
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A CONCEPT LEVEL ENERGY-BASED FRAMEWORK
FOR INTERPRETING BLACK-BOX LARGE LANGUAGE
MODEL RESPONSES

Anonymous authors
Paper under double-blind review

ABSTRACT

The widespread adoption of proprietary Large Language Models (LLMs) accessed
strictly through closed-access APIs has created a critical challenge for their reli-
able deployment: a fundamental lack of interpretability. In this work, we pro-
pose a model-agnostic, post-hoc interpretation framework to address this. Our
approach defines an energy model that quantifies the conceptual consistency be-
tween prompts and the corresponding LLM-generated responses. We use this
energy to guide the training of an interpreter network for a set of target sentences.
Once trained, our interpreter operates as an efficient, standalone tool, providing
sentence-level importance scores without requiring further queries to the original
LLM API or energy model. These scores quantify how much each prompt sen-
tence influences the generation of specific target sentences. A key advantage is
that our framework globally trains a local interpreter, which helps mitigate com-
mon biases in LLMs. Our experiments demonstrate that the energy network accu-
rately captures the target LLM’s generation patterns. Furthermore, we show that
our interpreter effectively identifies the most influential prompt sentences for any
given output.

1 INTRODUCTION

In recent years, the extraordinary performance of Large Language Models in complex tasks has
encouraged machine learning researchers and developers to adopt them in different applications.
Powerful LLMs are mostly provided as APIs by developer companies, and the detailed architectures
and pre-training datasets are often unavailable. Additionally, when the architecture and dataset are
available, their complexity prevents an exact understanding of how outputs are generated. In high-
stakes domains such as medicine and law, this opacity prevents human experts from verifying a
model’s reasoning against domain knowledge and discovering hidden biases, thereby hindering its
ability to satisfy the application-grounded evaluation criteria necessary for responsible deployment
(Doshi-Velez & Kim, 2017).

Post-hoc attribution interpretation attempts to explain the behavior of trained machine learning mod-
els by finding an importance vector for input features. These methods measure how much each input
feature affects the value of the output in each locality of the input space. White-box techniques that
rely on gradients or internal activations are immediately disqualified for most real-world scenarios
due to the lack of model access. Moreover, the faithfulness of popular proxies like attention weights
has been rigorously challenged (Jain & Wallace, 2019). Various techniques have also been intro-
duced for attribution-based interpretation of black-box models (Ribeiro et al., 2016; Lundberg &
Lee, 2017; Seyyedsalehi et al., 2022). Most of these methods are developed to explain discrimi-
native models with well-defined vectorized outputs. The problem of interpretation for generative
models is fundamentally ill-posed. Generative models learn complex and implicit representations to
produce high-dimensional and multifaceted outputs like text. Therefore, explaining them requires
grappling with the complexity of their interactive outputs and the sheer volume of information in
each generation (Schneider, 2024)

The exact goal of an interpretation method for an LLM is not well-defined and depends on the
application. However, an attribution method to interpret an LLM is expected to relate elements of
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Lately, I've been feeling very 
tired from work. I want a place 
to relax. Somewhere with warm 
weather is preferable. No busy 
cities, though. In terms of cost, 
my budget is quite flexible.
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Figure 1: The prompt and response of the target black-box LLM are split in a sentence-wise man-
ner and given to a pre-trained sentence embedding module. Embeddings are contextualized and
transferred to a concept space, which simulates the thought process of the LLM. This concept space
is trained using signals from an energy network. The proximity of sentences in the concept space
demonstrates the influence of prompt sentences in generating output sentences.

the output text to the user prompt. Here, we consider both input and output texts at a sentence-level
resolution. As the target output, we focus on a subset of output sentences and attempt to find an
importance vector for the prompt sentences which shows how much each of the prompt sentences
influenced the LLM to generate the target subset of the output. Then, we can find a subset of prompt
sentences that were most influential in generating that target.

Prompt-based self-explanation, where an LLM is asked to justify its output using techniques like
Chain-of-Thought (Wei et al., 2022), is prone to circular logic; it relies on the same, potentially
biased, generative capabilities we seek to understand. Such explanations can produce plausible-
sounding confabulations that are unfaithful to the model’s true computational process, a form of
motivated reasoning (Turpin et al., 2023). While efforts to steer model outputs via automated prompt
engineering can overcome certain biases, these methods cast the problem as a search for an instruc-
tion that maximizes the probability of a known, pre-defined target answer (Zou et al., 2023; Zhou
et al., 2023), which is almost unusable for interpretation tasks.

In this work, we propose a framework to train a post-hoc attribution interpreter for an arbitrary LLM.
Here, we globally train a local interpreter. A local interpreter attempts to explain the behavior of
the model on a per-instance basis. Local interpreters like LIME (Ribeiro et al., 2016) only observe
samples from the neighborhood of the target instance during interpretation. However, this approach
may not capture the global behavior of the complex model and can result in interpretability illusions
(Friedman et al., 2024). By training globally, our interpreter observes various prompts and LLM
responses, which helps it to capture the global behavior of the LLM and mitigate the effects of its
intrinsic biases.

Fig. 1 illustrates an overview of the proposed approach. We train a transformer-based energy net-
work over the sentences of a prompt and an LLM response. In this network, prompt and response
sentences are mapped to a concept space that simulates input-output latent semantic relationships
embedded in the target LLM. Then, the energy value is calculated based on the proximity of sen-
tences in this concept space. The energy value can be considered as a metric that indicates how likely
two texts are to be a prompt and its corresponding output from the target LLM. Using this metric,
we train an interpreter for the target LLM, which takes the prompt and a subset of output sentences
as input and returns an importance vector for the prompt sentences. This importance vector shows
how much each prompt sentence influenced the LLM to generate the target subset of the output.
Using this importance vector, the interpreter selects the subset of the most influential sentences in
the prompt for the generation of the output. The key advantages of this work are as follows:

1. We shift the unit of analysis from noisy tokens to semantically coherent concepts, which
we define as sentences, enabling a more human-intelligible level of attribution.
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2. To operate in a black-box setting, we train a transformer-based energy-based model (EBM)
that learns a random field over prompts and their corresponding LLM responses to simulate
its thought process. This model successfully distinguishes responses of the target LLM
from those written by humans or generated by other language models. As a surrogate for
the target LLM, we use this EBM to guide the training procedure of an interpreter.

3. Finally, we propose a post-hoc, model-agnostic framework for interpreting black-box
LLMs at a conceptual level. This interpreter finds the most influential sentences of the
prompt, which triggered the LLM to generate the target subset of output sentences.

The remainder of this paper is organized as follows. Section 2 reviews related work, Section 3
details our proposed method, Section 4 presents our experimental results, and Section 5 concludes.

2 RELATED WORK

2.1 POST-HOC ATTRIBUTION METHODS TO EXPLAIN LANGUAGE MODELS

Input-output attribution methods aim to score the importance of input features for a given model
output. A major line of work requires white-box access to model internals. Gradient-based methods
compute saliency maps by propagating the output gradient back to the input tokens (Simonyan
et al., 2014; Sundararajan et al., 2017; Shrikumar et al., 2017; Chefer et al., 2021). Attention-
based methods propose using the model’s internal attention weights as a direct proxy for feature
importance (Xu et al., 2015; Li et al., 2017; Xie et al., 2017; Hao et al., 2021). However, this
approach has been criticized for its lack of faithfulness, as attention scores do not always correlate
with feature importance measured by other means (Jain & Wallace, 2019).

To circumvent the need for model access, several paradigms have been developed. Perturbation-
based methods offer a model-agnostic alternative by measuring the change in output when parts of
the input are removed or altered (Ribeiro et al., 2016; Lundberg & Lee, 2017; Yin & Neubig, 2022).
Inspired by this approach, one study finds the influence of individual words in a prompt given to an
LLM to generate an output (Hackmann et al., 2024). However, making this approach scalable for
generative tasks often incurs a high computational cost, requiring thousands of model queries for a
single explanation (Enouen et al., 2024; Zhao & Shan, 2024).

Finally, prompt-based self-explanation uses the LLM’s own generative capabilities to produce a ra-
tionale, most notably through Chain-of-Thought (CoT) prompting (Wei et al., 2022). This approach
is compelling but lacks guarantees of faithfulness, as the generated explanation may not reflect the
model’s true internal computation path but rather a plausible post-hoc rationalization (Turpin et al.,
2023).

2.2 ENERGY-BASED MODELS IN NATURAL LANGUAGE PROCESSING

Energy-Based Models (EBMs) have been successfully adapted for generative NLP, primarily
through using their ability to learn a global, sequence-level scoring function. One study demon-
strated that a Transformer-based discriminator, trained to distinguish between human and machine-
generated text, can effectively function as an EBM that assigns low energy to natural, coherent
sequences (Bakhtin et al., 2019). This established the potential of EBMs as powerful, holistic text
evaluators. One paradigm uses EBMs to refine the output of existing models. The Residual EBM ap-
proach adds a corrective energy term to the log-probabilities of a base autoregressive model, allow-
ing the EBM to focus on capturing high-level properties like coherence that the base model may lack
(Deng et al., 2020; Bakhtin et al., 2021). In another approach, the EBM is used as a post-processing
reranker, which scores results of a base model to select the highest-quality one (Bhattacharyya et al.,
2021). The work by (Tu et al., 2020) uses a powerful autoregressive model as a teacher to define an
energy landscape; a student network is then trained via knowledge distillation to directly generate
outputs that minimize this energy.

2.3 CONCEPT-BASED EXPLANATIONS

Growing consensus in interpretability research suggests that token-level attributions are often too
granular for human understanding. This has prompted a shift toward concept-based explanations
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that map model decisions to higher-level, human-intelligible ideas rather than individual features
(Kim et al., 2018). Our work aligns with this paradigm by defining the sentence as the fundamental
conceptual unit, as it represents a complete, robust thought for interpretation.

Treating sentences as coherent semantic units is well-justified by the evolution of language mod-
els. Foundational architectures like BERT were pre-trained with a Next Sentence Prediction (NSP)
task to understand logical sentence relationships (Devlin et al., 2019). Subsequent work, such as
Sentence-BERT, confirmed that fine-tuned sentence-level representations map similar meanings to
nearby points in a vector space, establishing sentences as distinct semantic objects (Reimers &
Gurevych, 2019). By leveraging sentences as our conceptual unit, our work is situated recent ar-
chitectural innovations, such as Large Concept Models (LCMs), which propose shifting the core
computational unit from tokens to sentence-level representations (Barrault et al., 2024).

3 METHODOLOGY

Our goal is to develop a post-hoc, model-agnostic method to interpret the response of any black-box
language model to a specific prompt. When analyzing LLMs, working at the level of tokens is often
suboptimal and computationally challenging. While individual words or tokens can be ambiguous, a
sentence is the smallest unit of language that expresses a complete thought, proposition, or idea. By
treating each sentence as a fundamental concept, we can analyze the model’s reasoning at a more
abstract and human-understandable level, focusing on the interplay of complete ideas rather than
fragmented tokens.

Let x be a prompt to the LLM and y be the corresponding output. Also, let yT denote the target
subset of output sentences for which the interpreter should quantify the influence of each prompt
sentence. To this end, we propose a two-stage framework: First, we pre-train an Energy-Based
Model (EBM), ELM(x,y; θ), that evaluates the consistency of a pair (x,y) with the generation
pattern of the target LLM. The energy model is a function with the set of parameters β which
outputs a scalar value. Second, we use this EBM to guide the training of a lightweight interpreter,
IN (x,yT ;α), with the set of parameters α. The interpreter is a function that takes the prompt,
the LLM response, and the indices of the target sentences in the output, and returns a binary vector
whose size equals the number of prompt sentences. In this vector, the values of 1 indicate selected
sentences of the prompt as the most influential in generating the target.

3.1 PRE-PROCESSING WITH SENTENCE-BERT

The first step in our pipeline is to pre-process both the input text x and the output text y by seg-
menting them into sequences of sentences. We employ a pre-trained sentence transformer, such as
Sentence-BERT (Reimers & Gurevych, 2019), as a frozen embedding module. This module maps
each sentence to a fixed-dimensional embedding, producing initial representations. Finally, the set
of embeddings for the prompt sentences, Sin, and output sentences, Sout, are passed to the energy
and interpreter models.

3.2 THE ENERGY-BASED SURROGATE MODEL

To approximate the behavior of the black-box LLM, we design a globally-aware EBM, ELM(x,y; θ),
that learns to distinguish the most likely target-LLM-generated pairs from inauthentic ones using an
energy score. The lower the assigned energy, the more likely the pair is authentic and consistent with
what the target LLM would generate. This EBM serves as a differentiable and lightweight surrogate
that captures the underlying logic of the LLM.

Figure 2a shows the architecture of the proposed EBM. In this module, sentence embeddings are
processed as follows:

1. Concept Space Projection: Embeddings of input and output sentences, Sin and Sout, are
passed through separate, trainable self-attention modules (PE

in-concept and PE
out-concept). These

modules contextualize each sentence embedding with respect to its surrounding sentences,
projecting them into what we term a concept space, resulting in C in and Cout. The con-
cept space captures the LLM’s internal reasoning process. Within this space, the distance
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Figure 2: Proposed architectures of (a) the energy network and (b) the interpreter network

between sentences is determined by the LLM’s inherent cognitive patterns, which are a
function of its underlying architecture and training dataset.

2. Input-Output Interaction: To model the influence of the input on the output, the output
concepts Cout attend to the input concepts C in through a cross-attention block. This allows
the model to weigh the relevance of each input concept to the overall output.

3. Energy Calculation: The resulting representations are aggregated via attention pooling
and passed through a final multi-layer perceptron (MLP), which outputs a single scalar
energy value ELM(x,y; θ).

The EBM network is trained in two phases. First, it is pre-trained using an expanded InfoNCE loss.
Then, it is fine-tuned during the training of the interpreter. In the pre-training phase, we generate a
dataset of a set of prompts and their corresponding outputs (x,y), by querying the target black-box
LLM.

To apply the InfoNCE loss, we generate a rich set of negative samples for each positive one. In a
structural corruption setup, For a pair (x,y), we create two types of negatives: (x,y′) and (x′,y).
The corruptions x′ and y′ are formed by either masking entire sentences (to teach concept continu-
ity) or masking individual tokens (to teach grammatical structure). These negative samples encour-
age the energy function to assign higher energy to less reasonable sentences. In a semantic-based
negative sampling, to learn the style and context of pairs, we also construct negatives using outputs
from other models or humans, as well as through off-topic sampling to switch correct pairs. In the
latter, for a positive pair (xi,yi), we generate negative samples of the form (xi,yj) and (xj ,yi)
for j ̸= i. This encourages the energy function to capture conceptual inconsistencies and approx-
imate the target LLM’s generation distribution by forcing it to distinguish authentic outputs from
alternatives, thereby sharpening its discrimination boundary for better guidance of the interpreter.

Finally, the energy model is pre-trained to assign a lower energy score to a positive pair compared
to all negative ones by the following loss function:

LPT
E = − log

(
exp(−ELM(xi,yi; θ)/τ)

exp(−ELM(xi,yi; θ)/τ) +
∑

(x′,y′)∈Ni
exp(−ELM(x′,y′; θ)/τ)

)
(1)

where Ni is the set of negative samples for the i-th pair and τ is a temperature hyperparameter. In
appendix A, figure 5 describes the pre-training procedure of the energy block.
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Figure 3: An overview of the EBM-guided training procedure for the interpreter. The framework
involves a joint, alternating optimization where the interpreter’s parameters are updated using a fixed
EBM to create an input mask (left). Subsequently, the EBM is fine-tuned using the LLM’s response
to the masked prompt to mitigate distribution shift (right).

3.3 THE INTERPRETER MODEL

Given a prompt x, the LLM response y, and a subset of output sentences as target yT , the inter-
preter’s objective is to quantify the influence of sentences in x in generating yT and select the most
important prompt sentences responsible for generating the target subset of the output.

Fig. 2b shows the architecture of the interpreter. First, embeddings of prompt sentences Sin are
projected to a concept space using a self-attention module PIN

in−concept. Sentence embeddings of
the output Sout are also projected using another self-attention module PIN

out−concept. Then, only
the target sentences are retained and the others are masked. In the next step, the input concepts
C in attend to target concepts Cout

T via a cross-attention mechanism. The resulting attention weights
are passed through an MLP layer, which results in a vector of importance scores. The last step of
the interpreter module is a Gumbel-Softmax unit (Jang et al., 2016) by which we encourage the
interpreter to find a specific number of the most important sentences for the target output. Details of
this module are provided in appendix B.

Considering x as the prompt, we define,

x̃ = x⊙ IN (x;yT , α) (2)

where ⊙ denotes the element-wise multiplication of the interpreter output with sentences of x. As
the energy function simulates the thought process of the LLM, if the interpreter successfully selects
the most important sentences of the input for the target, the value of ELM(x̃, yT ; θ) should be at a
minimum among the energy values for all other possible subsets of input sentences. Equivalently, as
x−x̃ shows the least relevant parts of the prompt to the target, the value of ELM(x−x̃, yT ; θ) should
be at a maximum among the energy values for all other possible subsets of input sentences. If x̃ were
the most related subset of the prompt to the target output, the difference between these two values
will be maximized. Therefore, we believe the ideal interpreter solves the following optimization
problem:

argmax
α

E(x,y) [ELM(x− x̃, yT ; θ)− ELM(x̃, yT ; θ)] (3)

3.3.1 EBM-GUIDED TRAINING OF THE INTERPRETER

In equation 3, the energy value is calculated for the masked prompt and the LLM response. As
mentioned in (Hsia et al., 2023), masking samples leads to a distribution shift compared to the
original input distribution. Therefore, to mitigate the effect of the out-of-distribution problem, we
fine-tune the energy network during the training of the interpreter with an InfoNCE loss.
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Fig. 3 describes an overview of the proposed procedure to train the interpreter. The interpreter
and EBM are optimized jointly in an alternating fashion, allowing them to adapt to each other and
improve performance. The final optimization procedure is as follows:

1. Update Interpreter: In iteration k, for a fixed EBM E(., .; θ(k−1)), we update the inter-
preter’s parameters to maximize equation 3 as follows:

α(k) ← α(k−1) + β ∇αE(x,y)[ ELM

(
x− x⊙ IN (x;yT , α), yT ; θ

(k−1)
)
−

ELM

(
x⊙ IN (x;yT , α), yT ; θ

(k−1)
)
] (4)

2. Getting LLM response to the selected subset of the prompt: The prompt is masked
with the output of the current interpreter. Then, the response of the LLM is obtained for
the masked prompt:

x̃ = x⊙ IN (x,yT ;α
(k)) (5)

ỹ = LM(x̃) (6)

3. Update EBM: Using the new sample (x̃, ỹ), the energy function is fine-tuned to capture
the LLM behaviour in unexplored areas and avoid the distribution-shift problem:

θ(k) ← θ(k−1)+

β′∇θ log

(
exp(−ELM(x̃, ỹ; θ)/τ)

exp(−ELM(x̃, ỹ; θ)/τ) +
∑

(x′,y′)∈N exp(−ELM(x′,y′; θ)/τ)

)
(7)

where LM denotes the target LLM, β and β′ are learning rates and τ is the InfoNCE loss temper-
ature. N shows the set of negative samples generated for the pair (x̃, ỹ). The energy network’s
parameters are initialized from the pre-trained model. In the interpreter network, parameters of
the self-attention modules are initialized with those in the energy network and the cross-attention
module is initialized randomly. During this procedure, the information from the energy concept
space, which is extracted from the target LLM, is transferred to the interpreter concept space. After
training, the proximity of sentences in the concept space of the interpreter depends on the LLM’s
thought process. Therefore, it acts as a standalone tool for interpreting the target LLM’s prompts
and responses.

4 EXPERIMENTS

In this section, we present the empirical validation of our proposed framework. We first demonstrate
the effectiveness of the EBM pre-training in creating a faithful surrogate model, and then proceed to
evaluate the performance of the final interpreter.

4.1 VALIDATING THE EBM AS A FAITHFUL SURROGATE

The first experiment validates that our EBM can be effectively pre-trained to serve as a surrogate for
a target LLM. The goal is to show that the EBM learns a well-defined energy landscape, assigning
low energy to authentic prompt-response pairs while assigning high energy to various forms of
corrupted or mismatched pairs.

Target LLM and Dataset. Our objective is to model the energy surface of GPT-4o mini. We uti-
lized Hello-SimpleAI/HC3 dataset, a corpus widely used for comparing human and LLM-generated
text across muliple domains (e.g., science, finance, medicine, and open-domain QA). We used the
“question” column from the training split to prompt our target LLM, GPT-4o mini, to generate
positive samples. For negative sampling, we used the provided human answers and also generated
responses from GPT-2 for the same prompts. We trained two models of different sizes: a smaller
EBM-167M on 12,000 samples and a larger EBM-181M on 20,000 samples. For each, 10% of the
data was reserved for validation.

7
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(b) EBM-181M Average Validation Energy

Figure 4: Averaged energy value for validation set for EBMs with two different sizes. The blue line
shows the value for the target LLM response which successfully is the minimum one. For EBM-
167M (a), negative samples become successfully distant from the positive one during training. For
EBM-181M (b), we have a significantly wider energy gap, indicating enhanced discriminative power
for larger network.

Model Architecture. We evaluated two EBM architectures, EBM-167M and EBM-181M, with 167
million and 181 million parameters, respectively. Both models use two concept space projection
blocks for the input and output sentences, where each block consists of a self-attention layer with 8
heads and a feed-forward network. The key difference lies in the input-output interaction module;
the EBM-167M uses four cross-attention blocks, while the more powerful EBM-181M uses six.
Both architectures conclude with a two-layer MLP following the attention pooling stage.

Pre-training and Negative Sampling. The EBMs were pre-trained using the InfoNCE loss with
a rich set of negative samples designed to teach different aspects of the target LLM’s behavior.
These included: structural corruptions (masking entire sentences or individual tokens in either
the prompt or the response) and semantic-based negatives (swapping the response with one from a
different model like GPT-2, a human-written answer, or an off-topic response from the model).

The EBM pre-training results, summarized in Figure 4 and corroborated by consistent loss conver-
gence (Appendix A, Figure 6), show that both models successfully learned the target LLM’s genera-
tion patterns. The validation energy plots reveal that the EBMs assign the lowest energy to authentic
target samples, effectively distinguishing them from all negatives. As anticipated, semantic-based
negatives (e.g., human or GPT-2 responses) receive the highest energy, while structural corruptions
like sentence masking proved to be the most challenging negative class, highlighting the model’s
sensitivity to nuanced, conceptual changes. Critically, distinguishing difficult off-topic negatives
required careful tuning of model capacity and training data balance, with successful learning forc-
ing the models beyond surface features to capture the essential semantic relationship between the
prompt and response. Of the two, the larger EBM-181M trained on more data exhibited superior
performance, showing a significantly wider energy gap (Figure 4b) than the EBM-167M. This supe-
rior, well-defined energy surface confirms the framework’s scalability and potential for high-fidelity
modeling of complex LLMs.

4.2 INTERPRETATION RESULTS

We train our interpreter model using guidance from the pre-trained energy block, EBM-181M (in-
troduced earlier). The interpreter incorporates two concept-space projection blocks—one for input
sentences and one for output sentences. Each projection block contains self-attention layers (ini-
tialized with the energy block weights to better align with concept spaces) and six cross-attention
layers with eight attention heads, which is followed by a single MLP layer. To facilitate a more de-
scriptive evaluation, we selected a movie review sentiment analysis task as the target LLM scenario.
The goal is to identify which parts of each review most strongly influence the LLM’s generated
response. Specifically, we provide IMDB reviews (Lakshmi, 2020) to GPT-4o mini and ask it
to produce a sentence summarizing the sentiment of the review. This generated sentiment sentence
is then passed as the target output to the interpreter network. Table 1 presents some examples of
post-hoc interpretation results produced by the interpreter model.
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Table 1: Results of interpreting the GPT-4o mini responses to IMDB review prompts

Review Full Text (Top Sentences Highlighted) Predicted Sentiment

Sample #1

This is an excellent film, with an extraordinary cast and acting. I was
very disappointed when it didn’t win the Academy Awards for best film
and best actress (Whoopi Goldberg). It certainly deserved it. In any case,
take a look at it; I am sure you will enjoy it very much.

Based on the given text, the
review sentiment is positive.

Sample #2

Some people might consider this movie a piece of artwork—to be able to
express your imagination on film in order to create a movie filled with
antagonizing pain and death. I personally think that this movie is a
disgust, which should have never been released. This movie is repulsive,
illogical, and meaningless. Not only is it a complete waste of time but
it makes you sick for days to come. The appalling images shown in
the film not only make you grasp for air but they set in your mind and
it takes days to forget them. Such a shame that people waste their
imagination on such inhumane suffering. “Kill Bill” would be another
example, but at least “Kill Bill” has its purpose, meaning, climax, and
resolution.

Based on the given text, the
review sentiment is negative.

Sample #3

Officially the first martial arts movie in USSR cinematography featuring
actual martial artists like Tadeush Kas’yanov and Russian Bruce Lee -
Talgat Nigmatullin. Bad people hijack a ship on the high seas, but
fortunately, just about everybody on board is a trained martial artist. A
collectible for martial arts aficionados.

Based on the given text, the
review sentiment is positive.

Sample #4

Slow, incomprehensible, boring. Three enthusiastic words that describe
the movie of the book. This is surely a case where the movie should
never have been made at the expense of the book. The best part of the
movie was the scenery, excellent. The worst part was the slow moving
interactions of the actors which combined with endless meaningful
glances. The editing is abrupt and patchy. However, despite this, the
actors worked very hard at least trying to be a little believable with a
terrible script. It was startling that although set in Peru there was hardly a
person of Peruvian descent wandering about the set—even in the
flashback scenes depicting Peru in the 17th century. If you have any
sense of history, try to avoid this movie.

Based on the given text, the
review sentiment is negative.

5 DISCUSSION AND CONCLUSION

The growing integration of generative models into critical applications heightens the demand for
transparency and interpretability. In this work, we contribute to this effort by introducing a novel
method for elucidating the reasoning of Large Language Models (LLMs) at a conceptual level.
Results of our study provide important insights into the potential of energy-based models (EBMs)
as a surrogate for black-box Large Language Models (LLMs) for further analysis. By employing a
concept-level approach, we have demonstrated that the energy model successfully guides training
of a model-agnostic, post-hoc input-output attribution method to interpret the LLM response at the
sentence level.

Our method identifies the salient sentences in a prompt that trigger specific components of an LLM’s
response. This provides a critical lens for diagnosing model failures, such as hallucination and
the activation of internal biases. Unlike local surrogate methods, our globally trained interpreter
captures not only instance-specific relationships but also broader semantic patterns embedded in the
LLM’s generation process across the dataset. This offers a more profound insight into the model’s
decision-making mechanism.

We demonstrate that our approach is scalable, with larger EBMs (e.g., EBM-181M) yielding im-
proved performance in distinguishing authentic from corrupted data pairs. A primary limitation is
the computational cost associated with contrastive pre-training of the EBM, which can be prohibitive
at scale. Future work will focus on mitigating this cost and extending the framework to multimodal
settings, which will necessitate advances in cross-modal concept alignment.
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APPENDIX

A ENERGY NETWORK PRE-TRAINING

BlackBox LLM
Negative 

Pairs

Pos. Energy Neg. Energies
(the same pipeline)

SentenceBERT

InfoNCE Loss

EBM

Energy Calculation

Input-Output Interaction

Concept Space Projection Concept Space Projection

Figure 5: Pre-training pipeline of the globally-aware energy-based surrogate model, ELM(x,y; θ).
Input and output sentences are first embedded via SentenceBERT and then projected into separate
concept spaces through trainable self-attention modules. Output concepts cross-attend to input con-
cepts to model input–output dependencies, after which an MLP computes a scalar energy score.
Positive pairs (x,y) from the target LLM and negative pairs Ni are both scored, and the model is
trained with an InfoNCE loss to assign low energy to authentic pairs and high energy to mismatched
ones.

0 20 40 60 80 100 120 140
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g 

Lo
ss

EBM-167M Pretraining: Loss Curve

Train Loss
Validation Loss

(a) EBM-167M Training and Validation Loss
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(b) EBM-181M Training and Validation Loss

Figure 6: Pre-training Loss for both EBMs. (a) The EBM-167M training and validation loss shows
steady convergence. (b) The larger EBM-181M loss decreases more rapidly, reflecting the benefits
of increased capacity and data volume.

B DIFFERENTIABLE TOP-K SENTENCE SELECTION VIA GUMBEL–SOFTMAX

The interpreter outputs a normalized importance scores with values between 0 and 1, that can be
considered as a parameter of a Categorical distribution. However, we aim to select the top-K most
important ones by sampling from the interpreter’s output, which is a non-differentiable operation. To
address this, we employ the Gumbel-Softmax trick, which provides a continuous relaxation and thus
enables differentiable training. In other words, we use a Gumbel-Softmax relaxation to highlight
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the K input sentences most related to a chosen subset of output sentences Y in a trainable, end-
to-end manner. Let an auxiliary scorer(Interpreter network in this case) produce relevance logits
zi =

(
Wα(x, Y )

)
i

for the n input sentences x = (s1, . . . , sn). We draw i.i.d. ui∼Uniform(0, 1)
and form standard Gumbel noise

gi = − log
(
− log ui

)
, i = 1, . . . , n. (A1)

With temperature τ > 0, a relaxed one-hot c ∈ ∆n−1 is computed as

ci =
exp
(
(zi + gi)/τ

)∑n
j=1 exp

(
(zj + gj)/τ

) , i = 1, . . . , n. (A2)

As τ→ 0, c approaches a categorical sample from softmax(z); larger τ provides smoother assign-
ments and stable gradients.

To obtain a K-hot selection over sentences, we draw K independent relaxed samples {c(j)}Kj=1
using equation A1 & A2 and combine them elementwise by

mi = max
j=1,...,K

c
(j)
i , i = 1, . . . , n, (A3)

which serves as a continuous proxy for the top-K indicator. Following the notation of the previous
paper, the interpreter block output is

IN t(x;α)i = mi = max
j=1,...,K

c
(j)
i . (A4)

During training, IN t(x;α) gates sentence representations while preserving gradients; at inference,
we take the top-K indices of z (or harden the samples) to obtain discrete selections.

C THE LLM USAGE

Some parts of the initial drafts of this manuscript were revised with the assistance of a large language
model. The model was prompted to improve the fluency, conciseness, and overall academic tone of
the text to meet the standards of ICLR publications.
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