_u + \alpha}\right)^2 - \sum_{e=1}^E \frac{1}{E} \log(u_e + \alpha)$, where u_e is the mean gating probability for e -th expert,
 465 $\mu_u = \frac{1}{E} \sum_{e=1}^E u_e$ is the mean expert usage. α is a small constant for numerical stability. Al-
 466 though the load balancing loss works well for traditional large language models, in our scenario,
 467 MoE-MLP aims to provide more combinations of the attention matrix, and the load balancing loss
 468 may cause different combination weights to be equal. Therefore, in our main experiments, we discard
 469 this balancing term. For comparisons, we also report the FID scores w/ and w/o load balancing
 470 loss. Following the work (Shazeer et al., 2017), we set the balancing loss weight as 0.01, training
 471 the MoE-MLP with different iterations. Table 4 shows comparisons of FID results at 100k and 1M
 472 training iterations. We observe that with load balancing loss, the model converges faster (achieving
 473 better FID at 100k), whereas at 1M training iterations, “w/o load balancing loss” performs better.

475 5 CONCLUSION

477 In this paper, we propose MoE-MLP, which includes two main modules: i) MoE-Linear Attention,
 478 which is composed of several learnable attention matrices, and adaptively assigns learnable weights
 479 to each matrix to every image; ii) Multi-Head module, which partitions the original channels into
 480 multiple heads and performs MoE-Linear Attention on each head separately. The two modules
 481 significantly increase the diversity of the final attention matrix. Then, we leverage the property of
 482 linear combination, reducing the complexity of the MoE-Linear Attention to $L^2 D + H E L D$, which
 483 only brings negligible additional computations. Finally, we conduct experiments on the text-to-image
 484 generation task, where the results demonstrate the effectiveness of the proposed MoE-MLP.

485 **LLM-Usage Statement.** The authors used a large language model for language polishing. All ideas,
 486 methodology, experiments, and results are the authors’ own.

Convergence speed. To better compare the convergence speed of our proposed MoE-MLP with the baseline L-MLP, we report the FID results of both models at different training iterations. As shown in Figure 6, our method achieves an FID score of 13.029 at 100K training iterations, while the baseline L-MLP only reaches an FID score of 19.810. This improvement can be attributed to the MoE Linear Attention architecture we proposed, which allows the attention matrix to have an infinite number of possible combinations. In contrast, the baseline L-MLP (Hu & Rostami, 2024) only provides the same attention matrix for all images. Our approach significantly increases the degrees of freedom for the attention matrix, leading to better results. Additionally, we observed that although the model with 2 Experts achieves better results than the one with 4 Experts after 100 training iterations, the performance of the model with 4 Experts surpasses that of the 2 Experts model as training progresses. This can be attributed to the fact that the 2 Experts settings may exhibit faster convergence, whereas the 4 Experts setup provides greater flexibility, allowing the network to automatically learn a broader range of possible Linear Attention combinations in later stages of training. As a result, the attention matrix becomes more precise, leading to improved overall performance on the MS-COCO dataset.

Table 4: FID scores comparisons on the MS-COCO dataset w/ and w/o load balancing loss.

Method	Training Speed (Iter. / Sec.)	# Iterations	FID ↓
w/ Balance	13.85	100K	11.757
		1M	8.557
w/o Balance	14.27	100K	12.205
		1M	8.018

500 The table shows FID scores for two methods: w/ Balance and w/o Balance, at 100K and 1M training
 501 iterations. The w/ Balance method consistently achieves lower FID scores than the w/o Balance
 502 method. At 100K iterations, the w/ Balance method has an FID of 11.757, while the w/o Balance
 503 method has an FID of 12.205. At 1M iterations, the w/ Balance method has an FID of 8.557, while
 504 the w/o Balance method has an FID of 8.018. This indicates that the load balancing loss helps the
 505 model converge faster and achieve better performance.

486 REFERENCES
487488 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
489 words: A vit backbone for diffusion models. In *CVPR*, 2023.490 Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
491 Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-alpha: Fast training of diffusion transformer for
492 photorealistic text-to-image synthesis. In *ICLR*, 2024.493 Shoufa Chen, Enze Xie, Chongjian GE, Runjian Chen, Ding Liang, and Ping Luo. CycleMLP: A
494 MLP-like architecture for dense prediction. In *ICLR*, 2022.495 Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z
496 Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
497 diffusion transformers. In *ICML*, 2024.498 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *ICLR*,
499 2024.500 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
501 memory-efficient exact attention with IO-awareness. In *NeurIPS*, 2022.502 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
503 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
504 is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.505 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
506 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
507 high-resolution image synthesis. In *ICML*, 2024.508 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
509 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *NeurIPS*, 2014.510 Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. Draw: A recurrent
511 neural network for image generation. In *ICML*, 2015.512 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
513 Guo. Vector quantized diffusion model for text-to-image synthesis. In *CVPR*, 2022.514 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
515 Improved training of wasserstein gans. *NeurIPS*, 2017.516 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 2020.517 Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. Vision
518 permutator: A permutable mlp-like architecture for visual recognition. *TPAMI*, 2022.519 Zizhao Hu and Mohammad Rostami. Lateralization mlp: A simple brain-inspired architecture for
520 diffusion. *arXiv preprint arXiv:2405.16098*, 2024.521 Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
522 bidirectional transformers for language understanding. In *NAACL*, 2019.523 Benjamin Lefauze, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
524 Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
525 Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
526 modelling library. <https://github.com/facebookresearch/xformers>, 2022.527 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
528 pre-training for unified vision-language understanding and generation. In *ICML*, 2022a.529 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
530 pre-training with frozen image encoders and large language models. In *ICML*, 2023.

540 Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
 541 backbones for object detection. In *ECCV*, 2022b.

542

543 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 544 united visual representation by alignment before projection. In *EMNLP*, 2024.

545 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 546 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.

547

548 Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. *NeurIPS*, 2021.

549

550 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*,
 551 2023.

552

553 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
 554 solver for diffusion probabilistic model sampling in around 10 steps. *NeurIPS*, 2022.

555

556 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 557 In *ICML*, 2021.

558

559 Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
 560 classifier gans. In *ICML*, 2017.

561

562 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

563

564 Mengyang Pu, Yaping Huang, Yuming Liu, Qingji Guan, and Haibin Ling. Edter: Edge detection
 565 with transformer. In *CVPR*, 2022.

566

567 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 568 image segmentation. In *MICCAI*, 2015.

569

570 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 571 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 572 *ICLR*, 2017.

573

574 Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
 575 Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
 576 all-mlp architecture for vision. *NeurIPS*, 2021.

577

578 Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
 579 Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al. Resmlp: Feedfor-
 580 ward networks for image classification with data-efficient training. *TPAMI*, 2022.

581

582 Hugo Touvron, Thibaut Laval, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 583 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 584 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

585

586 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 587 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 588 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

589

590 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 591 Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 2017.

592

593 Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He.
 594 Attngan: Fine-grained text to image generation with attentional generative adversarial networks.
 595 In *CVPR*, 2018.

596

597 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 598 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 599 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 600 an expert transformer. In *ICLR*, 2025.

594 Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. S2-mlp: Spatial-shift mlp architecture for
595 vision. In *WACV*, 2022.

596

597 Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. Cross-modal contrastive
598 learning for text-to-image generation. In *CVPR*, 2021.

599

600 Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu,
601 Jinhui Xu, and Tong Sun. Lafite: Towards language-free training for text-to-image generation.
602 *CVPR*, 2022.

603

604 Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan: Dynamic memory generative adversarial
605 networks for text-to-image synthesis. In *CVPR*, 2019.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647



Figure 7: More qualitative comparisons between the proposed MoE-MLP, U-ViT, and L-MLP.

A EXPERIMENTAL SETUPS

To evaluate the effectiveness of the proposed MoE-MLP, we conduct experiments on text-to-image synthesis task using the MS-COCO dataset Lin et al. (2014). The dataset consists of 256×256 resolution images, split into 82,783 training samples and 40,504 validation samples. Each image is paired with five captions, and during training, similar to the work Bao et al. (2023), a random caption is selected for each image. We generate images from 30,000 randomly chosen captions in the validation set, and we mainly compare our MoE-MLP with transformer-based methods Bao et al. (2023) and traditional MLP-based methods Hu & Rostami (2024).

Our MoE-MLP is built upon the UL-MLP Hu & Rostami (2024) diffusion framework, where timestep embeddings, text conditions, and image features are uniformly processed as tokenized inputs. Following U-ViT’s preprocessing pipeline, we encode images into 512-dimensional latent features using a pretrained autoencoder, followed by a 2×2 convolutional upscaling layer. Text inputs are embedded into a 77×512 representation using a pretrained CLIP model, with an additional linear projection layer for adaptation. During training, we apply classifier-free guidance by randomly replacing text embeddings with null tokens 10% of the time. The model is trained on 8 GPUs (H800) with a batch size of 256.

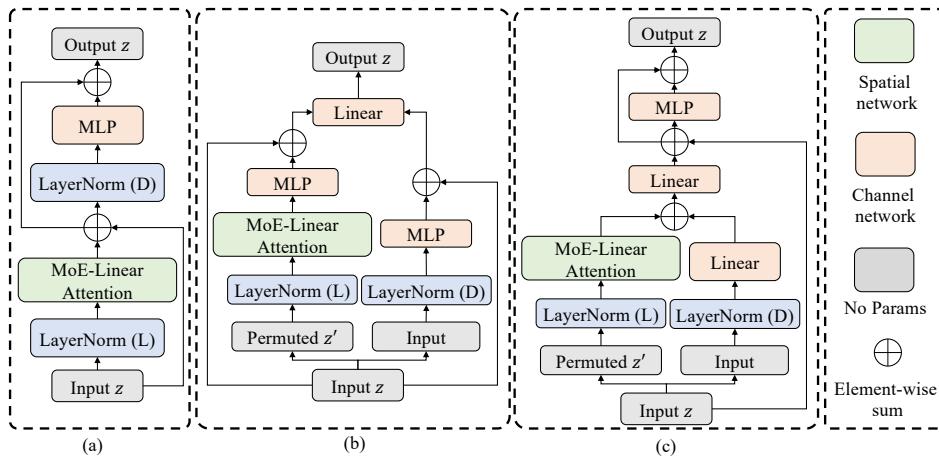


Figure 8: Visualization of three different designs of the model architectures.

B MORE QUALITATIVE COMPARISONS

As shown in Figure 7, since both our MoE-MLP and L-MLP Hu & Rostami (2024) are MLP-based methods, the images generated by these two approaches tend to have similar content. However, the images generated by our proposed MoE-MLP exhibit higher-quality details and fewer noise artifacts.