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Abstract

Continual learning (CL) is the sub-field of ma-
chine learning concerned with accumulating
knowledge in dynamic environments. So far, CL
research has mainly focused on incremental clas-
sification tasks, where models learn to classify
new categories while retaining knowledge of pre-
viously learned ones. Here, we argue that main-
taining such a focus limits both theoretical devel-
opment and practical applicability of CL methods.
Through a detailed analysis of concrete examples
— including multi-target classification, robotics
with constrained output spaces, learning in con-
tinuous task domains, and higher-level concept
memorization — we demonstrate how current CL
approaches often fail when applied beyond stan-
dard classification. We identify three fundamen-
tal challenges: (C1) the nature of continuity in
learning problems, (C2) the choice of appropriate
spaces and metrics for measuring similarity, and
(C3) the role of learning objectives beyond classi-
fication. For each challenge, we provide specific
recommendations to help move the field forward,
including formalizing temporal dynamics through
drift processes, developing principled approaches
for continuous task spaces, and incorporating den-
sity estimation and generative objectives. In so
doing, this position paper aims to broaden the
scope of CL research while strengthening its the-
oretical foundations, making it more applicable
to real-world problems.

1. Introduction
While textbook machine learning methods assume data dis-
tributions are stationary and all training data is collected
upfront, in many practical applications, new data becomes
available, and new requirements (tasks) emerge over time.
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Learning then becomes a continual process, updating model
parameters all the time to keep track of the changing con-
ditions. The non-stationarity of this ‘incremental classi-
fication’ setting —be it due to the new tasks resulting in
new loss terms or due to shifts in the data distribution (aka
domain shifts)— makes standard methods fail, resulting in
‘catastrophic forgetting’ of previously learned knowledge.
In contrast, the goal of continual learning methods is to
accumulate knowledge without such catastrophic forgetting.

Continual learning (CL) is a broad framework primarily ex-
plored in research papers through the lens of classification.
The dominant setup consists of a sequence of classification
tasks, usually obtained by taking a classification bench-
mark dataset and splitting it into smaller parts, referred to
as ‘tasks’, each containing data exclusively from a disjoint
subset of classes. When learning a task, it is assumed that
only the data of the current task is accessible. This setup is
chosen for its high reproducibility, transparency, and sim-
plicity. Many CL methods are evaluated and compared only
in this setup, encouraging overfitting to or even designing
specifically for this particular setup. It is implicitly assumed
that conclusions derived from this setup and algorithms de-
signed for it generalize to more practical use cases and other
tasks beyond classification. But is that really the case?

In this position paper, we argue that moving beyond the
incremental classification paradigm is crucial for devel-
oping CL methods that are theoretically grounded and
broadly applicable to real-world problems. While we
indeed acknowledge the utility of addressing incremental
classification, we argue that such solutions may not general-
ize as well as often implicitly assumed. In particular, many
works claim “state of the art” results in CL while only con-
sidering incremental classification. To this end, we highlight
the limits of methodology developed solely in the context
of supervised classification by examining concrete exam-
ples involving multi-target classification, optimization with
constrained output spaces, CL in the absence of a natural dis-
cretization of tasks, and higher-level concept memorization.
We combine these with conceptual analysis of prototypi-
cal continual learning methods like iCaRL (Rebuffi et al.,
2017) and regularization-based ones like EWC (Kirkpatrick
et al., 2017) or moment matching (Lee et al., 2017). By
illustrating challenging scenarios where CL is particularly
relevant, we highlight potential pitfalls when applying naı̈ve
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Figure 1. Map of diverse facial expressions on Arousal-Valence
axes. This representation captures the inherently continuous varia-
tion of expressions as opposed to, e.g., “angry” and “sad”.

implementations to our selected examples. This approach
provides valuable insights for the CL research community,
guiding future research directions.

We proceed as follows. We start by examining concrete
examples that illustrate key limitations of current CL ap-
proaches. We then analyze fundamental conceptual chal-
lenges these examples reveal. Finally, we consider alterna-
tive perspectives and conclude with recommendations for
future research.

2. Core Examples
In the following subsections, we consider important ex-
ample problems, each illustrating an extension of classic
supervised CL. In each case, to illustrate the importance
of considering extension, we consider the difficulties in ap-
plying the popular pillars of CL methodology: functional
approaches, regularization strategies, and data retention, re-
spectively (i. e., iCaRL and Knowledge Distillation, Elastic
Weight Consolidation, Coresets). We close each subsection
with suggestions for future directions of CL research to
address these difficulties.

2.1. How well addressed is supervised CL for
classification?

To examine generalizability in familiar territory, we start
with an example close to standard class-incremental super-
vised learning. Specifically, we consider the problem of
continual facial expression detection and classification from
image data using neural networks.

A common representation for facial expressions uses 12
Action Units — discrete facial muscle regions that can be
active or inactive. While more detailed representations in-
deed exist, we consider this simple case only. The core

challenge here is that it is actually a multi-target prediction
problem. While it is a classification problem, the archetypi-
cal CL problem has a single set of discrete clusters, which
we identify as classes. It is not clear how to adapt CL meth-
ods that rely heavily on such clustering to this problem.
Further, requiring the presence of explicit classes requires
an explicit discretization of the problem into clusters. We
argue that for data such as facial expressions, such a dis-
cretization is at best difficult to correctly construct, and at
worst incoherent. If we were to formulate our problem in
terms of regression, such as in the 2D arousal-valence repre-
sentation of expressions seen in Fig. 1, such discretization
issues would disappear. This, however, would explicitly re-
strict us to CL methods that function correctly in the absence
of class labels.

Even if we were to naı̈vely apply a popular method that
uses class labels to this problem, e. g., iCarl (Rebuffi et al.,
2017), we would encounter similar issues. Specifically,
iCarl populates a memory buffer such that it is balanced
across classes and the mean of the examples pj for any given
class is close to the mean µ for the cluster X of datapoints
x corresponding to that class:

pk ← argminx∈X

∥∥∥∥µ− 1

k

[
ϕ(x)+

∑k−1

j=1
ϕ(pj)

]∥∥∥∥ , (1)

where ϕ is some reasonable feature representation of data-
points. If one treats the entire dataset as a single cluster, then
we do not expect the center of that cluster to be meaning-
ful, as the distribution is highly multimodal. Alternatively,
one could use the multi-target classes and consider a single
cluster for the purposes of iCarl to correspond to a choice
of class for every target (every Action Unit). Unfortunately,
even in this case, with only two classes per target, the total
number of clusters grows exponentially in the number N
of targets (Action Units) as 2N . While this may still be
possible for the case of 12 Action Units and, in turn, 4096
total clusters, it will quickly explode combinatorially as N
increases; 32 Action Units would give already 4.3 × 109

clusters, likely exceeding the total dataset size by orders of
magnitude and making the idea of taking the average of the
datapoints within a cluster impossible.

The traditional classification-based settings of CL encourage
methods to explicitly rely on class labels, and this implicitly
requires the data to be discretized into a single sensibly-
sized clustering. We have seen that alternatives such as
multi-target classification bring their own problems, and
that more continuous regression formulations of the predic-
tion task may remove these difficulties. We further note that
the cross-entropy loss itself introduces difficulties for class-
incremental learning, due to the necessity to add new output
nodes, and, more generally, due to the non-constant curva-
ture of the cross-entropy loss interacting poorly with the
implicit gaussian posteriors of EWC-like parameter regular-
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Figure 2. Depiction of a trajectory learned from demonstrations
(shown in red) on the surface of a sphere. This example illus-
trates the challenge of constrained structured prediction in robotics,
where valid outputs must lie on a two-dimensional manifold (the
sphere’s surface) within a three-dimensional space. Traditional
continual learning approaches using Euclidean distance metrics
may fail to maintain such geometric constraints during learning.

ization methods. We expect that there are many applications
for CL where the assumption of a single-target classifica-
tion objective artificially complicates CL, and results in CL
methods not generalizing as well as they should.

2.2. How can CL accommodate constraints?

Robotics presents another domain where naive applications
of common CL methods can be unreliable. In robotics,
problems often involve predictions lying in nonlinear out-
put spaces due to physical constraints imposed by a robot’s
embodiment and environment. Directly minimizing a loss
measured in a Euclidean output space may fail to capture
the structure of the output, compromising the optimality of
control outputs and potentially violating safety constraints.
While substantial progress has been made on structured
prediction for robotics in non-continual settings, extend-
ing these approaches to continual learning remains largely
unexplored.

Consider the task of generating robot arm trajectories con-
strained to lie on the surface of a sphere, for example, to
ensure safety by avoiding collisions (Fig. 2). The full space
of end effector locations is three dimensional, but the space
of valid outputs is the two dimensional spherical surface.
Methods have been proposed to constrain model outputs to
such structured target spaces, such as encoding the output
space into a linear surrogate space for training, and then
decoding predictions back into the original structured space
(Bakır et al., 2007). This can also be done implicitly with
surrogate losses that enforce desired output properties (Cilib-
erto et al., 2020), an approach used in imitation learning

(Zeestraten et al., 2017; Duan et al., 2024) and reinforce-
ment learning (Liu et al., 2022). However, the feasibility
of extending this approach to continual robot learning re-
mains understudied. A pioneering work in this direction is
(Daab et al., 2024), introducing a method for incrementally
learning motion primitives on Riemannian manifolds.

If one were to naively apply a parameter-space regulariza-
tion method, such as EWC (Kirkpatrick et al., 2017), to a
task with manifold constraints on the outputs, the approach
would minimize the squared distance in parameter space
between old and new parameters, weighted by their impor-
tance. Specifically, one is assuming that the increase in loss
for task t as the parameters θ drift from their optimum θ∗t in
future learning is approximately proportional to

Lt(θ)− Lt(θ
∗
t ) ∝

∑|θ|

i=1
Ftii(θi − θ∗ti)

2, (2)

where Ftii is the diagonal of the Fisher matrix measuring
the relevance of particular parameters i to task t. Unfortu-
nately, it is likely that, even if the predictions at θ∗t obey
the manifold constraints, the predictions of some arbitrary θ
which is merely close to θ∗t according to the Fisher matrix
will not. If the manifold constraints represent, for example,
a safety constraint, this is clearly unacceptable behavior
for a CL algorithm. Not only should each task optimum
satisfy the constraints for that task, but the CL algorithm
must maintain their satisfaction throughout further training
next to minimization the loss.

In summary, CL methods tend to focus on ensuring that
future outputs remain “close” to past outputs, and assume
that sufficiently close outputs will remain valid. In the pres-
ence of manifold constraints, it is clear that a naive distance
measure on the full output space will not be sufficient to
hold future outputs within the valid range. We expect that
exploitation of the surrogate loss approach may allow pa-
rameter regularization, functional regularization and simple
memory buffer-based CL methods to potentially generalize
to the structured prediction setting. But this generalization
must be demonstrated, and, in cases where this surrogate
loss is not provided, the relevant problems compensated for
in some other way.

2.3. What is a task? CL in continuous domains.

In the classic case of CL we have either a single task with a
growing number of classes or a discrete set of tasks; here,
the term “task” typically refers to a context in which an
input-output pair can be assigned a loss. For example, one
might consider classifying whether an MNIST digit is prime
as one task, and classifying whether it is divisible by 3 as
another. Alternatively, one could progressively introduce
new classes within the same task, i. e., the classic class-
incremental setting. These standard CL settings are tauto-
logically discrete, but are discrete changes the only ones we

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Position: Continual Learning Should Move Beyond Incremental Classification

should be concerned with in CL?

For the sake of illustration, consider the problem of pushing
a box along the ground using a single manipulator, i. e..,
force can be applied at a single location on the box. Now, al-
low the box to contain different arrangements of items such
that its internal weight distribution varies. Imagine solving
this problem as a human. You will instantly understand that
you would need to apply force along a line passing through
the box’s center of mass; otherwise, the box would rotate
instead of sliding forward. Further, if the content of the
box is not visible, a human can infer the location of the
center of mass from the way the box reacts to being pushed
and adjust their strategy to compensate. Clearly, the correct
action varies depending on the weight distribution of the
box, but how can this be formulated within the incremental
classification framework? Not only is the space of “tasks”,
i. e.., the center of mass locations continuous, but there is no
task label, and the task should be inferred from context. One
could argue that, since this inference from context is possi-
ble, there is only one task with instead multiple classes, but
then the problem again recurs when trying to discretize into
classes. The robot may, however, encounter novel regions
of weight distribution space, and it is desirable to transfer
knowledge about such regions across time, indicating the
presence of some task-like or class-like continual element.
The aggregation of policies across this continuous “task”
space is thus a natural thing to attempt, and is a problem to
which CL should ideally offer solutions.

One can naively imagine applying knowledge distillation
(Hinton et al., 2015) to this box pushing problem. For
instance, the loss L due to Li & Hoiem (2016) generalizes
in the presence of a memory buffer to the following:

L(θ) =
∑

n
DKL(Tn||Pn(θ)) + λ

∑
b
DKL(Tb||Pb(θ))

(3)
consisting of two KL-divergence terms between target dis-
tributions T and predicted distributions P (θ). For new data,
the targets Tn are perfectly confident ground truth proba-
bilities, whereas targets Tb for data in the memory buffer
are set to the original predicted distribution when this data
was memorized. λ is a hyperparameter which allows priori-
tization between new and old data, and we have omitted a
temperature parameter (i. e.., implicitly set it to one) from
the buffer term for simplicity. Suppose that over time the
distribution of weight distributions encountered by our robot
shifts. The immediate difficulty is that it is non-trivial to
distinguish new tasks from old tasks, as the true boundaries
are fuzzy. If we regularize the learned function weakly, the
model will forget weight configurations encountered only
in the old data, but if we regularize strongly then it will be
unable to improve its performance on weight configurations
more common in the new data. Rather than simply holding
the function stable on old data and allowing it to drift on

Figure 3. A robot arm pushing a box onto a target marker (green).
The arm makes contact at a single point and must adjust for the
weight distribution in the box. Image from (Tiboni et al., 2024).

novel points, it is necessary that the function be regular-
ized to different degrees in different regions even if they
have been encountered before. In particular, it is no longer
true that lower drift on all old datapoints is always better —
some amount of “forgetting” is desirable in order to improve
behavior in scenarios where the model fit is imperfect due
to sparse but extant data.

The problem of continual learning in a real world setting
where novel classes or corrupted sensor data may be present
and must be handled correctly is more broadly referred to as
Open World learning (Mundt et al., 2023). An existing angle
of attack on the problem of unmarked task or class bound-
aries is Out-of-Distribution (OOD) detection (Hendricks &
Gimpel, 2017; Liang et al., 2018; Sastry & Oore, 2020; Sun
et al., 2021; Liu et al., 2020; Huang et al., 2021; Francesco
Cappio Borlino, 2022), which focuses on identifying sam-
ples which deviate from the previously seen distribution
due to the presence of a discrete distribution shift. Unfortu-
nately, our problem here is deeper — the discrete clusters
or distribution shifts which OOD detects are not merely
unlabelled, but nonexistent. Looking forward, we argue that
the notion of “task” in the classic incremental setting must
be generalized, not only to cases where the task labels are
implicit rather than explicit, but to cases where no discrete
task label can coherently be assigned due to the continuous
nature of the task space.

2.4. What is memorable?

The classic continual learning paradigm focuses on retaining
input-output pairs, a natural approach for avoiding catas-
trophic forgetting. However, humans also retain more ab-
stract forms of knowledge, suggesting that this input-output
paradigm may be insufficient (Ilievski et al., 2024). We
explore this issue in the context of reinforcement learning
(RL), where the expense of gathering data makes memory
especially valuable.

RL memory buffers typically store concrete state-action-
result tuples. However, humans also remember more ab-
stract information, such as the availability of strategies. Con-
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Zergling Rush

Blue Base

Figure 4. Zergling rush in Starcraft II: the blue player (with the
tan/blue buildings) has failed to completely block the entrance at
the lower right, allowing zerglings (small and red) into their base.

sider the so-called “zergling rush” in Starcraft II (Fig. 4): if
zerglings infiltrate the opponent’s base early on, they can
quickly win by destroying the opponent’s economy. To
prevent this, players position their buildings to act as walls
in order to block their entrances. The mere possibility of
a zergling rush, even if rarely executed, deeply shapes the
game. Humans remember this strategic principle —how can
we capture this sort of abstract knowledge in CL systems?

Coreset methods (Bachem et al., 2015) illustrate the limita-
tions of focusing solely on concrete examples. A coreset is
a weighted subset of the whole dataset which achieves some
particular metric of performance, and is usually optimized
to be as small as possible. For example, Mirzasoleiman et al.
(2020) consider the smallest set S which, given weights γj ,
results in total loss gradients ∇L(θ) within ϵ of the total
gradient for the whole dataset D for all parameter values θ
of a given model:

S∗ = arg minS⊆D,γj≥0|S|, s.t.

max
θ∈Θ
||
∑

i∈D
∇Li(θ)−

∑
j∈S

γj∇Lj(θ)|| ≤ ϵ (4)

The problem here is that the underlying method, say, a
model-free reinforcement learning algorithm such as Soft
Actor-Critic (Haarnoja et al., 2018), does not natively know
how to reason about strategic counterfactuals. Concrete ex-
amples of the zergling rush being used against an opponent
who has not walled off will be very sparse during optimal
self-play, so the contribution to total gradients in such data
may be low. Further, if the underlying RL algorithm requires
many examples to reliably learn the universal availability of
the strategy, individual examples would likely not improve
the gradient approximation for other examples very much.
Thus, even if there is a noticeable total gradient contribution
corresponding to rare actual zergling rushes, the size of a
coreset which included the relevant examples might be im-
practically large. This becomes even clearer when we look
at techniques inspired by explainability methods (Gilpin

et al., 2018; Burkart & Huber, 2021), such as Prototype
Networks (Chen et al., 2019). Adapted for CL (Rymarczyk
et al., 2023), the heuristic for buffer population would be
“store those examples most relevant to decisions.” Clearly,
if the underlying method is unable to sufficiently general-
ize to correct decisions from individual concrete examples,
or there is no actual concrete example available, then this
whole class of methods cannot solve our problem. The prob-
lem here is the fundamental difficulty of compressing high
level concepts like this availability of a strategy (i. e., sys-
tematic counterfactual use as opposed to occasional actual
use) into a memory containing only real concrete examples.

The high level problem of remembering something more ab-
stract than raw data, is, of course, not a new one. Indeed the
Never Ending Learners of Chen et al. (2013); Mitchell et al.
(2018) integrate varied information sources into a database
of abstract relational beliefs. Further, humans constitute an
existence proof of the feasibility of such a heterogeneous
memory architecture in biological neural networks (Marr,
1971; McClelland et al., 1995). Even when constrained to
considering only long-term memory in particular, multiple
components can be distinguished, such as episodic, seman-
tic, and procedural memory (Tulving & Donaldson, 1972;
Graf & Schacter, 1985). Nor is it the case that richer notions
of memory are unknown to contemporary work on artificial
neural networks (Thorne et al., 2020). We argue that this
problem of remembering higher level information should
be revisited in the contemporary CL context.

3. Conceptual Framing: Where from here?
Having examined several illustrative examples that highlight
the limitations of naive applications of current continual
learning approaches, we now turn to a systematic analysis
of three key conceptual challenges that must be addressed to
move the field forward. We structure our discussion around
three fundamental aspects: the nature of continuity in learn-
ing problems, the choice of appropriate spaces and metrics
for measuring similarity, and the role of local objectives in
learning. For each aspect, we first present key considera-
tions that emerge from our analysis, followed by specific
recommendations for future research directions.

3.1. On Continuity (Cont.)

Considerations: Cont. When designing CL systems,
one must examine what continuity means and how
it manifests. Two fundamental forms of continuity
shape the space of possible approaches: temporal
continuity in how tasks evolve, and continuity in the
underlying task space itself. These distinct types
of continuity create different constraints on learning
algorithms and require different treatment.
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Cons #1: Temporal continuity. We will refer to a change
over time of the joint distribution of data points and pre-
diction targets as “drift”. This is classically handled by
assigning a potentially different distribution Di to every
data point xi (Gama et al., 2014), with drift occuring when
Di ̸= Dj . We advocate here for the approach of Hinder et al.
(2020), who propose a drift process by associating each dat-
apoint xi with a time ti, such that two datapoints sharing
a time also share the same distribution. The distributions
Dt are defined as Markov kernels in the time domain, and
it is now possible to postulate limiting statements similar
to the batch setup or discuss concepts such as the mean
distribution over a period of time.

Cons #2: Task continuity. While the comparatively sim-
ple case of continuously varying mixing coefficients of a
discrete task set has been considered under the name “task-
free continual learning” (Lee et al., 2020; Jin et al., 2021;
Shanahan et al., 2021), the possibility of a truly continuous
task set has been raised (van de Ven et al., 2022), but we are
not aware of a systematic exploration of this setting. For
example, in the task-free setting one might first infer task
identity and then use task-specific components (Heald et al.,
2021), but even if task identity inference is solved, the lack
of a discrete task set in the harder case makes the use of
task-specific components no longer trivial.

Recommendations: Cont. Based on our analysis of
continuity challenges in CL, we propose three key di-
rections for future research: 1) formalizing temporal
dynamics through drift processes rather than point-
wise distributions, 2) understanding and managing the
impact of data presentation schedules, and 3) devel-
oping principled approaches for handling continuous
rather than discrete task spaces. These recommen-
dations aim to help the field move beyond implicit
assumptions about continuity toward more theoreti-
cally grounded methods.

Rec #1: Use drift processes. We recommend working with
Drift Processes over datapoint-indexed distributions, as this
makes the temporal structure explicit. In particular, the ex-
tent to which temporally close distributions are expected to
be similar must be assumed explicitly rather than implicitly.
We believe the associated improvement in clarity of thinking
will enhance future work.

Rec #2: Consider schedule dependence. Formalize a data
stream as an underlying dataset and an order in which this
is presented, or schedule. While known in stream learning
(Gama et al., 2014), the effects of such a schedule are consid-
ered explicitly only by relatively few CL works (Yoon et al.,
2020; Wang et al., 2022), and Wang et al. (2022) showed
that most existing continual learning algorithms suffer dras-
tic fluctuations in performance under different schedules.

After considering the expected temporal correlations of the
data stream via drift processes, it is likely that significant
permutation symmetries (e. g., discrete task orderings) will
remain. After establishing which permutations of the stream
do not constitute meaningful information from which the
model should learn, future work should strive to maximize
invariance of CL algorithms to such permutations.

Rec #3: Towards continuous task identity. Finally we
note that, while discreteness of the underlying task set has
been an important and productive underlying assumption in
continual learning research, principled methods of handling
task identity in the truly continuous case (e. g., section 2.3
and maybe even 2.4) should be developed. Task-specific
components, for example, should still be possible where task
identity is not discrete. When representing a task as, e. g.,
some embedding in a continuous latent space, however, they
are no longer trivial and are indeed interestingly non-trivial.
Such principled approaches should strive to account for the
now much richer geometry of the task space.

3.2. On Spaces

Considerations: Spaces. When examining CL sys-
tems, we encounter three distinct types of continuous
spaces: parameter space, data space, and function
space. Each of these spaces requires careful consid-
eration of how to measure “similarity” or “distance”
- a choice that is sometimes forced by the problem
structure. Even after selecting a space, the choice of
metric remains critical, as different metrics can cap-
ture different aspects of the learning problem. Some
scenarios may even require inherently asymmetric
measures of similarity.

Cons #1: The three common spaces. Most obviously,
we have the continuous space of parameters. Often we
also have a continuous space of possible data items, e. g.,
arrays of floating point pixel values. Finally, we have the
continuous space of functions representable by our neural
network. If we identify a “task” with “the mapping from
inputs to outputs which solves the task” then it can be seen
as a special case of a function space.

When one needs to measure “similarity” or “distance” in
continual learning, one will in general do so in one of these
spaces. Sometimes this is a choice, sometimes it is forced.
For example, when considering a mixture of experts solution
to a variety of tasks where the architectures of the neural
network models corresponding to the experts differ, it is
impossible to measure distance in parameter space. In this
case we must instead consider function space.

Cons #2: Metrics. Even once the choice of space is made,
“distances” are not determined until we choose a metric on
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that space. Sometimes there will be a natural choice (e. g.,
the Fisher metric in function space for classification tasks,
or more generally for tasks where the output is a probability
distribution). In an application such as weight space regu-
larization, there is a simple choice of the Euclidean metric,
but this choice is inherently incapable of identifying more
or less important parameters for a given task, and may even
violate safety constraints in a case like that of section 2.2.
The more expressive choice of the Fisher metric as used in
Natural Gradient Descent would allow such parameters to
be identified. This may allow a new task to make use of
those subspaces of parameter space left unspecified by the
preceding tasks.

Cons #3: Divergences. Finally, it is often the case that a
notion of “distance” in a continual learning problem can be
identified with a KL divergence, and is thus inherently asym-
metrical. For example, suppose we wish to identify new
tasks by measuring the “distance” between a memory buffer
and a sequence of new datapoints. If the memory buffer
contains datapoints from tasks A and B, but the sequence
of new datapoints comes only from task B, is it a new task?
Clearly not. But if this was reversed, and the new datapoints
came from A and B, while the buffer came only from B,
then the memory buffer would be insufficient to determine
correct behaviour on the new points from task A and the
answer to the question “is there a new task” must be yes.
Consider the case of two 2D Gaussian distributions centered
at (0,0) and (1, 0) with isotropic standard deviations 2 and
0.5, respectively. The KL divergence in one direction is 2.8
bits, but in the other it is 20.5 bits. Intuitively, this is because
samples from the small Gaussian are in-distribution for the
large Gaussian, but not vice-versa. More concretely, in the
previously considered application of the Fisher metric to
parameter space regularization, one direction corresponds to
measuring distances relative to the Fisher metric measured
on the new datapoints, whereas as the other corresponds to
using the Fisher metric measured on the buffer.

Recommendations: Spaces. Based on our analy-
sis of the different spaces and metrics in continual
learning, we propose several practical guidelines for
developing more effective methods. These recom-
mendations focus on making explicit choices about
spaces and metrics, recognizing potential asymme-
tries in similarity measures, and considering alterna-
tive spaces when standard approaches fail.

Rec #1: Choose the correct metric and space. Firstly, one
must choose the space in which to measure this similarity
or distance. The straightforward option might be to con-
sider raw data such as pixel values, but perhaps semantic
differences would be easier to detect in some function space,
such as a latent space of a neural network. Then, having

identified the correct space, one must choose a metric on
that space. Even when making “no choice” and using the
Euclidean metric, one should be mindful of what this means.
For example, when doing weight space regularization, using
a quadratic penalty in the Euclidean metric corresponds to
the assumption that the appropriate posterior on weights
is an isotropic Gaussian. Making the implications of this
“non-choice” concrete will allow the implicit assumptions
to be sanity-checked.

Rec #2: Remember that the correct notion of similarity
may not be symmetric. One should also pay attention to
any asymmetries in the application of a notion of distance.
Often the “distance” measure required in an algorithm will
correspond to a KL divergence. Whether you would like
your distance measure to behave like forward KL diver-
gence or reverse KL divergence depends on the purpose of
the measure: “how informative is task A about task B” will
often have a different answer to “how informative is task B
about task A”. Choosing the wrong direction here will likely
result in severe algorithm underperformance, even though
both directions agree when the tasks being compared are rel-
atively similar. Since asymmetries here become most salient
when similarity is low, toy examples with large distances
should be considered and sanity-checked by comparing both
possible directions.

Rec #3: Consider patching broken methods by switching
spaces or metrics. If a continual learning method fails
in some particular application, it may be salvageable by
altering the space in which distances are measured. Suppose,
for example that one uses functional regularization in a task
where the output of the network is target robot arm pose
parameterized by joint angles. This may fail if task success
is dependent on end effector pose, and the sensitivity of
end effector pose to joint angle is itself highly dependent
on robot pose, due to nonlinear kinematics. In this case,
re-expressing the output in terms of end effector pose via a
kinematics model may resolve these difficulties.

3.3. On Objectives

Considerations: Obj. Current perspectives on con-
tinual learning tend to focus narrowly on accumu-
lating knowledge through classification tasks. How-
ever, this view may be inherently limiting, as it em-
phasizes conditional knowledge (”which class, given
these classes?”) over unconditional understanding.
The relationship between classification, density es-
timation, and generative modeling suggests broader
ways to think about knowledge retention in continual
learning systems.

Cons #1: Accumulating unconditional knowledge.
The knowledge involved in successful classification is in-
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herently of a very conditional nature, i. e., we answer the
question “given that this datapoint is drawn from the dis-
tribution of one of these N classes, which class is it”. We
argue that focusing on classification objectives over density
estimation or generative objectives makes continual or life-
long learning unnecessarily overcomplicated. For example,
out of distribution detection is clearly more closely related
to density estimation, and there are whole classes of re-
play based continual learning algorithms which are closely
related to generation. We believe that building continual
learning algorithms on top of narrow classification tasks
neglects the potential synergies of introducing generative or
density based objectives, as we shall now discuss.

Recommendations: Obj. Drawing from our anal-
ysis of the role of different learning objectives, we
propose several directions for expanding beyond pure
classification in continual learning. These recommen-
dations emphasize the potential benefits of incorporat-
ing generative and density-based approaches, both for
avoiding catastrophic forgetting and for more robust
task identification.

Rec #1: Consider generation for avoiding forgetting.
Where the base task incorporates a generative objective,
many challenges related to regularizing on or reviewing
data examples from previous tasks are greatly simplified
by direct exploitation of this generative function to create
synthetic datapoints (Robins, 1995).

Rec #2: Consider densities for task identification.
In the presence of density estimation capabilities available
from the base task, it is much easier to assign future data-
points to tasks and to consider questions of task boundaries,
be they discrete or continuous.

Rec #3: Consider the energy-based model connection.
Even in the case of primarily classification objectives there
seems to be great potential for density estimation via con-
nections to energy-based models (Grathwohl et al., 2020;
Li et al., 2022). This could be of great use in the primary
evaluation settings common within continual learning.

4. Alternative Views
The most challenging response to our perspective holds that
1) it is convenient to study fundamental unsolved problems
in CL in this setting, such as the stability gap (De Lange
et al., 2023) or loss of plasticity (Dohare et al., 2024) and 2)
that these problems are not specific to this setting and good
solutions to classification benchmarks should generalize to
other settings. We agree in principle, but are concerned
that overreliance on this setting comes with the risk that the
solutions so developed may be too specific (e. g., through
the use of task- or class-specific components), even if more

general solutions exist. Other alternatives hold further that
incremental classification is rightly prioritized due to its
simplicity and should therefore be solved first, however we
believe this choice of focus has instead occurred mostly for
historical reasons — it is not clear to us how classification is
relevantly simpler or more principled than, e. g., regression.

Secondly, while incremental classification is often used as a
convenient test case for CL, it is widely accepted that a new
CL algorithm should be demonstrated on problems more
complex than, e. g., Split-MNIST or Split-CIFAR. It is com-
mon, therefore, to expect CL works to include larger and
more “real-world” benchmarks, such as ImageNet, and we
expect the requested scale and associated compute require-
ments to escalate in the future. It is the position of this paper
that there are more valuable and conceptually interesting
sources of difficulty against which new algorithms may be
tested, and we urge scholars to ask new algorithms to demon-
strate generalizability beyond incremental classification, in
lieu of simply scaling up classification benchmarks.

5. Concluding Remarks
We have argued that expanding the scope of continual learn-
ing (CL) research beyond supervised classification with
discrete tasks is crucial for the development of theoreti-
cally grounded and widely applicable CL systems. Through
the use of illustrative examples, we have analysed the lim-
itations of naı̈vely applying current approaches, and have
noted the potential of the notions of “task”, “similarity” and
“memorization” for generalization.

Key recommendations include selecting appropriate spaces
in which to measure similarity, taking care when choos-
ing distance measures on those spaces, and accounting for
any relevant asymmetries. We further suggest integrating
generative objectives for the mitigation of catastrophic for-
getting and the potential of density modeling to identify task
transitions and out-of-distribution data. By pursuing these
research directions and examining the CL problem from the
first principles when encountering atypical applications, we
believe that the field can make significant strides towards
flexible and adaptive learning systems that bring the recent
progress of the field to new areas.

Although significant challenges remain in broadening CL
beyond supervised classification, we believe the concrete
recommendations in this paper — from careful selection of
similarity metrics to integration of generative objectives —
provide practical steps forward. By examining how current
methods fail on non-standard problems and analyzing their
underlying assumptions, we hope that this more nuanced
view of CL’s scope and challenges will help researchers
develop methods that gracefully handle the diversity of tasks
found in practice.
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