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Abstract
Many organisms, such as bacteria, fungi, and
plants, produce intricate chemicals that are not
needed for their growth and reproduction, and
thus are called secondary metabolites or natural
products (NPs). NPs are a rich source of drugs,
with most antibiotics being derivatives of NPs. In
a producer organism, NPs are synthesized by a set
of enzymes encoded by genes that often lie near
each other on the chromosome and are called a
biosynthetic gene cluster (BGC).

In this work, we explore the capability of protein
language models (PLMs) to produce meaning-
ful representations of BGCs. We employ trans-
fer learning to train models to predict the chemi-
cal class of the produced compound and explore
the topological properties of the produced embed-
dings.

The code is available at project’s GitHub
repository:
https://github.com/kalininalab/
NaturalPPLuM.

1. Introduction
1.1. Natural product discovery with genome mining

Secondary metabolites, or natural products, are produced
by many organisms: bacteria, archaea, fungi, plants, and
others. Besides their natural role in their producers’ cor-
responding ecosystems, many natural products have been
repurposed as medicines (Atanasov et al., 2021). Natu-
ral products-derived drugs include most prominently the
majority of antibiotics, but also antifungals, cytotoxins, an-
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tiprotozoals (Santos-Aberturas & Vior, 2022). In light of
the growing menace of microorganisms developing resis-
tance against all available drugs, it is of greatest importance
to constantly develop novel compounds with antimicrobial
activity (Miethke et al., 2021), and natural product research
plays here a major role.

In genomes of secondary metabolite-producing organisms,
in particular, bacteria, genes responsible for the synthesis
of natural products are located next to each other on the
chromosome and expressed as one or a few operons. Such
genomic arrangements are called biosynthetic gene clus-
ters (BGCs). Some BGCs (e.g., non-ribosomal peptide and
polyketide synthases) have a highly regular structure con-
sisting of modules, each of which is responsible for adding
one unit, supplemented by additional modifying or tailoring
enzymes (Schaub et al., 2019). Others, such as ribosoma-
lly synthesized and post-translationally modified peptide
(RiPP) BGCs, often have a unique composition of modi-
fying enzymes that collectively act to process a precursor
peptide into the final product (Kloosterman et al., 2021).
Some BGC classes (e.g. alkaloids, terpenes) are defined by
specific chemical features of the resulting product, which
can be synthesized using various enzymatic pathways; hence
corresponding BGCs are heterogeneous on the genetic level.
Finally, there are BGCs that combine modules from several
classes.

1.2. Computational tools for genome mining

The characteristic protein domains required for NPs’ biosyn-
thesis and their order in BGCs allow for computational iden-
tification of BGCs in genomic sequences. A collection of
hidden Markov models describing these domains can be
used to detect classical classes of BGCs and hybrid BGCs.
This idea is implemented in the state-of-the-art methods
antiSMASH (Blin et al., 2023) and PRISM (Skinnider et al.,
2020). A caveat of these approaches is that they are only
able to detect known types of BGCs. ClusterFinder (Cimer-
mancic et al., 2014) was the first attempt to generalize this
idea to unseen combinations of BGC-relevant protein do-
mains, but was not successful in the community.

Recently, machine-learning (ML) and deep-learning (DL)
methods are gaining more attention in natural-product re-
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search (Mullowney et al., 2023). In particular, for the de-
tection of BGCs, a host of methods became available re-
cently: DeepBGC (Hannigan et al., 2019), GECCO (Carroll
et al., 2021), SanntiS (Fragoso et al., 2023). They all em-
ploy different DL techniques – bidirectional long short-term
memory residual neural networks (DeepBGC), conditional
random fields (GECCO), or a combination of bidirectional
long short-term memory and convolutional layers (SanntiS)
– to predict BGCs from genome sequences. In all cases,
they featurize these sequences by predicting genes in them,
and then either working directly with their sequence, using
transformation such as word2vec (DeepBGC), or predicting
domains (Pfam or InterPro) and using these as features.

1.3. Protein language models

Protein language models (PLMs) have been recently devel-
oped to create embeddings of protein sequences that can
be used in a variety of downstream tasks. Taking inspira-
tion from large language models, PLM is trained to predict
the most probable amino acid given the sequence context.
Specifically, a fraction of amino acids in a protein’s se-
quence are masked, and the model is trained to predict the
identity of masked amino acids. PLMs are typically trained
on very large sets of unlabeled sequences, such as around
250 million protein sequences in UniProt (ESM2 (Rives
et al., 2019; Lin et al., 2022), Ankh (Elnaggar et al., 2023),
etc.)

The major contribution of this study is employing and fine-
tuning PLMs for natural product research and exploring the
corresponding embedding spaces. In particular, we employ
a specific training strategy, termed ,,leave-one-class-out”
or ,,LOCO” in this work, where all BGCs corresponding
to one biosynthetic class are held out from training. We
demonstrate that in many cases the trained model can still
recognize these BGCs as close entities in the embedding
space. This potentially opens the possibility of discovering
completely new classes of BGCs.

2. Methods
2.1. Dataset

As a source of data, we used MIBiG (Terlouw et al., 2022),
a publicly available database for experimentally validated
BGCs. The latest available version 3.1 has information on
2,502 BGCs associated with one or several biosynthetic
classes (Figure 1). There is a class imbalance in the MIBiG
dataset; seven major biosynthetic classes dominate the anno-
tations, the most common class being Polyketide, the least
common Alkaloid.

We removed all the BGCs with more than one associated
biosynthetic class from the dataset, since these samples
might create an ambiguity. We selected BGCs which were

Figure 1. Biosynthetic classes in MIBiG 3.1. The UpSet plot in-
dicates what biosynthetic classes are present in the dataset. The
bar plot on the left shows number of samples annotated with each
of the available biosynthetic classes, with ambiguity: if BGC is
annotated with several biosynthetic classes, it will be counted
in each of the corresponding categories. The bar plot at the top
shows numbers of BGCs with specific combinations of annotations
present on the dataset. Each column in the punchcard plot in the
middle indicates what biosynthetic class combination corresponds
to the bar of bar plot shown above. The leftmost seven columns
correspond to the 2035 BGCs which have only one biosynthetic
class annotation.

annotated with only one of the main biosynthetic classes:
alkaloid (53 BGCs), terpene (150 BGCs), saccharide (130
BGCs), ribosomally synthesized and post-translationally
modified peptides (RiPP, 330 BGCs), non-ribosomal peptide
(NRP, 468 BGCs), polyketide (606 BGCs), and other (298
BGCs).

For each of the resulting 2035 BGCs we extracted the
corresponding sequences: all translated protein sequences
or protein domains. Domains were identified from pro-
tein sequences with HMMer 1 search using the Pfam-A
database (Mistry et al., 2020), following the established
procedure described in the literature (Navarro-Muñoz et al.,
2020).

2.2. Models and Training

We used contrastive learning technique to train Siamese
network (Bromley et al., 1994). Thus, we obtained N-
dimensional vector representations, known as embeddings,
for each BGC-related amino acid sequence. Since input
data is represented as protein sequences, as a backbone of
our network we used a pre-trained protein language model,
with the alphabet consisting of amino acids.

We built our solution on top of the package sentence-
transformers (Reimers & Gurevych, 2019) training
the Siamese network with a PLM backbone (ESM2
model (Rives et al., 2019; Lin et al., 2022) with 8M parame-
ters, 5 out of 6 layers were frozen during the fine-tuning) and
a cosine similarity loss to learn representations of BGCs.

1http://hmmer.org/
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We trained our model to predict whether two sequences of
BGCs belong to the same or different biosynthetic classes.
For the training we used information from randomly picked
pairs of BGCs. We annotated each pair of amino acid se-
quences with a positive or negative label, depending on
whether the corresponding pair of BGCs belongs to the
same (positive label) or different (negative label) biosyn-
thetic classes.

ESM2 has the same limitation which is present in many
sequential models and in particular in transformer-based
architectures: the number of processed tokens in input se-
quences is limited, extra-tokens are cropped. For ESM2,
since each token in the pre-trained alphabet corresponds to
one amino acid, it means that only the first 1024 amino acids
of the protein sequence are taken into account (as stated both
in ESM2 paper and model cards for all available ESM2 mod-
els), the remaining data is trimmed. That is the main reason
why we did not concatenate all protein sequences to create
one protein sequence per BGC. Instead of this, we operated
on fragments: protein or domain sequences. If the sequence
belongs to some specific BGC, we assign the corresponding
biosynthetic class to this sequence.

We considered two settings: with input data being sequences
or one protein domain (as predicted with HMMer using a
set of HMMs from Pfam-A (Mistry et al., 2020)) or of two
consecutive domains. In both cases we processed the data
in similar manner, the following preparation steps were
performed for each of them.

First, we used one of the two different dataset split strate-
gies to create the train/validation/test splits: (1) Stratified
data split: equal fractions of all biosynthetic classes in the
training, validation and test sets; (2) LOCO (leave one class
out): training and validation sets include all BGCs from six
classes with stratified split, the remaining class is held out
for testing.

In both cases, data splitting was performed at BGC level: if
the BGC was considered to be part of a particular split, all
the corresponding amino acid sequences were considered to
be the part of that split.

After preparing the splits, we balanced the data as follows:

1. Group sequences by corresponding BGC’s biosynthetic
class;

2. From each group randomly choose N pairs of se-
quences, which we consider to be data samples with
a positive label. Total number of positive samples is
equal to 7 ·N ;

3. For each pair of distinct groups, randomly choose N
pairs of sequences from corresponding groups, which
we consider to be data samples with a negative label;

4. Since the total number of negative samples will be
equal to 42 ·N , the dataset will be imbalanced; to fix
this, we randomly pick 7 ·N samples from previously
collected samples with negative labels, combine them
with all samples with positive label, thus producing a
balanced dataset (both in the sense of equal presence of
different biosynthetic classes and in the sense of equal
number of positive and negative samples).

This balancing procedure ensures that the training dataset
has an equal number of positive and negative labels, also,
oversampling is done for rare biosynthetic classes, and un-
dersampling is done for common biosynthetic classes.

We used the above procedure to prepare training dataset
with N = 6400 and validation dataset with N = 1000 (the
numbers are arbitrary and selected based on approximate
epoch training and validation time).

For each of the experiments we used cosine similarity loss
during training. To effectively train with this loss function
we set positive label value to 1 (for the pair of most similar
inputs cosine similarity equals 1), negative value to -1. We
train models for 20 epochs or till convergence using sentence
transformers library, with the default parameters (AdamW
optimizer with learning rate 0.00002).

3. Results
3.1. Vanilla PLM and fine-tuning with a stratified split

First, we calculated embeddings of each BGCs with a
PLM (ESM-2 (Lin et al., 2022)) without further fine-tuning
(,,vanilla” embeddings). For this, each BGC was split into
domains, and sequences of either each domain or of a con-
catenated pair of consecutive domains were fed into the
PLM. After that, all embeddings corresponding to a single
BGC were averaged, producing an embedding for a whole
BGC. Second, we fine-tuned the PLM using a stratified split
of the dataset, as described in Methods. We computed dis-
tances between embeddings of BGCs from each class to the
rest of the BGCs (Table 1).

Vanilla embeddings cannot separate biosynthetic classes in
a single-domain setup, but can do so to some extent when
pairs of consecutive domains are fed into the PLM, although
the class admixture is still large. The fine-tuned model
trained with the stratified split separates the biosynthetic
classes much better, especially with the pair-domain input.
This effect is probably largely due to classes of large BGCs,
such as NRPs and polyketides, but some other classes with
a characteristic domain composition, e.g. RiPPs, can also
be well separated (Figures 2, 3).

A closer inspection of distance distributions reveals that fine-
tuning with the stratified split leads to a better separation of
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Table 1. Distances between different BGC classes. Positive silhouette distances indicate that a class is well separated from the other
classes in the corresponding embedding space.

SILHOUETTE DISTANCE, SILHOUETTE DISTANCE, AVERAGE DISTANCE,
PAIRS OF DOMAINS SINGLE DOMAINS BIG-SCAPE

WITHOUT FINE-TUNING 0.098 -0.1364 NA
STRATIFIED SPLIT 0.1723 0.0048 NA
LOCO SPLITS
ALKALOID -0.0117 0.1249 0.0022
NRP 0.2272 0.1385 0.0840
POLYKETIDE 0.219 0.1726 0.0698
RIPP -0.1649 -0.1573 0.0288
SACCHARIDE 0.0634 0.0772 0.0352
TERPENE -0.1899 -0.1134 0.0220
OTHER -0.0995 -0.0943 -0.0133

Figure 2. Projection of the embeddings spaces with UMAP for
vanilla PLM. Single-domain input on the left and pair-domain input
on the right. Each dot represents a BGC, colored by biosynthetic
class.

the classes in all cases except terpenes. Despite the fact that
NRP and polyketide BGCs have homologous PCP and ACP
domains (Pfam family PF00550), they are well separated
from each other. RiPP and saccharide BGCs cannot be very
well separated, which may be explained by the shared ABC
transporter domain (Pfam family PF00005).

3.2. Leave-one-class-out (LOCO) models

Further, we considered leave-one-class-out (LOCO) mod-
els, in which we left one biosynthetic class completely
out of training and used it as a test set. Again, we com-
puted distances between embeddings of BGCs from each
class to the rest of BGCs (Table 1). As a baseline, we
used distances calculated with the state-of-the-art tool BiG-
SCAPE (Navarro-Muñoz et al., 2020). First, despite their
wide adoption, BiG-SCAPE distances barely separate differ-
ent biosynthetic classes from each other. This may indicate
that BiG-SCAPE should be applied only to compare BGCs
within the same biosynthetic class. Indeed, the weighting
coefficients of the three terms of the BiG-SCAPE distance
are class-specific (Navarro-Muñoz et al., 2020).

For the LOCO models, single-domain and pair-domain
embeddings behave differently for different biosynthetic

Figure 3. Projection of the embeddings spaces with UMAP for the
fine-tuned model with a stratified split. Single-domain input on
the left and pair-domain input on the right. Each dot represents a
BGC, colored by biosynthetic class.

classes (Table 1). For large BGCs with a pronounced order
of domains, such as NRP and polyketide BGCs, models can
group such BGCs together even when they have not seen
BGCs of these classes in training, with pair-domain input
providing an additional boost (Figure 4B, C). Interestingly,
despite a very noticeable presence of homologous domains
between the two classes (PCP or ACP domain has to be
present in every module of an NRP or polyketide synthase,
respectively), the model is able to separate these two classes
from each other (Figure 5), probably due to a strong signal
that the fine-tuned model detects in these large and regularly
built BGCs even without seeing them during training. This
is a remarkable observation that indicates a possibility to de-
tect any prominent genetic arrangement that is long enough
and contains many repetitive domains.

In all other cases, the pair-domain input does not provide
any advantage with respect to separating the unseen class,
with only one exception: alkaloids. For this small class
with on average few domains per BGC (see below), the
LOCO model with the single-domain input achieves a good
separation of the unseen BGCs from the rest (Figure 6).
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Figure 4. Average Euclidean distance from embeddings of BGCs
from a specific biosynthetic class X to all other classes from models
fine-tuned with LOCO splits, where that particular class X was
held out for the test set. Only distances for models with a pair-
domain input are shown.

Figure 5. UMAP projections of embeddings from the LOCO mod-
els with held-out NRP (left) and polyketide (right) BGCs.

3.3. Factors contributing to clustering of embeddings
for BGCs from the same biosynthetic class

We set out to investigate what factors contribute to the fact
that even in well-separated classes for LOCO models, some
BGCs do not cluster with the rest of the class (this corre-
sponds to the upper tails of the distributions in Figure 4).
We calculated the number of domains for each BGC and
observed a clear inverse correlation between the number of
domains per BGC and the average distance to other BGCs of
the same class in each of the LOCO models (Figure 7). We
do not observe any correlation to the frequency of domains
within a biosynthetic class (data not shown).

Finally, we explore the influence of domains that are over-
represented in a specific biosynthetic class. To this end, we
calculate the overrepresentation OverdC of a Pfam domain

d in a class C as OverdC =
Nd

C/NC∑
C

Nd
C
/NC

, where Nd
C is the

number of occurrences of the domain d in class C, NC

is the total number of domains in all BGCs from class C,

Figure 6. UMAP projections of embeddings from the LOCO mod-
els with held-out alkaloid BGCs with a single-domain (left) and
pair-domain (right) input.

Figure 7. Relationship between the number of domains per BGC
(vertical axis) and the average distance to other BGCs (horizontal
axis) from the same class for embeddings generated by LOCO
models for each biosynthetic class.

and the sum in the denominator goes over all biosynthetic
classes. We weight the number of occurrences by the total
number of domain in a certain class to avoid unfairly pun-
ishing biosynthetic classes with a small number of BGCs
in MiBIG. While doing so, we discarded all domain whose
relative occurrence was less than 1%.

Most domains have OverdC close to 1 (Figure 8), indicat-
ing that they are evenly distributed across different biosyn-
thetic classes. However, some classes have a higher num-
ber of overrepresented domains, displaying a skew in the
domain composition. For example, the NRP class have
highly overrepresented Adenylation domains (PF00501,
OverPF00501

NRP = 5.37) in agreement with the structure of
NRP synthetases.

Saccharide and alkaloid biosynthetic classes have the high-
est number of overrepresented domains. This allows PLMs
to detect their own specific domain signature for these two
classes, even when no BGCs from them are present in train-
ing (Table 1). For alkaloids, the order of domains does not
seem to matter, in contrast to NRP and polyketide BGCs,
which is evident from the better performance of the single-
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Figure 8. Overrepresentation of domains in biosynthetic gene clus-
ters (smoothed histogram).

domain input model. This may be explained by the fact that
alkaloids are characteristic plant natural products, whereas
the other classes are represented in bacteria, meaning a
significant difference in their genetic composition between
alkaloid and other BGCs.

4. Discussion
In this study, we present an exploratory analysis of PLM-
based representation of genetic fragments encoding for the
biosynthesis of natural products.

The experiments show that PLM-based embeddings are ca-
pable of separating different classes of BGCs corresponding
to chemically different classes of compounds. The fine-
tuning of one of the protein foundational models allowed
us to use all available information on protein universe and
to apply it to our specific dataset at the same time. We ob-
served that this combination improved separation between
different biosynthetic classes.

Our results of the experiments with the leave-one-class-out
(LOCO) cross-validation demonstrated that biosynthetic
classes with a well-defined genomic architecture, such as
NRP and polyketide synthases, can be detected by the mod-
els as a cluster in the embedding space, even when they are
not present in training. This means that the model is capable
of finding a strong genetic signal, even if it has not observed
it before. For the example of NRP and polyketide synthases,
despite sharing a homologous domain in their core structure,
each class forms a defined cluster in the embedding space
even when absent from training. Should another example of
a biosynthetic class exist that also has a comparably strong
genomic structure, our model should generate embeddings
that cluster equally well, and indicates that new unknown
BGC classes may potentially be identified with this method.
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