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ABSTRACT

Deep learning models such as Convolutional Neural Networks (CNNs) have
demonstrated high levels of effectiveness in a variety of domains, including com-
puter vision and more recently, computational biology. However, training effec-
tive models often requires assembling and/or labeling large datasets, which may
be prohibitively time-consuming or costly. Pool-based active learning techniques
have the potential to mitigate these issues, leveraging models trained on limited
data to selectively query unlabeled data points from a pool in an attempt to expe-
dite the learning process. Here we present “Dropout-based Expected IMprOve-
mentS” (DEIMOS), a flexible and computationally-efficient approach to active
learning that queries points that are expected to maximize the model’s improve-
ment across a representative sample of points. The proposed framework enables
us to maintain a prediction covariance matrix capturing model uncertainty, and to
dynamically update this matrix in order to generate diverse batches of points in the
batch-mode setting. Our active learning results demonstrate that DEIMOS outper-
forms several existing baselines across multiple regression and classification tasks
taken from computer vision and genomics.

1 INTRODUCTION

Deep learning models (LeCun et al., 2015) have achieved remarkable performance on many chal-
lenging prediction tasks, with applications spanning computer vision (Voulodimos et al., 2018),
computational biology (Angermueller et al., 2016), and natural language processing (Socher et al.,
2012). However, training effective deep learning models often requires a large dataset, and assem-
bling such a dataset may be difficult given limited resources and time.

Active learning (AL) addresses this issue by providing a framework in which training can begin
with a small initial dataset and, based on an objective function known as an acquisition function,
choosing what data would be the most useful to have labelled (Settles, 2009). AL has successfully
streamlined and economized data collection across many disciplines (Warmuth et al., 2003; Tong
& Koller, 2001; Danziger et al., 2009; Tuia et al., 2009; Hoi et al., 2006; Thompson et al., 1999).
In particular, pool-based AL selects points from a given set of unlabeled pool points for labelling
by an external oracle (e.g. a human expert or biological experiment). The resulting labeled points
are then added to the training set, and can be leveraged to improve the model and potentially query
additional pool points (Settles, 2011).

Until recently, few AL approaches have been formulated for deep neural networks such as CNNs due
to their lack of efficient methods for computing predictive uncertainty. Most acquisition functions
used in AL require reliable estimates of model uncertainty in order to make informed decisions
about which data labels to request. However, recent developments have led to the possibility of
computationally tractable predictive uncertainty estimation in deep neural networks. In particular, a
framework for deep learning models has been developed viewing dropout (Srivastava et al., 2014)
as an approximation to Bayesian variational inference that enables efficient estimation of predictive
uncertainty (Gal & Ghahramani, 2016).

Our approach, which we call “Dropout-based Expected IMprOvementS” (DEIMOS), builds upon
prior work aiming to make statistically optimal AL queries by selecting those points that minimize
expected test error (Cohn et al., 1996; Gorodetsky & Marzouk, 2016; Binois et al., 2019; Roy &
McCallum, 2001). We extend such approaches to CNNs through a flexible and computationally
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efficient algorithm that is primarily motivated by the regression setting, for which relatively few AL
methods have been proposed, and extends to classification.

Many AL approaches query the single point in the pool that optimizes a certain acquisition function.
However, querying points one at a time necessitates model retraining after every acquisition, which
can be computationally-expensive, and can lead to time-consuming data collection (Chen & Krause,
2013). Simply greedily selecting a certain number of points with the best acquisition function values
typically reduces performance due to querying similar points (Sener & Savarese, 2018).

Here we leverage uncertainty estimates provided by dropout in CNNs to create a dynamic repre-
sentation of predictive uncertainty across a large, representative sample of points. Importantly, we
consider the full joint covariance rather than just point-wise variances. DEIMOS acquires the point
that maximizes the expected reduction in predictive uncertainty across all points, which we show
is equivalent to maximizing the expected improvement (EI). DEIMOS extends to batch-mode AL,
where batches are assembled sequentially by dynamically updating a representation of predictive un-
certainty such that each queried point is expected to result in a significant, non-redundant reduction
in predictive uncertainty. We evaluate DEIMOS and find strong performance compared to existing
benchmarks in several AL experiments spanning handwritten digit recognition, alternative splicing
prediction, and face age prediction.

2 RELATED WORK

AL is often formulated using information theory (MacKay, 1992b). Such approaches include query-
ing the maximally informative batch of points as measured using Fisher information in logistic re-
gression (Hoi et al., 2006), and Bayesian AL by Disagreement (BALD) (Houlsby et al., 2011),
which acquires the point that maximizes the mutual information between the unknown output and
the model parameters.

Many AL algorithms have been developed based on uncertainty sampling, where the model queries
points about which it is most uncertain (Lewis & Catlett, 1994; Juszczak & Duin, 2003). AL via
uncertainty sampling has been applied to SVMs using margin-based uncertainty measures (Joshi
et al., 2009). AL has also been cast as an uncertainty sampling problem with explicit diversity
maximization (Yang et al., 2015) to avoid querying correlated points.

EI has been used as an acquisition function in Bayesian optimization for hyperparameter tuning
(Eggensperger et al., 2013). Other AL objectives similar to ours have been explored in (Cohn et al.,
1996; Gorodetsky & Marzouk, 2016; Binois et al., 2019; Roy & McCallum, 2001), making statisti-
cally optimal queries that minimize expected prediction error, which often reduces to querying the
point that is expected to minimize the learner’s variance integrated over possible inputs. DEIMOS
extends EI and integrated variance approaches, which have traditionally been applied to Gaussian
Processes, mixtures of Gaussians, and locally weighted regression, to deep neural networks.

Until recently, few AL approaches have proven effective in deep learning models such as CNNs,
largely due to difficulties in uncertainty estimation. Although Bayesian frameworks for neural
networks (MacKay, 1992a; Neal, 1995) have been widely studied, these methods have not seen
widespread adoption due to increased computational cost. However, theoretical advances have
shown that dropout, a common regularization technique, can be viewed as performing approximate
variational inference and enables estimation of model and predictive uncertainty (Gal & Ghahra-
mani, 2016). Simple dropout-based AL objectives in CNNs have shown promising results in com-
puter vision classification applications (Gal et al., 2017).

Several new algorithms show promising results for batch-mode AL on complex datasets. Batchbald
(Kirsch et al., 2019) extends BALD to batch-mode while avoiding redundancy by greedily con-
structing a query batch that maximizes the mutual information between the joint distribution over
the unknown outputs and the model parameters. Batch-mode AL in CNN classification has also been
formulated as a core-set selection problem (Sener & Savarese, 2018) with data points represented
(embedded) using the activations of the model’s penultimate fully-connected layer. The queried
batch of points then corresponds to the centers optimizing a robust (i.e. outlier-tolerant) k-Center
objective for these embeddings.
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In spite of these recent advances, there are no frameworks for batch-mode AL in CNNs that model
the full joint (rather than point-wise) uncertainty and do not require a vector space embedding of
the data. Additionally, few AL approaches for CNNs have been assessed (or even proposed) for
regression as compared to classification.

3 ACTIVE LEARNING VIA EXPECTED IMPROVEMENT (EI) MAXIMIZATION

3.1 MOTIVATION

Our pool-based AL via EI maximization framework, DEIMOS, aims to maximally reduce expected
(squared) prediction error on a large, representative sample of points by querying as few points
from the pool as possible. Let Dsamp = (Xsamp, Ysamp) be an sufficiently large random sample from
the training and pool points that it can be assumed representative of the dataset as a whole. Let
Dpool = (Xpool, Ypool) denote the available pool of unlabelled data, (xnew, ynew) ∈ Dpool a candidate
point for acquisition, θ the model parameters with approximate posterior q(θ), and ŷi(θ) the model
prediction for an input xi. Note that Ypool is not known and Ysamp is only partially known in AL as the
pool consists of unlabeled points. For brevity, conditioning on model input is omitted in subsequent
equations (e.g. Eq[ŷi(θ) | xnew, xi] will be written as Eq[ŷi(θ) | xnew]).

We seek to maximize EI by acquiring the pool point that minimizes expected prediction error on
Dsamp. The expected prediction error on Dsamp conditioned on some xnew ∈ Xpool is,

1

|Ysamp|
∑

(xi,yi)∈Dsamp

Eq,n[(yi − ŷi(θ))2 | xnew] =

1

|Ysamp|
∑

(xi,yi)∈Dsamp

Eq[(ŷi(θ)− E[ŷi(θ)])2 | xnew] + (Eq[ŷi(θ) | xnew]− En[yi])
2 + En[(yi − En[yi])

2]

(1)

where Eq and En denote expectation over q(θ) and observation noise, respectively, and Eq,n de-
notes joint expectation over q(θ) and observation noise. Here we see the terms contributing to
the model’s expected prediction error on Dsamp are (from left to right): 1) the trace of the pre-
dictive variance matrix, 2) the sum of the predictive biases squared, and 3) the sum of the noise
variances across all observations (a constant in xnew) (Cohn et al., 1996). For a purely supervised
model, expected predictions remain the same unless the training set of input-output pairs is modi-
fied. Therefore, expected model predictions are unchanged conditioned on any unlabeled point xnew:
Eq[ŷi(θ) | xnew] = Eq[ŷi(θ)], and the predictive bias squared for any point (xi, yi) stays the same
conditioned on xnew: (Eq[ŷi(θ) | xnew]−En[yi])

2 = (Eq[ŷi(θ)]−En[yi])
2. Substituting accordingly

in equation 1, the pool point that would minimize expected prediction error on Dsamp if queried is:

x∗ = arg min
xnew∈Xpool

1

|Ysamp|
tr(Varq(Ŷsamp(θ) | xnew)) (2)

where Ŷsamp(θ) denotes the model predictions for input Xsamp and fixed parameters θ and Varq
denotes variance over the approximate posterior. Therefore, the xnew that minimizes expected pre-
diction error upon being queried is that expected to minimize average prediction variance (specif-
ically the trace of the predictive covariance matrix). Under our assumptions, knowing xnew is suf-
ficient to calculate the predictive variance contribution to expected prediction error conditioned on
(xnew, ynew), even when ynew is unknown. Importantly, it follows that, even though Ypool is not
known in AL, DEIMOS is still able to identify and query the pool point xnew ∈ Xpool that minimizes
expected prediction error across Dsamp after (xnew, ynew) is incorporated into the training set.

3.2 MC DROPOUT VARIANCE ESTIMATION

The proposed approach can be implemented with any uncertainty estimation method that enables
calculation of the variance and covariance of model predictions. In our experiments, we use MC
dropout (Gal & Ghahramani, 2016) to obtain estimates of model uncertainty in CNNs. Models are
trained with dropout preceding all fully-connected layers and dropout is used at test time to generate
T approximate samples from the posterior predictive distribution. The predictive mean is obtained
as the average of these samples.
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In order to estimate the predictive covariance matrix for all sample points, J dropout masks are ran-
domly generated for all dropout layers in the neural network. Crucially, the same J dropout masks
are used to make test-time predictions across all sample points to enable estimating correlation be-
tween them. From the dropout sample covariance matrix Varq(Ŷsamp,dropout(θ)) capturing the sample
variances and covariances of the J dropout predictions for each sample point, one can estimate the
prediction covariance matrix (Gal & Ghahramani, 2016),

Varq(Ŷsamp(θ)) = τ−1I + Varq(Ŷsamp,dropout(θ)). (3)

Here τ = (1−p)l2
2Nλ represents the model precision in regression tasks, where p is the dropout prob-

ability, l is a prior length-scale parameter, N is the number of training points, and λ represents the
weight decay (Gal & Ghahramani, 2016). In the classification setting, τ−1 = 0.

3.3 DEIMOS ACTIVE LEARNING IN CNN REGRESSION

DEIMOS queries the pool point xnew that minimizes the expected prediction variance across Dsamp
upon being queried and, by equation 2, minimizes the expected prediction error on Ysamp upon
querying ynew. Assuming that all ŷi ∈ Ŷsamp are jointly Gaussian, and considering candidate point
for acquisition xnew ∈ Xpool:

Varq(Ŷsamp(θ) | xnew) = Varq(Ŷsamp(θ))− Covq(Ŷsamp(θ), ŷnew(θ))Varq(ŷnew(θ))
−1Covq(Ŷsamp(θ), ŷnew(θ))

T

(4)

where Covq(Ŷsamp(θ), ŷnew(θ)) is a |Ysamp| × 1 column vector. Therefore, in order to maximize
the expected model improvement and minimize the expected prediction error on Ysamp, DEIMOS
queries the point:

x∗ = arg min
xnew∈Xpool

tr(Varq(Ŷsamp(θ) | xnew))

= arg max
xnew∈Xpool

tr(Covq(Ŷsamp(θ), ŷnew(θ))Varq(ŷnew(θ))−1Covq(Ŷsamp(θ), ŷnew(θ))T ) (5)

The EI in regression is defined to be the quantity maximized in equation 5: the total reduction in
predictive variance across sample points upon querying a given pool point.

3.4 DEIMOS ACTIVE LEARNING IN CNN CLASSIFICATION

In the classification setting, test-time dropout remains applicable as a means of drawing from the
approximate model posterior. Here the DEIMOS approach for regression is extended to maximizing
the expected reduction in uncertainty in predicted class probabilities in classification. Assuming all
predicted class probabilities across all sample points, denoted by p̂samp, are jointly Gaussian:

Varq(p̂samp(θ)|xnew) = Varq(p̂samp(θ))

− Covq(p̂samp(θ), p̂new(θ))(Varq(p̂new(θ)) + τ−1s I)−1Covq(p̂samp(θ), p̂new(θ))T

(6)

where c is the number of classes, Varq(p̂samp(θ)) is a c|Ysamp| × c|Ysamp| matrix,
Covq(p̂samp(θ), p̂new(θ)) is a c|Ysamp| × c matrix, Varq(p̂new(θ)) is a c× c matrix, and τ−1s � 1 is a
smoothing parameter ensuring the invertibility of Varq(p̂new(θ)). We define EI in classification as the
total reduction in variance of predicted class probabilities across all sample points that is expected
upon querying a point, which is given in equation 6 by: tr(Covq(p̂samp(θ), p̂new(θ))(Varq(p̂new(θ)) +
τ−1s I)−1Covq(p̂samp(θ), p̂new(θ))T ). All quantities in equation 6 are estimated using MC dropout
equation 3. DEIMOS maximizes the EI by querying the point xnew ∈ Xpool that minimizes
tr(Varq(p̂samp(θ)|xnew)), where Varq(p̂samp(θ)|xnew) is given by equation 6.

Treating the predicted class probabilities p̂samp as jointly Gaussian may seem a poor approximation
as probabilities are bounded. However, we find that DEIMOS performs better in the bounded prob-
ability space than in the unbounded logit space, possibly because in the logit space unimportant
differences between large positive (or negative) predictions that correspond to small differences in
predicted probabilities are given undue importance.
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Applying the joint Gaussian assumption to the class probabilities for all classes across all sample
points provides an expression for the probability covariance matrix conditioned on each unlabeled
candidate point. DEIMOS acquires the point that maximizes the expected reduction in predictive
uncertainty across all classes and all points.

4 DEIMOS BATCH-MODE ACTIVE LEARNING

Algorithm 1 DEIMOS batch-mode active learning in regression

Input: Xsamp, Xtrain, fixed-mask dropout predictions Ŷsamp,dropout, batch size b, model precision τ
S = |Xsamp|, Xbatch = ∅
V = [V1 . . . VS ] = Varq(Ŷsamp(θ)) = τ−1I + Varq(Ŷsamp,dropout(θ))
for i ∈ {1, . . . , b} do
Xcand = Xsamp \ (Xtrain ∪ Xbatch)

xn = arg maxxi∈Xcand
tr
(
Vi(V

−1
ii )V Ti

)
V = V − Vn(V −1nn )V Tn
Xbatch = Xbatch ∪ xn

end for
return Xbatch

The joint Gaussian assumption, applied to real-valued outputs in regression or class probabilities
in classification, enables estimation of the predictive covariance across the representative sample
of points conditioned on unlabeled points. In the batch-mode setting, DEIMOS assembles each
batch sequentially. After a point is added to the batch, having maximized the DEIMOS acquisi-
tion function, the predictive covariance matrix is updated conditioned on the unlabeled point; the
updated covariance matrix, in turn, is used to calculate the acquisition function values, determine
the subsequent point in the batch, and again update the predictive covariance matrix (Algorithm 1).
The general procedure of Algorithm 1 applies in classification and regression, but in classification
τ−1 = 0 and τ−1s is introduced, V is a cS × cS matrix, Vi is a cS × c matrix, and Vii is a c × c
matrix. Candidate points for acquisition are limited to the unlabeled points in Xsamp as opposed to
all of Xpool in Algorithm 1 and in our AL experiments in the interest of computational efficiency.

The DEIMOS approach to batch-mode AL provides a computationally efficient mechanism for batch
selection. Assembling batches sequentially and updating the covariance matrix after each point is
added ensures that all acquired points result in relatively high reductions in predictive uncertainty
and that no two points in the queried batch are redundant in their reduction of predictive uncertainty
across the sample points. For some Varq(Ŷsamp(θ)), there can exist batches of b points that result in
a greater variance reduction than the b points queried by the proposed greedy algorithm. However,
simulation experiments for small batch sizes show that the variance reduction resulting from our
greedy algorithm is typically very close to the optimal variance reduction (Appendix A).

5 EXPERIMENTS

First, we visualize MC dropout uncertainty estimates and the proposed acquisition function for
synthetic data in a one-dimensional input space. Next, we evaluate DEIMOS empirically via exper-
imental comparison with other acquisition functions and approaches.

We tested DEIMOS in CNNs across regression and classification tasks, and in single-point acqui-
sition and batch-mode AL settings1. Specifically, DEIMOS is compared to existing methods in
alternative splicing prediction (Rosenberg et al., 2015) and face age prediction (susanqq, 2017)
regression tasks. Classification experiments were run on MNIST (LeCun et al., 1998) binary clas-
sification of handwritten 7s and 9s, and on classification of all 10 digits. All AL results shown are
averaged over three experiments, each beginning with a new, randomly-selected training set. AL

1AL experiment details are detailed in Appendix D and hyperparameter tuning details are discussed in
Appendix E. Code for all experiments is included in the supplementary material.
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Figure 1: Left: DEIMOS acquisition function and batch query for simulated 1D data. Model pre-
dictions ±1 standard deviation are shaded light blue. Points selected to be queried in a batch of size
5 are indicated on the x-axis (batch construction order: darker to lighter markers). Right: Model
predictions after acquisition. The queried points from 1(a) are labeled and added to the training set
and a new model is retrained from scratch. A substantially improved fit is obtained.

Table 1: Number of single-point acquisitions required in order to achieve the 5’ splicing test MSE
listed in the left column for each acquisition function.

Test MSE DEIMOS Max. variance acquisition Random acquisition

0.11 69 92 80
0.10 109 318 180
0.095 174 492 306
0.09 369 708 387

performance is compared across algorithms using a linear mixed model to account for dependence
across acquistion iterations (Appendix C).

5.1 VISUALIZING DEIMOS ACQUISITION IN 1D NEURAL NETWORK REGRESSION

In order to visualize the DEIMOS acquisition function we simulated a 1D neural network regression
task. Synthetic data with real-valued input and output is produced by a random dense neural network
and then used to train a dense neural network (Appendix D).

The DEIMOS acquisition function exhibits desirable properties for an AL objective. It is high in
[−2.5, 2.5], where data is comparatively sparse, and [−10,−7], where the current model does not
fully capture the underlying trend (Fig 1 left). In the [2.5, 10] input region where the model pre-
dictions are fairly accurate, EI is relatively low. DEIMOS batch-mode AL queries a diverse set of
points, concentrating on the [−3, 3] input region but also querying two points in the surrounding
regions (Fig 1 left). In this example, DEIMOS batch-mode AL successfully improves model per-
formance (Fig 1 right), querying points that are expected to reduce predictive uncertainty but are
not redundant. Indeed, upon labeling of the requested points, model fit significantly improves in the
[−10,−7] and [−2.5, 2.5] input regions.

5.2 ACTIVE LEARNING EXPERIMENTS: CNN REGRESSION

We evaluated DEIMOS on prediction of splice donor site in 5’ alternative splicing (Rosenberg et al.,
2015) and face age prediction for images in the UTKFace dataset (susanqq, 2017). In each exper-
iment, all acquisition functions start with the same initial training set, and, in each AL iteration,
acquire a specified number of points (“batch size”) and the models are retrained from scratch. The
performance of DEIMOS is compared to that of random acquisition, and to acquiring the candidate
pool point(s) with maximum MC dropout variance.
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Figure 2: Test performance across AL iterations with±1 standard deviation of average performance
shaded. Left: 5’ splicing (batch size 1) MSE; DEIMOS outperforms benchmarks (p = 2.1×10−278

for maximum variance acquisition and p = 6.9 × 10−34 for random acquisition) (Appendix C).
Center: Face age prediction RMSE (batch size 100); DEIMOS outperforms benchmarks (p <
8×10−3) (Appendix C). Right: Face age prediction RMSE (batch size 200); DEIMOS outperforms
benchmarks (p < 9× 10−3, Appendix C).

Alternative RNA splicing prediction. CNN regression models are trained to predict the relative
usage of one of at two alternative splice donor sites. One-hot encoded RNA sequences of 101
nucleotides for each set of splicing measurements are used as the model input.

Results are illustrated in Fig 2 (left). DEIMOS outperforms both benchmarks over the first several
hundred iterations but random acquisition catches up to DEIMOS near the end of the experiment.
DEIMOS achieves lower average MSE than both benchmarks for a given experiment and AL iter-
ation (p < 10−33, Appendix C). Table 1 illustrates the substantial data efficiency gains produced
by DEIMOS: both alternative methods require over 65% more data than DEIMOS to achieve a test
MSE of 0.10, and both require at least 75% more data than DEIMOS to achieve a test MSE of 0.095.

Maximum variance acquisition performs poorly throughout, indicating that acquiring uncertain
points does not necessarily lead to effective AL on its own. The strong performance of DEIMOS
compared to maximum variance acquisition demonstrates the benefit over traditional uncertainty
sampling approaches gained by modeling correlations between predictions across data points and
assessing EI throughout the input space.

Face age prediction. AL experiments were run on the UTKFace dataset (Fig 2 center and 2 right),
with models trained to predict the age corresponding to each 200×200 pixel face. DEIMOS per-
formed better than random and maximum variance acquisition in these experiments, with its root
MSE (RMSE) being significantly lower than that of the other acquisition functions for a given ex-
periment and AL iteration. Notably, DEIMOS outperforms both benchmarks even for moderately
large batch sizes (100, 200), providing empirical evidence for the effectiveness of the proposed
batch-mode algorithm in querying informative, non-redundant points.

5.3 ACTIVE LEARNING EXPERIMENTS: CNN CLASSIFICATION

We evaluated DEIMOS on MNIST (LeCun et al., 1998) for binary classification of 7s vs 9s and
multiclass classification of all 10 digits. We compare to random acquisition, acquisition of the
point(s) with maximum entropy (Gal et al., 2017), BALD/Batchbald (Houlsby et al., 2011; Kirsch
et al., 2019), and core-set AL via robust k-Center (Sener & Savarese, 2018).

In binary classification of 7s and 9s, DEIMOS compares favorably to existing approaches. For
single-point acquisitions, DEIMOS requires roughly one-fourth as much data as random acquisition
to arrive at test accuracy thresholds of 0.97 and 0.975, and shows data efficiency improvements over
all other benchmarked methods (Table 2, Appendix B). For batch size 25 (Fig 3(a)), DEIMOS per-
forms substantially better than random acquisition throughout the experiment and improves upon
Batchbald and robust k-Center. The strong performance of DEIMOS is robust to the choice of rep-
resentative sample size: there is no statistically significant difference in DEIMOS AL performance
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(a) (b)
(c)

(d) (e) (f)

Figure 3: (a) MNIST 7 vs. 9 classification accuracy (±1 standard deviation shaded) across AL
iterations for batch size 25. DEIMOS outperforms random and robust k-Center acquisition (p-values
4.4×10−11 and 1.9×10−11, respectively (Appendix C) (b) MNIST 0-9 classification accuracy (±1
standard deviation shaded) across AL iterations for batch size 25. DEIMOS outperforms random
(p = 9×10−3) and maximum entropy (p = 3×10−3) acquisition (Appendix C) (c) Images 1-3 and
999-1000 (order: top to bottom) queried by DEIMOS in MNIST 7 vs. 9 classification with batch
size 25; each column corresponds to one experiment (order: left to right). (d,e) Batch diversity,
defined as average symmetric KL divergence of predicted class probabilities for queried points in
each batch, across AL iterations in MNIST 7 vs. 9 classification with batch size 25 and MNIST 0-9
classification with batch size 25, respectively. DEIMOS has higher batch diversity than Batchbald
and maximum entropy acquisition (p < 0.01) in almost all AL iterations in both tasks (f) DEIMOS
MNIST 7 vs. 9 classification accuracy across AL iterations (batch size 25) for several representative
sample sizes |Xsamp|. There is no statistically significant difference in DEIMOS AL performance
across the |Xsamp| shown (Appendix C).
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Table 2: Top: Number of single-point acquisitions required in order to obtain the MNIST 7 vs.
9 classification test accuracy listed in the left column for each acquisition function (Appendix B).
Bottom: p-values comparing benchmark accuracy to DEIMOS accuracy (Appendix C).

Test accuracy DEIMOS BALD Max. entropy Random Robust k-Center

0.95 20 23 21 48 24
0.96 24 25 31 55 39
0.97 27 39 39 113 58
0.975 41 67 58 158 58

p-value - 2.3× 10−21 4.1× 10−11 5.2× 10−133 7.7× 10−46

for representative set sizes of 500, 2500, and 5000 (Fig 3(f)). Fig 3(c) illustrates the first three and
last two images queried by DEIMOS in the batch size 25 experiments. Early on, DEIMOS queries
class prototypes (e.g. first image queried in experiment 1) and probes the decision boundary (e.g.
first and third images queried in experiment 2). When the training set is larger, DEIMOS focuses
more on querying outliers (e.g. last two images requested in experiment 1) that may only clarify a
narrow subset of predictions.

In MNIST classification of all 10 digits (Fig 3(b)), DEIMOS is comparable to state-of-the-art
methods. For batch size 25, DEIMOS outperforms random and maximum entropy acquisition
(p < 9 × 10−3). Batchbald slightly outperforms other methods early on in the experiments but
DEIMOS is comparable to Batchbald in most AL iterations. The strong performance of DEIMOS
demonstrates the advantages of maximizing EI for all classes over a large sample of points and
taking into account correlations between predicted class probabilities across points.

The diversity of batches queried by DEIMOS was analyzed in the MNIST 7 vs. 9 and 0-9 classi-
fication experiments for batch size 25 (Fig 3(d), 3(e)). Batch diversity is measured by the average
symmetric KL divergence in the predicted class probability distributions for pairs of points in the
queried batch. Across both tasks, batches of points queried by DEIMOS had higher batch diver-
sity (p < 0.01) than those queried by Batchbald and maximum entropy acquisition in virtually all
AL iterations. Random acquisition led to batches with the highest diversity, in large part due to
the relatively high prevalence of pairs of points with very low predictive uncertainty that are pre-
dicted by the model to belong to different classes (leading to high symmetric KL divergence) in
randomly-assembled batches. Such points are less likely to be queried by other AL methods as they
are already predicted confidently and therefore are often uninformative. Figures 3(d) and 3(e) show
the effectiveness of the DEIMOS batch-mode AL algorithm in assembling heterogeneous batches
of points.

6 CONCLUSION

We formulate an active learning approach, DEIMOS, aimed at maximizing expected improvement
by minimizing expected predictive variance. Our approach extends to the batch-mode setting when
supplemented with an efficient greedy algorithm that sequentially assembles a diverse batch of
queried points. The effectiveness of the proposed algorithm is studied across multiple classifica-
tion and regression tasks, and it is found to outperform typical baselines in regression and to achieve
performance on par with–and in some cases better than–existing methods in classification.
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A OPTIMALITY OF DEIMOS BATCH-MODE ACQUISITION

The proposed greedy algorithm for batch-mode active learning is an efficient alternative to evaluat-
ing the EI for all possible batches of unlabeled candidate points of specified size and selecting the
batch that maximizes EI. Although the proposed algorithm is efficient, its greedy approach means
that it does not always find the batch of points that maximizes EI. An example of Varq(Ŷsamp(θ))
where greedy batch-mode active learning may not maximize EI is provided below:

Varq(Ŷsamp(θ)) =

[
9 3 2
3 2 3
2 3 9

]

For the given Varq(Ŷsamp(θ)), DEIMOS batch-mode acquisition with batch size 2 queries point 2
and then either point 1 or point 3 (both options have equal expected improvement), resulting in a
total variance reduction of approximately 16.9. However, the optimal trace reduction (i.e. expected
improvement) of roughly 19.6 results from querying points 1 and 3. Therefore, in this example
DEIMOS achieves only around 86% of the optimal trace reduction for matrix Varq(Ŷsamp(θ)).

Next we explore how sub-optimal the greedily built batches tend to be for randomly generated vari-
ance matrices. The empirical effectiveness of the proposed approach for sequential batch assembly
is compared to that of searching through all batches of points and acquiring the batch that maximally
reduces predictive variance. We simulate i.i.d. standard normal predictions for a specified number
of pool points and dropout masks. Varq(Ŷsamp(θ)) is calculated using the sample covariance between
all points, Varq(Ŷsamp,dropout(θ)), and adding τ−1I (equation 3), where τ−1 is set to 10% of the aver-
age MC dropout sample variance across all points. Synthetic prediction variance matrices generated
in this fashion are used to compare the expected improvement from the greedy algorithm, given by
the trace reduction in the matrix, to that resulting from acquiring the optimal batch of points.

The procedure detailed above is repeated to generate 200 instances of Varq(Ŷsamp(θ)) across batch
sizes of 2, 5, and 10 and for varying numbers of i.i.d. normal variables designated as the number
of model predictions per point (i.e. the number of dropout masks). For each Varq(Ŷsamp(θ)), the
DEIMOS batch-mode algorithm was run and the ratio of the resulting variance trace reduction to the
optimal variance trace reduction, computed by searching through all possible batches of points, was
computed. Although the scope of such experiments is limited by the exponential time complexity
of iterating through all possible batches of points, the trace reduction ratios are typically quite close
to 1 throughout our experiments (Figure A.1). Thus, while instances of Varq(Ŷsamp(θ)) where the
greedy algorithm deviates significantly from the optimal trace reduction do exist, they appear to
be relatively uncommon. These results provide some empirical support for the effectiveness of the
proposed greedy algorithm in achieving a variance reduction across predictions comparable to that
resulting from querying the optimal batch of points under our assumptions.

B MNIST BINARY 7 VS. 9 BATCH SIZE 1 RESULTS

We show that DEIMOS outperforms several existing active learning methods in MNIST binary clas-
sification of 7 vs. 9. With single-point acquisitions and initial training sets consisting of 10 points,
DEIMOS performs substantially better than random acquisition, and noticeably better than robust
k-Center and BALD, throughout most of the active learning iterations (Figure B.1). Maximum en-
tropy acquisition also performs well, achieving performance comparable to that of DEIMOS. Over-
all, DEIMOS performs well compared to existing active learning methods for classification in the
MNIST 7 vs. 9 classification task.

C HYPOTHESIS TESTING FOR AL PERFORMANCE EVALUATION

We used hypothesis tests based on linear mixed models (LMMs) to compare the performance of dif-
ferent AL algorithms in our experiments. If two AL algorithms are equally effective, then predictive
performance on test data will be given as a function of the number of acquisitions (the algorithm in
use has no effect). However, if one active learning algorithm is more effective than another, predic-
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(a) Batch size 2, |Ysamp| = 200,
3 normally distributed samples per
point

(b) Batch size 2, |Ysamp| = 200,
50 normally distributed samples per
point

(c) Batch size 5, |Ysamp| = 30, 3 nor-
mally distributed samples per point

(d) Batch size 5, |Ysamp| = 30,
50 normally distributed samples per
point

(e) Batch size 10, |Ysamp| = 20,
3 normally distributed samples per
point. All trace reduction ratios are
between 0.99999 and 1.

(f) Batch size 10, |Ysamp| = 20,
50 normally distributed samples per
point

Figure A.1: Histograms of the ratio of the variance trace reduction resulting from applying the
proposed greedy algorithm to the variance trace reduction resulting from querying the optimal batch
of points, under our assumptions. Each trial uses a different Varq(Ŷsamp(θ)) initialized by calculating
Varq(Ŷsamp,dropout(θ)) + τ−1I from i.i.d. normally-distributed variables, where a specified number
of normal samples corresponds to the model’s MC dropout predictions for each point. All ratios of
greedy trace reduction to optimal trace reduction are above 0.97 across all experiments.
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Figure B.1: MNIST 7 vs. 9 classification test accuracy (± 1 standard deviation shaded) averaged
over three active learning experiments as a function of number of acquired points, with batch size 1.

tive performance on test data will have contributions both from the algorithm in use and from the
number of acquisitions that have occurred.

Consequently, the null model for predictive performance during an AL experiment is given by an
LMM with random-effect terms corresponding to the number of elapsed acquisition iterations. The
alternative model for predictive performance is an LMM with a fixed-effect term corresponding to
the AL algorithm and random-effect terms corresponding to the iteration.

A likelihood ratio test is used throughout our experiments to compare the null model and alternative
model and determine if the fixed effect corresponding to the choice of AL algorithm is statistically
significant.

D ACTIVE LEARNING EXPERIMENT DETAILS

Synthetic 1D neural network regression. 1D real-valued output is generated from input using
a random neural network with zero-mean Gaussian weights and biases and fully-connected hidden
layers of size [32, 32]; observed output is corrupted by zero-mean, i.i.d. Gaussian noise. A fully-
connected neural network with hidden layers of size [256, 256, 256], with p = 0.2 and λ = 0.0005,
is fit to the synthetic data and used to evaluate EI.

Active learning experiments. Active learning experiments are run on individual Tesla P100 and
Tesla V100 GPUs. Across all AL experiments, acquisition functions are calculated using 50 MC
dropout predictions for each point. In the interest of computational efficiency, only a specified num-
ber of unlabeled points are considered for acquisition in each iteration (as opposed to considering all
of Xpool). In DEIMOS acquisition, the set of candidate points for acquisition in each AL iteration
is restricted to the unlabeled points in Xsamp. Xsamp is randomly sampled from Xtrain ∪ Xpool until
the set of candidate points for acquisition Xcand = Xsamp \Xtrain reaches a specified size.

Alternative splicing. Convolution is performed on the sequence input by one-hot encoding the
101-nucleotide sequence as a 2-dimensional array with four channels corresponding to the four
possible nucleotides at each position. The dataset contains a total of 265,137 examples, of which
10% are used as the test data and the remaining 90% is subdivided into the training data and the
pool (from which a validation set consisting of 50 points is sampled). In the AL experiments (Fig 2
left), all algorithms begin with training sets of size 75 and acquire 600 points from the pool through
single-point acquisitions. The number of unlabeled pool points considered for acquisition in each
AL iteration is 5,000 for all algorithms tested.
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UTKFace face age prediction. Initial training sets consisted of 150 images, and 2,000 additional
images were acquired over the course of the experiments. All 23,708 images in the dataset were
used, with 10% held out as test data and the remaining 90% consisting of the training data and the
pool (from which a 50-image validation set is taken). During each acquisition iteration points are
acquired from a set of 5000 candidates randomly chosen from the pool set (for all algorithms tested).

MNIST handwritten digit classification. In the AL experiments, 10,000 images are used as test
data while 60,000 images are used for the training data and the pool (from which a validation set of
10 images in binary classification/30 images in 0-9 classification is sampled). In each AL iteration,
points are queried from a randomly selected set of pool candidates; 2500 and 2000 candidates are
considered per iteration in 7 vs. 9 and 0-9 classification, respectively. All algorithms begin with
an initial training set of 10 images in binary classification experiments and 30 images in 0-9 clas-
sification experiments. In our experiments, initial training sets have equal representation from all
classes.

E HYPERPARAMETER TUNING

Across all experiments, the dropout probability p is calibrated such that the resulting model makes
relatively high quality predictions and MC dropout uncertainty estimates on the validation set. Qual-
ity of MC dropout uncertainty estimates is assessed by Pearson R2 between the observed squared
error vs. predicted variance on the validation set.

L2 regularization is applied in fully-connected layers with weight decay declining throughout the
active learning experiments according to λ = C/N , where C is a weight decay hyperparameter
tuned on the validation set and N is the size of the training set. C is selected based on validation set
accuracy resulting from model training on the initial training set for a given number of epochs with
the corresponding λ. With this setup, the model precision in regression τ is constant across active
learning iterations (τs is a constant in classification).

In regression experiments, the model precision hyperparameter τ is set such that τ−1 is between
0.1σ̄2

reg,v and 0.2σ̄2
reg,v, where σ̄2

reg,v is the average dropout variance predicted by the initial model
(excluding τ−1) on the validation set.

In classification experiments, τs is set such that τ−1s is between 0.001σ̄2
class,v and 0.01σ̄2

class,v,
where σ̄2

class,v is the average dropout variance across classes predicted by the initial model on the
validation set. The scaling factor multiplying σ̄2

class,v to determine τ−1s should be much less than
1 given that τ−1s is merely a smoothing parameter aimed at ensuring stable matrix inversion of
Varq(p̂new(θ)).

All hyperparameter values used to generate results can be found in the corresponding code2.

2Code for all experiments is included in the supplementary material.
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