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ABSTRACT

Although Transformer-based models have achieved significant success in image
generation tasks, the computation of scaled dot-product attention for token interac-
tions incurs substantial computational overhead. To address this issue, researchers
have attempted to directly optimize the attention matrix using methods like gradient
descent, treating the attention matrix as a set of learnable parameters. However, the
attention matrix learned through this approach aims to capture a global interaction
pattern. Specifically, for all input images, the tokens interact based on a single
learned attention matrix. Since the distribution, size, and other characteristics of
objects in each image can vary, the attention matrix learned in this way is often
suboptimal. To overcome this limitation, we propose MoE-MLP, which introduces
two novel components: 1) MoE-Linear Attention Module: We design multiple
learnable attention matrices and adaptively assign a weight to each matrix for every
image. These matrices are then linearly combined to form the final attention matrix.
Given that there are numerous possible combinations of weights, the model can
learn a more suitable combination for each image; 2) Multi-Head Module: We
partition the original channels into several heads and perform MoE-Linear Atten-
tion on each head separately. This significantly increases the diversity of attention
matrix combinations for different images. Finally, we conduct experiments on
MS-COCO datasets, and the results demonstrate that our method achieves 7.43 FID
(with 1.19 improvement), which significantly outperforms traditional MLP-based
approaches (8.62 FID), with only negligible additional computational cost.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have dominated both natural language processing (Kenton &
Toutanova, 2019; Touvron et al., 2023a;b), computer vision (Dosovitskiy et al., 2021; Pu et al.,
2022; Li et al., 2022b), and multi-modal (Li et al., 2022a; 2023; Lin et al., 2024; Liu et al., 2023)
tasks. These model architectures have demonstrated exceptional scalability and flexibility, replacing
traditional models such as RNNs (Gregor et al., 2015) and CNNs (Odena et al., 2017; Goodfellow
et al., 2014; Gulrajani et al., 2017). The success of the Transformer lies in its multi-head self-attention
mechanism (Vaswani et al., 2017), which facilitates token-wise information interaction by using
scaled dot-product attention. Despite the impressive expressive power of the Transformer, the self-
attention mechanism is computationally expensive and complex. Furthermore, this mechanism has
no direct counterpart in biological neural networks, as the human brain does not perform token-wise
dot-product operations (Hu & Rostami, 2024).

To address the computational challenges, some works (Touvron et al., 2022; Tolstikhin et al., 2021;
Hou et al., 2022; Yu et al., 2022) attempt to directly optimize the attention matrix using gradient
descent, treating the attention matrix as a set of learnable parameters. While full MLP-based models
perform well in simpler tasks, such as image classification (Tolstikhin et al., 2021), they struggle to
achieve Transformer-comparable results in more complex tasks, such as image generation (Hu &
Rostami, 2024). The reason lies in the fact that these models aim to learn a global token interaction
pattern i.e., an attention matrix that applies to all images within the distribution. However, due to
the significant variations in object positions, sizes, and other features across images, it is difficult to
apply a single, global token interaction pattern to all images, leading to suboptimal performance.

To address the limitations of the single token interactions pattern, we propose two novel modules:
the MoE-Linear Attention module and the Multi-Head module. Specifically, for the MoE-Linear
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Attention module, we design several learnable attention matrices and adaptively assign learnable
weights to each matrix for every image. These matrices are then linearly combined to form the
final attention matrix (different image has different combination weights). As illustrated in Figure 1,
even with just two learnable attention matrices, the model can adaptively learn an infinite number of
linear combinations. For the Multi-Head module, we partition the original channels into multiple
heads and perform MoE-Linear Attention on each head separately (different heads do not share the
learnable attention matrices), significantly increasing the diversity of attention matrix combinations
across different images. The main contributions of this paper can be summarized as follows:

1) We introduce the MoE-MLP, which includes the MoE-Linear Attention module and the Multi-Head
module, significantly enhancing the diversity of token interaction patterns in full MLP models.

2) By leveraging the property of linear combination, we reduce the complexity of MoE-Linear
Attention from EHL2D to L2D + HELD, where E, H , L, and D are the number of experts,
the number of heads, sequence length, and hidden dimension, respectively. Experimentally, our
MoE-MLP (2 Experts 4 Heads) only brings about 0.01 extra GFLOPs for each MoE-MLP block.

3) We conduct extensive text-to-image experiments on the MS-COCO dataset, and our results
demonstrate that our approach achieves new state-of-the-art performance within the MLP architecture.

2 RELATED WORKS

In this section, we briefly review works about visual MLP and transformer-based diffusion models.

Visual MLP models. MLP-based models (Tolstikhin et al., 2021; Yu et al., 2022) have gained
attention as a strong alternative to traditional CNNs and ViTs for vision tasks in the past years. By
leveraging the simplicity and computational efficiency of MLPs, these models achieve competitive
results across a range of applications. The MLP-Mixer (Tolstikhin et al., 2021) was among the first to
propose the idea of mixing tokens and channels via separate MLPs, challenging the conventional
reliance on convolutions and attention mechanisms for high performance in visual classification.
gMLP (Liu et al., 2021) enhanced the MLP framework by introducing gating mechanisms, which
improved gradient propagation and increased model expressiveness. resMLP (Touvron et al., 2022)
addressed the vanishing gradient issue by integrating residual connections into the MLP design,
enabling the training of deeper networks. S2MLP (Yu et al., 2022) introduced a spatial-shift operation,
which better captures spatial relationships between pixels. CycleMLP (Chen et al., 2022) utilized
cyclic shifting to efficiently capture long-range dependencies and contextual information. Vision
Permutator (ViP) (Hou et al., 2022) proposed a novel permutation-based approach that enables
the model to permute the input image, allowing it to learn complex patterns in the data. These
MLP-based models have primarily been applied to simple tasks e.g., image classification, where the
moderate information loss is acceptable. However, when applying them to more complex tasks, e.g.,
image generation (Hu & Rostami, 2024), these models have not been shown comparable results to
Transformers, and even worse than CNN (Rombach et al., 2022).

Transformer-based diffusion architectures. Recently, there has been a notable shift towards
adopting Transformer-based (Chen et al., 2024; Peebles & Xie, 2023; Bao et al., 2023) architectures,
which are gradually replacing the traditional UNet architecture (Ho et al., 2020; Ronneberger et al.,
2015; Nichol & Dhariwal, 2021) in both image and video generation tasks (Yang et al., 2025). These
Transformer-based models leverage powerful attention mechanisms to better capture long-range
dependencies and hierarchical structures within the data, leading to improved performance and
flexibility in generating diverse visual content. Among these works, U-ViT (Bao et al., 2023) and
DiT (Peebles & Xie, 2023) propose the long skip connection and adaptive layer normalization to
enhance the generated quality and controllability, respectively. The two methods provided a solid
foundation for later transformer-based diffusion approaches (Esser et al., 2024; Crowson et al., 2024).

3 METHODS
3.1 PRELIMINARY

Diffusion Models. These models (e.g. the seminal work (Ho et al., 2020; Lu et al., 2022)) gradually
inject noise into data and then reverse this process to generate data from noise. The noise-injection
process is also called the forward process. Given clean data x0, the forward process can be written as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)
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Figure 1: Motivation of the MoE architecture. We observed that traditional Transformer-free
approaches (Hu & Rostami, 2024; Tolstikhin et al., 2021) use a single matrix for information
propagation between tokens (we represent each learnable attention matrix with a single dot). However,
a single matrix struggles to adapt to different images (as different images contain varying content). In
contrast, our proposed method leverages MoE to learn weighted combinations of different matrices,
thereby enabling unlimited kinds of attention matrices to better adapt to diverse images.

where q is the forward process and q(xt|xt−1) = N (xt|
√
αtxt−1, βtI), and α and β represent the

noise schedule and α+ β = 1. N (0, 1) means the standard Gaussion noise. To reverse this process,
a Gaussion model p(xt−1|xt) = N (xt−1|µt(xt), σ

2
t I) is adopted to approximate the ground truth

reverse transition qxt−1|xt
. Specifically, the optimal mean value of xt can be written as:

µ∗
t (xt) =

1
√
αt

(
xt −

βt√
1− α

E[ϵ|xt]

)
(2)

where αt =
∏t

i=1 αi, and ϵ is the standard Gaussian noises injected to xt. Thus, the learning is
equivalent to a noise prediction task. Formally, a noise prediction network ϵθ(xt, t) is used to learn
E[ϵ|xt] by minimizing the noise prediction objective. For l2 loss, we can formulate the objective
of noise prediction task as minθ Et,x0,ϵ∥ϵ − ϵθ(xt, t)∥22, where t is uniformly sampled between 1
and T . On the basis of the plain diffusion models, LDM (Rombach et al., 2022) proposes to add
noise and denoise in the latent space, which greatly improves the training efficiency. Followed by
LDM, U-ViT (Bao et al., 2023) proposes to replace CNN-based U-net (Ronneberger et al., 2015)
with ViTs (Dosovitskiy et al., 2021) to estimate the backward process in diffusion models.

3.2 THE PROPOSED MOE-MLP

We propose MoE-MLP, which is a simple block composed of full MLP modules without the dot-
product attention mechanism. Given an image x ∈ RHr×Wr×3, we first use the pretrained VAE
encoder to extract the latent embeddings z ∈ RHl×Wl×C of x, where Hl < Hr and Wl < Wr. Then,
the latent representations are divided into several patches and fed into the linear layer to obtain the
input sequence z ∈ RL×D, where L is the number of patches and D is the model’s hidden dimension.

MoE-MLP blocks. Given a sequence of tokens z ∈ RL×D, the input tensors are separately fed
into two branches, which we call MoE-Linear Attention MoE − FCS (spatial) and FCC (channel).
For the channel branch, we directly feed the embeddings z into FCC , which can be written as:

zR = FCC(z) = zWC +BC (3)

where the weight WC ∈ RD×D and bias BC ∈ RD are two learnable parameters in a linear layer.

MoE-Linear Attention. Different from the channel transformation, the spatial transformation plays
the role of message passing between all tokens. It’s difficult to learn a global token-wise interaction
pattern, which is proper for all images. Therefore, we propose MoE-Linear Attention on the spatial
dimension. Specifically, given the input sequence z ∈ RL×D, we first permute the sequence to obtain
z′ ∈ RD×L. Then, z′ is fed into the spatial branch MoE − FCS , which can be written as:

zL = MoE − FCS(z
′) =

∑
Softmax(z′Wσ)(z

′WS) (4)

where WS ∈ RL×L×E and Wσ ∈ RL×E are the learnable parameters. Both summation and
Softmax operation are conducted on the expert dimension. E is the number of experts.

Multi-Head MoE-MLP. The multi-head mechanism has been proven effective on transformer-like
architectures (Vaswani et al., 2017), since different heads can attend to different tokens. Inspired by
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Figure 2: Framework of the proposed MoE-MLP. We illustrate the architecture of each MoE-MLP
block (left) and the overall architecture of the proposed MoE-MLP (right). For simplicity, we only
illustrate MoE-MLP with 5 blocks. Text and time tokens are directly concatenated with image tokens.

this, we propose multi-head MoE-Linear Attention, which divides the channel into several heads, and
the features in different heads use individual experts. Specifically, given the permuted feature z′, we
first divide the feature into several heads, and we denote z′i ∈ RD

H ×L as the features of the i-th head.
Then, we can separately feed the features into the proposed MoE-Linear Attention, which can be
written as:

z′i = MoE − FCS(z
′
i) =

∑
Softmax(z′iWσ)(z

′
iWS)

z′L = ConCat(z′1, z
′
2, · · · , z′H)

(5)

where the ConCat operation is conducted on the channel dimension, and z′L ∈ RD×L.

Branch Embeddings Fusion. Similar to previous MLP-like architectures (Hu & Rostami, 2024), we
directly add the two branch outcomes, followed by a linear layer, which can be expressed as:

zo = Linear(Permute(z′L) + zR) (6)

where Permute(·) is the permutation operation to transpose the z′L to obtain matrix in RL×D.
Similar to the standard transformer blocks, we use the residual connections in each block:

z = FFNC(z+ zo) + z+ zo (7)

where FFNC is the Feed-forward-Neural-Networks on the channel dimension.

3.3 SKIP CONNECTION AND OBJECTIVE

Skip connection. Inspired by the success of the U-Net in CNN and Transformer models, our MoE-
MLP also adopts similar long skip connections between the shallow and deep blocks. Intuitively, the
long skip connections provide shortcuts for the low-level features and therefore ease the training of
the noise prediction network. After obtaining the output of the final blocks, a 3× 3 convolutional
layer is employed before output. This is intended to prevent the potential artifacts in images produced
by FFN (This operation is widely used in Transformer (Bao et al., 2023) and MLP-based (Hu &
Rostami, 2024) diffusion models).

Diffusion objective. Given the latent representations z processed by VAE encoder, we first sample a
noise ϵ and the timestep t from the standard Gaussian distribution and the uniform distribution from
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# H: num_heads, E: num_experts, D: dimension, L: sequence_length
def __init__(self, D, L, H, E, s):

self.norm1 = norm_layer(D)
self.norm2 = norm_layer(L)
weight = torch.zeros(H, E, L, L)
self.l_weight = nn.Parameter(weight)
self.l_gate = nn.Linear(L, E)
self.r = nn.Linear(L, E) # For channel transformation
self.proj = nn.Linear(D, D)
self.mlp = Mlp(in_feat=D, hidden_feat=s*D)

# x: input tensor: B, L, D
def forward(self, x):

xperm = x.permute(0, 2, 1) # B D L
x, xperm = self.norm1(x), self.norm2(x)
gate = self.l_gate(xperm).view(B, H, D, E)
gate = gate.mean(dim=2).softmax(dim=-1)
ls = einsum(’bemn, bhe->bhmn’, self.l_weight, gate)
xperm = xperm.view(B, H, D, L)
l = einsum(’bhmn, bhdm->bhdn’, ls, xperm)
l = l.view(B, H * D, L).permute(0, 2, 1)
r = self.r(x)
x = x + self.proj(l + r) # Merge two branches
x = x + self.mlp(self.norm1(x)) # Residual
return x

Algorithm 1: PyTorch-like pseudo code for the proposed MoE-MLP. For simplicity, B,L,D,E
are directly set as global variables. s is the expansion factor in the MLP (channel) architecture.

1 ∼ T , respectively. Then, we add the noise to the latent representations by:

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∈ N (0, I) (8)

where αt is the pre-defined diffusion hyperparameters. Then, the noisy input zt will be patchified
and fed into the proposed MoE-MLP. Finally, the diffusion objective can be written as:

LDiff = Et,x0,ϵ∥ϵ− fθ(zt, t)∥22 (9)

where fθ(zt, t) is the predicted noised, and θ is the training parameters of MoE-MLP. Figure 2 shows
the framework of each block and the overall architecture of the proposed MoE-MLP, and Algorithm 1
shows the PyTorch-like pseudo code of the proposed MoE-MLP block.

3.4 EMPIRICAL ANALYSIS

Advantages of MoE-Linear Attention over Single Linear Attention. We analyze why the proposed
MoE-MLP architecture theoretically surpasses traditional MLP-based approaches in image generation.
A key limitation of prior MLP methods is their reliance on a single, fixed matrix W to approximate
the attention mechanism. However, the ideal attention matrix should dynamically adapt to the diverse
content distributions across different images. Forcing all images to share the same attention pattern,
which inevitably leads to suboptimal token-wise information propagation, as the rigid weighting fails
to capture the variability in spatial relationships (see Figure 1).

In contrast, MoE-MLP overcomes this constraint by leveraging a Mixture of Experts (MoE) to
enable infinitely many attention matrix combinations. This design dramatically expands the attention
mechanism’s degrees of freedom, allowing the model to adaptively learn input-specific attention
patterns. Consequently, MoE-MLP achieves more precise and expressive information propagation.

Analysis on computational costs. In summary, we introduce two novel modules for full-MLP
architectures: MoE-Linear Attention (Spatial dimension) and the Multi-Head mechanism (Channel
dimension). Below, we analyze the computational overhead of the proposed two modules.

• Multi-head Mechanism. Given an input matrix of size D × L, we split it into H heads,
reshaping it into H × D

H × L. Each sub-matrix of size D
H × L is then multiplied by a

learnable L×L matrix W, with a computational complexity of L2 D
H per head. Aggregating

5
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Table 1: Efficiency comparisons between Transformer block, full MLP block, and the proposed
MoE-MLP. Note that H and E are significantly lower than L and D. s is the expansion ratio in MLP.

Model Architecture Complexity # Params (P) GFLOPs ↓
Transformer Block (Bao et al., 2023) ViT-S/2 (3 + 2s)LD2 + 2L2D (4 + 2s)D2 33.67
MLP Block (Hu & Rostami, 2024) ViT-S/2 (2 + 2s)LD2 + L2D (2 + 2s)D2+L2 17.54
MoE-MLP Block (Ours) ViT-S/2 (2 + 2s)LD2 + L2D + 2HELD (2 + 2s)D2 + HEL2 17.55

Table 2: FID scores comparisons between different generative models trained on MS-COCO dataset.
For MLP-based models, CNN is only used for pre- and post-processing in VAE pretrained by
SD (Rombach et al., 2022). VAE is frozen in the training process. E and H mean the number of
experts and heads, respectively.

Model FID ↓ Type Model Architecture #Param.

AttnGAN (Xu et al., 2018) 35.49 GAN CNN + Attention 230M
DM-GAN (Zhu et al., 2019) 32.64 GAN CNN + Memory Network 46M
VQ-Diffusion (Gu et al., 2022) 19.75 Diffusion CNN + Transformer 370M
XMC-GAN (Zhang et al., 2021) 9.33 GAN CNN + Attention 166M
LAFITE (Zhou et al., 2022) 8.12 GAN CNN + Transformer 75M + 151M
LDM (Rombach et al., 2022) 7.32 Latent diffusion CNN + Cross-attention 53M (Backbone) + 207M (VAE)
DiT-S/2 (Peebles & Xie, 2023) 6.23 Latent diffusion CNN + Transformer 45M (Backbone) + 207M (VAE)
U-ViT-S/2 (Bao et al., 2023) 5.95 Latent diffusion CNN + Transformer 45M (Backbone) + 207M (VAE)

MLP-based model

gMLP (Liu et al., 2021) >100 Latent diffusion CNN + MLP 45M (Backbone) + 207M (VAE)
MLP-Mixer (Tolstikhin et al., 2021) >100 Latent diffusion CNN + MLP 45M (Backbone) + 207M (VAE)
UL-MLP (Hu & Rostami, 2024) 8.62 Latent diffusion CNN + MLP 47M (Backbone) + 207M (VAE)
MoE-MLP (2E1H) (Ours) 7.61 Latent diffusion CNN + MLP 49M (Backbone)s + 207M (VAE)
MoE-MLP (4E1H) (Ours) 7.51 Latent diffusion CNN + MLP 52M (Backbone)s + 207M (VAE)
MoE-MLP (4E2H) (Ours) 7.43 Latent diffusion CNN + MLP 60M (Backbone)s + 207M (VAE)

across all H heads, the total complexity remains L2D-identical to non-head (single-matrix)
version. Thus, the multi-head design incurs no additional computational cost.

• MoE-Linear Attention. For the D×L input matrix z, we first route it through gating linear
layers with weight matrices of size L×H ×E, where E denotes the number of experts and
H is the number of heads (Note that different heads do not share the experts). The input is
then processed by these E expert models. Fortunately, for linear combination, we have:∑

i

λiwiz = (
∑
i

λiwi)z = WMoE−Linearz (10)

where λ is the gating matrix. Then, we can first derive the MoE-Linear attention matrix
WMoE−Linear, and these calculations result in HELD computational costs. Finally, the
attention matrix multiplies the input matrix, which results in the total complexity of L2D.
Therefore, our method only brings an extra HELD computational complexity.

We report the complexity of transformer block (Bao et al., 2023), traditional MLP block (Hu & Ros-
tami, 2024) and the proposed MoE-MLP (E = 4, H = 1) in Table 1. Although our method introduces
more parameters ((HE − 1)L2) for each block than traditional MLP blocks, the overall computation
increases by only 0.01 GFLOPs. Furthermore, the computational cost of each Transformer block is
nearly double that of a single block in our proposed MoE-MLP. Notably, as the attention mechanism
has matured, there are now several open-source libraries (e.g., xFormers (Lefaudeux et al., 2022),
Flash Attention (Dao et al., 2022; Dao, 2024)) designed to accelerate attention computation, which
leads to faster training speeds (iterations per second) compared to MLPs.

4 EXPERIMENTS

4.1 MAIN RESULTS

Main results. We report the FID results of our method under different numbers of experts and
heads in Table 2. The experimental results show that, with the same number of parameters, our
method achieves comparable performance to the CNN-based architecture LDM (Rombach et al.,
2022). Moreover, by adding only a single expert (i.e., introducing just roughly one additional
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Ours

L-MLP

UViT

Figure 3: Qualitative comparisons between the proposed MoE-MLP (4 Experts and 1 Head), U-
ViT (Bao et al., 2023) and L-MLP (Hu & Rostami, 2024). All methods are trained on the MS-COCO.

Table 3: FID scores comparisons between different model architectures trained on MS-COCO dataset.
Model FID ↓ Complexity # Params #Speed (Iter. / Sec.)

Arch. (Fig. 8a) 124.282 2HELD + 2sLD2 + L2D 48M (Model) + 207M (VAE) 17.371
Arch. (Fig. 8b) 16.482 2HELD + (4s+ 2)LD2 + L2D 62M (Model) + 207M (VAE) 14.918
Arch. (Fig. 8c) (Ours) 14.973 2HELD + (2s+ 2)LD2 + L2D 52M (Model) + 207M (VAE) 17.125

learnable matrix with shape L × L per block), we achieve an FID improvement of 1.01 over the
original MLP-based method (Hu & Rostami, 2024). Figure 3 shows the qualitative comparisons of
the proposed MoE-MLP with previous MLP-based method (Hu & Rostami, 2024) and U-ViT (Bao
et al., 2023), where the images generated by MoE-MLP are of similar quality to those generated by
U-ViT, while the images generated by L-MLP tend to have more noise artifacts. We also illustrate
more images generated by our MoE-MLP in Appendix A for further comparisons.

4.2 ABLATION STUDIES

Effect on heads. Setups. To systematically evaluate the impact of multi-head attention mechanisms
in our model, we conducted a comprehensive ablation study by varying the number of attention heads
while keeping the number of experts fixed. Specifically, we compared configurations with head counts
ranging from 1 to 8 to assess their influence on model performance. Due to computational constraints,
we limited the training to 100,000 iterations with a fixed learning rate of 2e-5. The training process
utilized a batch size of 256, distributed across 8 GPUs (32 samples per GPU) to optimize parallel
efficiency. During inference, we adopted a Classifier-Free Guidance (CFG) ratio of 1.0 for stable
sampling. To ensure robust evaluation, we randomly sampled 30,000 generated images and computed
their Fréchet Inception Distance (FID) against the validation set, providing a reliable measure of
image quality and diversity. Results. As illustrated in Figure 4, our experimental results demonstrate
that increasing the number of attention heads leads to consistent and significant improvements in FID
compared to the baseline model (1 Expert, 1 Head). Notably, when using a smaller number of heads
(e.g., 2–4), our approach achieves competitive performance gains without introducing substantial
additional parameters or significantly increasing computational overhead. This suggests that our
method maintains an efficient trade-off between model capacity and computational cost, particularly
in scenarios where resource efficiency is critical. These findings highlight the effectiveness of our
architecture in leveraging multi-head attention while preserving scalability, making it suitable for
practical applications where both performance and efficiency are key considerations.

Effect on experts. Setups. We conducted a systematic investigation into the impact of varying the
number of experts in our proposed MoE-Linear framework. To isolate the effect of expert count, we
held the number of attention heads constant (fixing it at either 1 or 2) while progressively increasing
the number of experts from 1 to 8. Consistent with our previous experiments, all models were
trained for 100,000 iterations on the MS-COCO dataset under identical hyperparameter settings.
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Figure 4: FID (left plot), training speed (middle plot), and memory costs (right plot) comparisons of
different numbers of heads with baselines (Hu & Rostami, 2024). We fix the number of experts and
change the number of heads (1 ∼ 8). For FID comparisons on the MS-COCO dataset, we randomly
sample 30K images.
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Figure 5: FID (left plot), training speed (middle plot), and memory costs (right plot) comparisons of
different numbers of experts with L-MLP. We fix the number of experts and change the number of
heads (1 ∼ 8). For FID comparisons on the MS-COCO dataset, we randomly sample 30K images.

Results. As demonstrated in Figure 5, we observed several key findings: 1) The FID score exhibited
consistent improvement as we increased the number of experts, indicating enhanced model capacity
for image generation; 2) This performance gain came with a gradual increase in both training time and
parameter count, attributable to the linear growth of L×L transformation matrices with respect to the
number of experts. Notably, even when scaling to 8 experts, our MoE-MLP architecture maintained
remarkable parameter efficiency. The most significant performance leap occurred when increasing
from 1 to 2 experts, where the FID score improved dramatically from 20.121 to 17.779 at 100k
iterations - a substantial gain achieved by adding just one additional L× L transformation matrix
for each MoE-MLP block. These findings collectively validate that our MoE-Linear modification
represents an efficient and effective method for enhancing traditional full MLP-based architectures,
achieving significant quality improvements with minimal computational overhead.

Model Architecture. Setups. To further validate our design choices, we conducted a comprehensive
ablation study examining different network architectures for latent diffusion models. As illustrated in
Figure 8 in the Appendix A, we evaluated three distinct configurations: (a) Modified Transformer
Baseline: We replaced the standard attention mechanism in a conventional transformer architecture
with our proposed MoE-Linear Attention, incorporating an additional softmax operation on the
parameters. This variant served to investigate the compatibility of our approach with traditional
transformer frameworks. (b) Parallel MLP Branch Design: This architecture introduced two parallel
MLP branches, with their outputs concatenated and fused through a linear projection layer. The
design aimed to explore alternative feature integration strategies while maintaining the MoE-Linear
components. (c) Proposed Architecture: Representing our main experimental configuration (as
detailed in Section 3), this architecture served as the reference for comparative evaluation. For
all variants, we maintained consistent hyperparameters: 4 experts and 1 head in each MoE-Linear
Attention layer, trained for 100k iterations on the MSCOCO dataset. The quantitative comparisons are
presented in Table 3. Results. Variant (c) achieved superior results, demonstrating the effectiveness
of our proposed architecture. The significant performance gap (FID difference of ∆ = 3.21)
between variants (c) and (a) suggests that simply transplanting MoE-Linear Attention into traditional
transformer frameworks may be suboptimal. The particularly poor performance of variant (a) indicates
potential incompatibility between softmax normalization and fully MLP-based architectures. This
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observation aligns with recent findings in L-MLP (Hu & Rostami, 2024) regarding attention-like
operations in full MLP models.
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Figure 6: FID scores of L-MLP and the proposed
MoE-MLP with different training iterations.

Convergence speed. To better compare the
convergence speed of our proposed MoE-MLP
with the baseline L-MLP, we report the FID
results of both models at different training it-
erations. As shown in Figure 6, our method
achieves an FID score of 13.029 at 100K train-
ing iterations, while the baseline L-MLP only
reaches an FID score of 19.810. This improve-
ment can be attributed to the MoE Linear Atten-
tion architecture we proposed, which allows the
attention matrix to have an infinite number of
possible combinations. In contrast, the baseline
L-MLP (Hu & Rostami, 2024) only provides
the same attention matrix for all images. Our
approach significantly increases the degrees of
freedom for the attention matrix, leading to bet-
ter results. Additionally, we observed that al-

though the model with 2 Experts achieves better results than the one with 4 Experts after 100 training
iterations, the performance of the model with 4 Experts surpasses that of the 2 Experts model as
training progresses. This can be attributed to the fact that the 2 Experts settings may exhibit faster
convergence, whereas the 4 Experts setup provides greater flexibility, allowing the network to auto-
matically learn a broader range of possible Linear Attention combinations in later stages of training.
As a result, the attention matrix becomes more precise, leading to improved overall performance on
the MS-COCO dataset.

Table 4: FID scores comparisons on the MS-
COCO dataset w/ and w/o load balancing loss.

Method Training Speed (Iter. / Sec.) # Iterations FID ↓

w/ Balance 13.85 100K 11.757
1M 8.557

w/o Balance 14.27 100K 12.205
1M 8.018

Using load balancing loss. Setups. The load
balancing objective consists of two key compo-
nents: i) Coefficient of Variation (CV) term,
which penalizes imbalanced expert usage by
measuring the normalized standard deviation
of gating probabilities, and ii) Cross-entropy
term, which can be written as: LBalance =(

σu

µu+α

)2

−
∑E

e=1
1
E log(ue + α), where ue is the mean gating probability for e-th expert,

µu = 1
E

∑E
e=1 ue is the mean expert usage. α is a small constant for numerical stability. Al-

though the load balancing loss works well for traditional large language models, in our scenario,
MoE-MLP aims to provide more combinations of the attention matrix, and the load balancing loss
may cause different combination weights to be equal. Therefore, in our main experiments, we discard
this balancing term. For comparisons, we also report the FID scores w/ and w/o load balancing
loss. Following the work (Shazeer et al., 2017), we set the balancing loss weight as 0.01, training
the MoE-MLP with different iterations. Table 4 shows comparisons of FID results at 100k and 1M
training iterations. We observe that with load balancing loss, the model converges faster (achieving
better FID at 100k), whereas at 1M training iterations, “w/o load balancing loss” performs better.

5 CONCLUSION

In this paper, we propose MoE-MLP, which includes two main modules: i) MoE-Linear Attention,
which is composed of several learnable attention matrices, and adaptively assigns learnable weights
to each matrix to every image; ii) Multi-Head module, which partitions the original channels into
multiple heads and performs MoE-Linear Attention on each head separately. The two modules
significantly increase the diversity of the final attention matrix. Then, we leverage the property of
linear combination, reducing the complexity of the MoE-Linear Attention to L2D +HELD, which
only brings negligible additional computations. Finally, we conduct experiments on the text-to-image
generation task, where the results demonstrate the effectiveness of the proposed MoE-MLP.

LLM-Usage Statement. The authors used a large language model for language polishing. All ideas,
methodology, experiments, and results are the authors’ own.
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Figure 7: More qualitative comparisons between the proposed MoE-MLP, U-ViT, and L-MLP.

A EXPERIMENTAL SETUPS

To evaluate the effectiveness of the proposed MoE-MLP, we conduct experiments on text-to-image
synthesis task using the MS-COCO dataset Lin et al. (2014). The dataset consists of 256 × 256
resolution images, split into 82,783 training samples and 40,504 validation samples. Each image
is paired with five captions, and during training, similar to the work Bao et al. (2023), a random
caption is selected for each image. We generate images from 30,000 randomly chosen captions in
the validation set, and we mainly compare our MoE-MLP with transformer-based methods Bao et al.
(2023) and traditional MLP-based methods Hu & Rostami (2024).
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Our MoE-MLP is built upon the UL-MLP Hu & Rostami (2024) diffusion framework, where
timestep embeddings, text conditions, and image features are uniformly processed as tokenized
inputs. Following U-ViT’s preprocessing pipeline, we encode images into 512-dimensional latent
features using a pretrained autoencoder, followed by a 2 × 2 convolutional upscaling layer. Text
inputs are embedded into a 77×512 representation using a pretrained CLIP model, with an additional
linear projection layer for adaptation. During training, we apply classifier-free guidance by randomly
replacing text embeddings with null tokens 10% of the time. The model is trained on 8 GPUs (H800)
with a batch size of 256.
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Figure 8: Visualization of three different designs of the model architectures.

B MORE QUALITATIVE COMPARISONS

As shown in Figure 7, since both our MoE-MLP and L-MLP Hu & Rostami (2024) are MLP-based
methods, the images generated by these two approaches tend to have similar content. However, the
images generated by our proposed MoE-MLP exhibit higher-quality details and fewer noise artifacts.
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