
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATING DIFFUSION LARGE LANGUAGE MOD-
ELS WITH SLOWFAST SAMPLING: THE THREE GOLDEN
PRINCIPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based language models (dLLMs) have emerged as a promising alternative
to traditional autoregressive LLMs by enabling parallel token generation and
significantly reducing inference latency. However, existing sampling strategies for
dLLMs, such as confidence-based or semi-autoregressive decoding, often suffer
from static behavior, leading to suboptimal efficiency and limited flexibility. In
this paper, we propose SlowFast Sampling, a novel dynamic sampling strategy
that adaptively alternates between exploratory and accelerated decoding stages.
Our method is guided by three golden principles: certainty principle, convergence
principle, and positional principle, which govern when and where tokens can
be confidently and efficiently decoded. We further integrate our strategy with
dLLM-Cache to reduce redundant computation. Extensive experiments across
various benchmarks demonstrate the efficiency of our method. Specifically, on the
GPQA benchmark, SlowFast Sampling achieves up to 15.63× speedup on LLaDA
with minimal accuracy drop, and up to 34.22× when combined with caching.
Notably, our approach outperforms strong autoregressive baselines like LLaMA3
8B in throughput, demonstrating that well-designed sampling can unlock the full
potential of dLLMs for fast and high-quality generation. Our codes are available
in the supplementary materials and will be released on Github.

1 INTRODUCTION

Large Language Models (LLMs) (Zhao et al., 2025) have rapidly become cornerstone technologies
in artificial intelligence, demonstrating remarkable capabilities across a diverse range of natural
language understanding and generation tasks. However, the prevalent autoregressive nature of most
LLMs, where tokens are generated sequentially one after another, introduces significant inference
latency, particularly for long sequences. To address this inherent bottleneck, diffusion-based LLMs
(dLLMs) (Ye et al., 2025; Nie et al., 2025b) have emerged as a promising alternative paradigm. These
models are capable of generating multiple tokens in parallel, departing from the strict token-by-token
process. This parallel decoding capability offers the distinct advantage of potentially accelerating
text generation significantly, positioning dLLMs as a compelling and forward-looking direction for
efficient language model inference.

However, current ways of sampling with dLLMs often don’t perform as well as they could. Common
methods include confidence-based selection (Chang et al., 2022) like Fast-dLLM (Wu et al., 2025),
where tokens exceeding a confidence threshold are selected for decoding. Another popular method,
semi-autoregressive decoding (Arriola et al., 2025), divides the sequence into fixed blocks and
decodes within them. Unfortunately, these methods frequently yield unsatisfactory results (i.e.,
significant accuracy drop when decoding many tokens in parallel), and are characterized by a static,
constant sampling speed throughout the generation process. This lack of flexibility highlights the
need for a more dynamic sampling approach: one that can smartly decide how many tokens to sample
at each step and where these tokens should be located in the sequence.

Motivated by these limitations, we introduce a novel dynamic sampling approach designed to
accelerate dLLMs, aiming to unlock the real potential of dLLMs under high-parallel decoding. As

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Token Confidence Converges during Decoding (b) Token Confidence during Decoding

step 256

step 251

step 246

step 241

0 10.5
decoded token

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

256 255 254 253 252 251 250 249 248

C
on

fid
en

ce

Decoding Step

Token #12

Token #13

Token #14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

256 255 254 253 252 251 250 249 248

C
on

fid
en

ce

Decoding Step

Token #1 Token #2

step 236

step 231

Converges
average to 0.96

Converges
average to 0.39

#1 #2

Figure 1: The Three Golden Principles for sampling in diffusion LLMs. (a) Convergence
Principle: As decoding proceeds, the confidence values of tokens largely converge to high values,
while a few tokens converge to lower values. (b) The confidence map over 256 diffusion steps: High-
confidence tokens (in deep red) emerge progressively and are preferentially decoded (the Certainty
Principle), while selection tends to cluster in contiguous regions (the Positional Principle), enabling
cache reuse and acceleration.

illustrated in Figure 1, our method is guided by three core observations, which we formulate as the
Three Golden Principles for effective acceleration:

• The Certainty Principle: Tokens exhibiting higher confidence are inherently more determined.
Consequently, they are more likely to be decoded correctly early in the process and require less
adjustment in subsequent diffusion steps.

• The Convergence Principle: As the diffusion process unfolds and tokens are progressively refined,
the semantic meaning of many tokens stabilizes, and their associated confidence scores converge
towards a steady value. This convergence indicates that these tokens have largely settled into their
final form and require minimal further refinement.

• The Positional Principle: We observe that even without explicit constraints, the model’s sampling
preferences often gravitate towards tokens in specific, frequently neighboring or clustered, positions.
This inherent positional bias can be strategically exploited. For instance, parts of the sequence can
be effectively cached, leading to significant acceleration gains.

Integrating these principles, we propose SlowFast Sampling with two phases: an Exploratory Stage
and an Accelerated Decoding Stage. In the exploratory stage, the model loosely decodes to locate
spans with emerging certainty and convergence. The accelerated stage then parallelly decodes these
high-certainty tokens, reducing effort on already determined parts. This division yields significant
speedups, reaching 15.63× on LLaDA and up to 34.22× when combined with dLLM-Cache (Liu
et al., 2025) on the GPQA benchmark, with minimal accuracy loss. Our contributions are threefold:

1. We propose three golden principles based on token certainty, convergence, and positional influence,
which critically govern effective and efficient sampling in dLLMs.

2. Building on these principles, we introduce SlowFast Sampling, a novel two-stage dynamic strategy
specifically designed to leverage these principles for optimal acceleration of dLLM.

3. Through experiments on various benchmarks, we demonstrate that SlowFast Sampling achieves
significant inference acceleration (e.g., up to 15.63× on LLaDA with SlowFast Sampling alone,
and up to 34.22× when combined with dLLM-Cache on the GPQA dataset) without compromising
response quality, thereby offering a superior speed-quality trade-off compared to baseline and simpler
sampling methods.

2 RELATED WORK

2.1 DIFFUSION MODELS FOR LANGUAGE

Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have
revolutionized generative modeling, particularly in continuous domains like images (Rombach et al.,
2022; Peebles & Xie, 2023). However, adapting these models to discrete data such as text presents
unique challenges due to its discrete nature. A promising approach in discrete diffusion models

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LLaDA

LLaDA +
 Slow-Fast

LLaDA
+ Slow-Fast
+ dLLM-Cache

TPS: 1.60 tokens/sec

TPS: 25.00 tokens/sec Acc.=31.47%

Speed Up = 15.63x
Acc.=30.13%

Speed Up = 30.50x
TPS:48.80
tokens/sec

GPQA (8-shot) Generate Length=1024, Acc.=31.47%

TPS:54.75
tokens/sec

Acc.=28.79%

 Speed Up = 34.22x

Figure 2: Throughput and accuracy comparison on GPQA (8-shot, Length=1024) on LLaDA
with our method, including (1) vanilla decoding, (2) SlowFast Sampling, and (3) SlowFast Sampling
further enhanced by dLLM-Cache. Compared to the vanilla setting, SlowFast Sampling alone
achieves a 15.63× speedup while maintaining comparable accuracy. With dLLM-Cache, throughput
improves further to 54.75 tokens/sec (up to 34.22× speedup), with only minor drops in accuracy.

involves Masked Diffusion Models (MDMs) (Austin et al., 2021; Lou et al., 2023; Shi et al., 2024;
Nie et al., 2025a;b; Hoogeboom et al., 2021; Campbell et al., 2022), which iteratively predict masked
tokens based on their context. These advancements have transformed text generation, offering a
compelling alternative to autoregressive paradigms in large language models (LLMs). Notable
examples include LLaDA (Nie et al., 2025b), an 8B MDM trained from scratch with a bidirectional
Transformer, and Dream (Ye et al., 2025), which initializes from pre-trained ARM weights. Both
models demonstrate performance comparable to similarly-sized ARMs like LLaMA3 8B (Dubey
et al., 2024). Their bidirectional architecture may overcome ARM limitations such as the reversal
curse (Berglund et al., 2023), making diffusion a competitive alternative for foundational LLMs.

2.2 ACCELERATION METHODS FOR DIFFUSION-BASED LLMS

The high inference latency of dLLMs, primarily due to their iterative denoising process (Nie et al.,
2025b; Ye et al., 2025), has spurred research into acceleration techniques. Various strategies have
been developed, mainly including caching mechanisms and advanced sampling techniques.

Caching Mechanisms. Feature caching reduces redundant computations by reusing intermediate
features. dLLM-Cache (Liu et al., 2025) combines long-interval prompt and short-interval response
caching with a V-verify mechanism for faster inference. Sparse-dLLM (Song et al., 2025) applies
dynamic cache eviction with sparse attention, retaining only salient tokens to cut memory and
boost speed. dKV-Cache (Ma et al., 2025) adopts delayed KV caching to reuse decoded tokens’
representations, achieving 2–10× acceleration.

Advanced Sampling Techniques. Optimizing the sampling process itself is another major direction
for accelerating dLLMs. Low-confidence remasking (Chang et al., 2022; Nie et al., 2025b) prioritizes
high-confidence tokens to speed up convergence; semi-autoregressive (Nie et al., 2025b; Arriola
et al., 2025) remasking divides sequences into blocks, applying random and low-confidence strategies.
Additionally, exact simulation methods for MDMs like the first-hitting sampler (Zheng et al., 2024)
have made progress in reducing sampling steps or enhancing per-step efficiency.

3 METHODOLOGY

3.1 PRELIMINARY

Inference Process of Diffusion Large Language Models. Diffusion Large Language Models
(dLLMs) generate text y = (y1, . . . , yL) from a prompt c = (c1, . . . , cM) through an iterative
denoising process. The model refines an intermediate state y(k) ∈ T L over N discrete steps, from
k = N to k = 0, where T is the token vocabulary. The process begins with a fully masked sequence:

y(N) = ([MASK], . . . ,[MASK]︸ ︷︷ ︸
L times

) (1)

where [MASK] ∈ T is the special mask token.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

At each step k ∈ {N,N − 1, . . . , 1}, a mask predictor pθ estimates the original clean sequence
r0 = (r0,1, . . . , r0,L) from the noisy state y(k) and prompt c:

Pθ(r0|c,y(k)) (2)

An estimate of the clean sequence at step k, r̂(k)0 , is obtained through greedy decoding:

r̂
(k)
0,i = argmax

v∈T
Pθ(r0,i = v|c,y(k)) ∀i ∈ {1, . . . , L} (3)

Although the predictor pθ can decode all masked tokens [MASK] in one step, to ensure high-quality
generation, dLLM adopts a multi-step decoding process. At each step, the remask strategy refines the
tokens. The transition to the next state y(k−1) is governed by a sampling strategy S:

y(k−1) = S(r̂
(k)
0 ,y(k), k) (4)

This iterative denoising process is a sampling procedure. Our work aims to improve the sampling
efficiency of dLLM inference, which can be computationally expensive due to the N sequential steps.
Using LLaDA (Nie et al., 2025b) as an example, we describe its core sampling strategies. In LLaDA,
time steps are defined as tk = k/N and tk−1 = (k − 1)/N .

LLaDA explores various strategies for the transition function S in Equation 4, which differ mainly in
how tokens from r̂

(k)
0 update y(k) to form y(k−1), especially for positions that were [MASK] in y(k):

Random Remasking. In this strategy, for each position i:
If y(k)i ̸= [MASK], then y

(k−1)
i = y

(k)
i (known tokens are preserved).

If y(k)i = [MASK], then y
(k−1)
i is set to r̂

(k)
0,i with probability 1− k−1

k , and remains [MASK] with
probability k−1

k , ensuring the expected number of masked tokens aligns with the noise schedule.

Low-Confidence Remasking. This deterministic strategy aims to improve sample quality by
selectively unmasking tokens. For each position i, if y(k)i = [MASK], the model predicts r̂(k)0,i and
computes its confidence. Specifically, the confidence ci is given by:

ci = Pθ(r̂
(k)
0,i |c,y

(k)). (5)

If y(k)i ̸= [MASK], then ci = 1.

The target number of unmasked tokens for state y(k−1) is given by:

nun = ⌊L(1− tk−1)⌋ = ⌊L
(
1− k − 1

N

)
⌋. (6)

The tokens corresponding to the nun highest confidences are unmasked in y(k−1), while the remaining
positions are set to [MASK].

Semi-Autoregressive Remasking. This strategy is used in LLaDA after Supervised Fine-Tuning.
The sequence is divided into blocks, and generation proceeds block by block from left to right. Within
each block, the random remasking or the low-confidence remasking strategy is applied iteratively to
denoise the block before moving to the next.

The choice of sampling strategy S, along with the number of steps N , significantly affects both the
generation quality and latency.

3.2 THREE GOLDEN PRINCIPLES OF DLLMS

Building upon the iterative denoising process outlined in Section 3.1, our empirical analysis of dLLM
behavior, particularly with models like LLaDA, has revealed consistent patterns in token generation.
These patterns, which we term the Three Golden Principles, form the bedrock of our proposed
acceleration strategy. They describe how token certainty, convergence, and positional effects interact
during the diffusion process, offering key insights into optimizing sampling.

The Certainty Principle: High Confidence Indicates Determination. We observe that tokens
predicted with high confidence by the mask predictor pθ are significantly more likely to be part of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

final, correct sequence and tend to remain unchanged in subsequent denoising steps. The confidence
for a predicted token r̂

(k)
0,i at position i and step k is given by Pθ(r̂

(k)
0,i |c,y(k)). As illustrated in

Figure 1 (b), at any given step k, a subset of tokens typically exhibits substantially higher confidence
scores compared to others. These high-confidence tokens are prime candidates for early "acceptance"
or less frequent resampling.

Implication for Acceleration: By prioritizing tokens that quickly reach a high confidence threshold,
we can reduce redundant computations on already determined parts of the sequence.

The Convergence Principle: Tokens Stabilize Over Iterations. During the iterative refinement
process, individual tokens (both their predicted identity r̂

(k)
0,i and their confidence Pθ(r̂

(k)
0,i |c,y(k)))

undergo a period of fluctuation before settling. As shown in Figure 1 (a), a representative token might
initially change its predicted identity and confidence across several early diffusion steps. However, as
k decreases, the token’s confidence converges are often to a stable value. This convergence signals
that the model has formed a consistent belief about the token’s identity within its current context.

Implication for Acceleration: Tokens that have demonstrated convergence (i.e., stable identity and
confidence over a window of recent steps) are less likely to change. Aggressively decoding can
prevent unnecessary re-evaluation, thereby speeding up the process.

The Positional Principle: Decoding Exhibits Regional Preferences. Beyond individual token
behaviors, we find that the generation process often exhibits spatial patterns. High-confidence and
early-converging tokens do not appear randomly scattered throughout the sequence. Instead, they
frequently emerge in contiguous blocks or localized regions, as suggested by Figure 1 (b). This
phenomenon might be due to local semantic dependencies or the influence of strongly contextualized
parts of the prompt c. For example, after a few initial steps, a particular span of tokens might
collectively achieve high confidence and stability, while other regions remain largely masked or
uncertain. The model appears to focus its decoding efforts on specific segments at different stages.

Implication for Acceleration: Recognizing these regions allows for targeted decoding. Instead of
uniformly processing all tokens, computational resources can be concentrated on regions that are
currently most amenable to decoding.

These three principles collectively indicate that a one-size-fits-all, static sampling strategy is inherently
inefficient. They motivate a dynamic approach where the number of tokens sampled, their selection
criteria, and their locations are adapted based on the evolving state of the generated sequence. Our
SlowFast Sampling methodology, detailed in Section 3.3, is designed to explicitly leverage these
observations to achieve significant inference speedups.

3.3 SLOWFAST SAMPLING

1. Exploratory Stage (Slow Phase): Identifying the Next Stable Region. As illustrated in Figure 3,
the primary goal of this stage is to cautiously advance decoding while identifying a promising, stable
region for subsequent rapid processing. Starting from scycle and extending to the end of the full
sequence L, this stage operates as follows for a limited number of dLLM steps:

• Cautious Decoding: At each dLLM step k within this stage, we perform a conservative decoding
update. We select the top-kslow tokens within the current exploratory window [scycle, L] that
exhibit the highest confidence Pθ(r̂

(k)
0,i |c,y(k)), and these are unmasked to form part of r̂(k)0 (as per

Equation 3 for these tokens, followed by Equation 4).
• End Point of Convergence Prediction: Concurrently, the model predicts a end point of candidate

convergence, e(k)cand. This is defined as the furthest token position i ∈ [scycle, L] for which
the predicted confidence Pθ(r̂

(k)
0,i |c,y(k)) exceeds a minimum confidence threshold τmin_conf .

Mathematically:

e
(k)
cand = max{i | i ∈ [scycle, L] ∧ Pθ(r̂

(k)
0,i |c,y

(k)) > τmin_conf} (7)

This e(k)cand represents an estimate of how far into the sequence the model can confidently decode at
the current step k.

• Stability Check: Throughout the Exploratory Stage, candidate convergence horizons e(j)cand pre-
dicted at each dLLM step j are tracked. Let HW (ks) = {e(l)cand | l ∈ [max(1, ks−Whist+1), ks]}

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Overview of the SlowFast Sampling Pipeline. The method alternates between a Slow
(Exploratory) stage and a Fast (Accelerated) stage for efficient token generation. In the Slow phase
(left), the model conducts cautious decoding by selecting top-k high-confidence tokens per step while
continuously predicting the End Point of Convergence and calculating confidence variance across a
history window. Once variance drops below threshold (e.g., 0.22 < 0.23), the corresponding region
[scycle, ecycle] is considered stable. In the Fast phase (right), this stable span is decoded in parallel
with aggressive unmasking of high-confidence tokens, while tokens beyond the span are temporarily
skipped and their results cached for reuse. This alternating structure reduces redundant computation
and accelerates decoding while maintaining output quality.

be the set of candidate horizons in the sliding window of the latest Whist predictions ending at
exploratory step ks. Stability is achieved, concluding this stage, when Var(HW (ks)) < σ2

stable for
a window where ks ≥Whist. The exploratory stage ends at step kfinal, defined as:

kfinal = min
(
{ks |Whist ≤ ks ≤ Kmax ∧Var(HW (ks)) < σ2

stable} ∪ {Kmax}
)

(8)

If the stability criterion is not met by Kmax (the maximum allotted exploratory steps), then
kfinal = Kmax. The cycle’s convergence horizon ecycle, is then set to the mean of the candidate
horizons in the final window HW (kfinal):

ecycle = Mean(HW (kfinal)) =
1

|HW (kfinal)|
∑

e∈HW (kfinal)

e (9)

Once this stability criterion is met, the Exploratory Stage concludes. The endpoint for the subsequent
Accelerated Decoding Stage, ecycle, is set to the last recorded candidate horizon, e(k)cand. If stability is
not achieved within a maximum number of exploratory steps, ecycle can be set to a conservatively
determined position or the process might default to a full-sequence cautious decode for that cycle.

2. Accelerated Decoding Stage (Fast Phase): Rapid Parallel Refinement. As shown in the right
half of Figure 3, once a stable region [scycle, ecycle] is identified, this stage aims to rapidly denoise
tokens within this span, while efficiently handling tokens outside it:

• Out-of-Span Caching: For tokens outside the identified span (i.e., positions i > ecycle), if their
current predicted confidence is low (e.g., below τmin_conf), their predicted values r̂(k)0,i from one
dLLM step within this stage are computed and then cached. These cached values can be reused in
subsequent dLLM steps for these positions, provided they remain outside an active decoding span,
thus saving redundant computations.

• In-Span Parallel Decoding: Within the span [scycle, ecycle], an aggressive parallel decoding is
attempted. All tokens y(k)i = [MASK] for i ∈ [scycle, ecycle] for which the predicted confidence
Pθ(r̂

(k)
0,i |c,y(k)) exceeds the high certainty threshold τhigh_conf , i.e.,

Pθ(r̂
(k)
0,i |c,y

(k)) > τhigh_conf (10)

are unmasked by setting their value to the corresponding prediction r̂
(k)
0,i . This update is performed

simultaneously for all such qualifying tokens in a single conceptual step to form r̂
(k)
0 .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of LLaDA 8B and Dream 7B with SlowFast Sampling on 8 benchmarks.

Task Method Inference Efficiency Performance Method Inference Efficiency Performance

TPS↑ Speed↑ Score↑ TPS↑ Speed↑ Score↑

Mathematics & Science

GSM8K
LLaDA 4.55 1.00× 69.83 Dream 8.16 1.00× 77.02

+ Fast-dLLM (Parallel) 7.45+2.90 1.64×+0.64 69.60−0.23 + Fast-dLLM (Parallel) 12.72+4.56 1.55×+0.55 73.09−3.93

+ SlowFast 14.57+10.02 3.20×+2.20 69.59−0.27 + SlowFast 17.15+8.99 2.10×+1.10 76.50−0.52

GPQA
LLaDA 3.31 1.00× 31.47 Dream 5.43 1.00× 35.93

+ Fast-dLLM (Parallel) 11.72+8.41 3.54×+2.54 32.13+0.66 + Fast-dLLM (Parallel) 15.88+10.45 2.92×+1.92 31.01−4.92

+ SlowFast 16.36+13.05 4.94×+3.94 31.91+0.44 + SlowFast 16.56+11.13 3.05×+2.05 35.94+0.01

Math
LLaDA 5.14 1.00× 30.16 Dream 8.48 1.00× 38.68

+ Fast-dLLM (Parallel) 8.94+3.80 1.74×+0.74 30.52+0.36 + Fast-dLLM (Parallel) 22.51+14.03 2.65×+1.65 34.14−4.54

+ SlowFast 11.27+6.13 2.19×+1.19 29.64−0.52 + SlowFast 23.00+14.52 2.71×+1.71 38.24−0.44

General Tasks

MMLU-pro
LLaDA 9.16 1.00× 23.30 Dream 14.97 1.00× 24.14

+ Fast-dLLM (Parallel) 15.62+6.46 1.71×+0.71 23.50+0.20 + Fast-dLLM (Parallel) 25.50+10.53 1.70×+0.70 19.53−4.61

+ SlowFast 23.14+13.98 2.53×+1.53 23.85+0.55 + SlowFast 22.80+7.83 1.52×+0.52 22.91−1.23

MMLU
LLaDA 5.02 1.00× 62.11 Dream 8.46 1.00× 72.61

+ Fast-dLLM (Parallel) 12.94+7.92 2.58×+1.58 61.67−0.44 + Fast-dLLM (Parallel) 17.39+8.93 2.05×+1.05 64.59−8.02

+ SlowFast 16.81+11.79 3.35×+2.35 66.56+4.45 + SlowFast 18.43+9.97 2.18×+1.18 75.13+2.52

BBH
LLaDA 4.04 1.00× 44.97 Dream 6.93 1.00× 51.83

+ Fast-dLLM (Parallel) 10.73+6.69 2.66×+1.66 44.13−0.84 + Fast-dLLM (Parallel) 27.84+20.91 4.01×+3.01 52.28+0.45

+ SlowFast 21.19+17.15 5.24×+4.24 44.60−0.37 + SlowFast 28.14+21.21 4.06×+3.06 50.55−1.28

Code

MBPP
LLaDA 4.98 1.00× 40.80 Dream 8.92 1.00× 54.20

+ Fast-dLLM (Parallel) 8.15+3.17 1.64×+0.64 40.80+0.00 + Fast-dLLM (Parallel) 22.87+13.95 2.56×+1.56 49.40−4.80

+ SlowFast 13.32+8.34 2.67×+1.67 41.00+0.20 + SlowFast 29.07+20.15 3.26×+2.26 54.60+0.40

HumanEval LLaDA 11.24 1.00× 31.71 Dream 11.49 1.00× 34.15
+ Fast-dLLM (Parallel) 23.05+11.81 2.05×+1.05 32.32+0.61 + Fast-dLLM (Parallel) 24.33+12.84 2.12×+1.12 32.92−1.23

+ SlowFast 35.46+24.22 3.15×+2.15 33.54+1.83 + SlowFast 25.38+13.89 2.21×+1.21 35.36+1.21

• Fallback Top-k Refinement: If the number of tokens meeting the τhigh_conf criterion within
the span is insufficient to make substantial progress (e.g., less than one), we revert to a more
conservative update for this dLLM step within the span. Specifically, we select the top-kfast tokens
within [scycle, ecycle] based on confidence and unmask them. This ensures steady progress even
when widespread high certainty is not yet achieved.

After the Accelerated Decoding Stage completes, the starting position for the next cycle’s Exploratory
Stage is updated to scycle ← ecycle. This cyclical process of exploration and accelerated decoding
continues until the entire sequence is generated. This SlowFast approach dynamically adapts the
decoding focus and intensity, leveraging the Certainty and Positional principles to identify promising
regions and the Convergence principle to stabilize them efficiently.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Implementation Details To evaluate the effectiveness of our proposed dynamic sampling approach
SlowFast Sampling, we conducted experiments on representative dLLMs: LLaDA 8B (Nie et al.,
2025b) and Dream 7B (Ye et al., 2025), focusing on measuring the inference acceleration across
various benchmarks. All experiments were conducted on NVIDIA RTX 4090 GPUs.

Evaluation Metrics We evaluated sampling acceleration and generation quality of SlowFast Sampling
using quantitative metrics. Inference speed is measured in Tokens Per Second (TPS), indicating the
average number of tokens generated per second. Generation quality is assessed using task-specific
metrics, e.g., accuracy on GSM8K, reflecting the model’s performance under inference acceleration.

4.2 MAIN RESULTS

Performance and efficiency gains across models. Table 1 reports throughput and model perfor-
mance for both LLaDA 8B and Dream 7B, with and without SlowFast Sampling. These results
demonstrate that our method brings significant improvements in inference efficiency and achieves loss-
less acceleration in most cases. In our experiments, the key hyperparameters of SlowFast Sampling,
τmin_conf and τhigh_conf , were set to 0.1 and 0.85, respectively. The remaining hyperparameters
in our method were set as follows: maximum exploratory steps Kmax = 8, sliding window size

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance of LLaDA 8B and Dream 7B with SlowFast Sampling and dLLM-Cache.

Task Method Inference Efficiency Performance Method Inference Efficiency Performance

TPS↑ Speed(TPS)↑ Score↑ TPS↑ Speed(TPS)↑ Score↑

Mathematics & Science

GSM8K
LLaDA 4.55 1.00× 69.83 Dream 8.16 1.00× 77.02

+ Fast-dLLM (Parallel+Cache) 15.50+10.95 3.41×+2.41 68.77−1.06 + Fast-dLLM (Parallel+Cache) 31.07+22.91 3.81×+2.81 69.45−7.57

+ SlowFast + Cache 26.99+22.44 5.93×+4.93 69.60−0.23 + SlowFast + Cache 46.17+38.01 5.66×+4.66 72.10−4.92

GPQA
LLaDA 3.31 1.00× 31.47 Dream 5.43 1.00× 35.93

+ Fast-dLLM (Parallel+Cache) 30.21+26.90 9.13×+8.13 33.03+1.56 + Fast-dLLM (Parallel+Cache) 40.98+35.55 7.54×+6.54 32.37−3.56

+ SlowFast + Cache 29.06+25.75 8.78×+7.78 33.48+2.01 + SlowFast + Cache 39.63+34.20 7.30×+6.30 34.82−1.11

Math
LLaDA 5.14 1.00× 30.16 Dream 8.48 1.00× 38.68

+ Fast-dLLM (Parallel+Cache) 21.50+16.36 4.18×+3.18 28.34−1.82 + Fast-dLLM (Parallel+Cache) 46.80+38.32 5.52×+4.52 33.24−5.44

+ SlowFast + Cache 26.50+21.36 5.16×+4.16 29.42−0.74 + SlowFast + Cache 56.44+47.96 6.66×+5.66 37.10−1.58

General Tasks

MMLU-pro
LLaDA 9.16 1.00× 23.30 Dream 14.97 1.00× 24.14

+ Fast-dLLM (Parallel+Cache) 27.85+18.69 3.04×+2.04 27.66+4.36 + Fast-dLLM (Parallel+Cache) 42.73+27.76 2.85×+1.85 22.57−1.57

+ SlowFast + Cache 33.38+24.22 3.64×+2.64 25.53+2.23 + SlowFast + Cache 43.50+28.53 2.91×+1.91 21.81−2.33

MMLU
LLaDA 5.02 1.00× 62.11 Dream 8.46 1.00× 72.61

+ Fast-dLLM (Parallel+Cache) 32.36+27.34 6.45×+5.45 61.45−0.66 + Fast-dLLM (Parallel+Cache) 44.73+36.27 5.28×+4.28 64.46−8.15

+ SlowFast + Cache 38.42+33.40 7.65×+6.65 61.20−0.91 + SlowFast + Cache 44.18+35.72 5.22×+4.22 71.57−1.04

BBH LLaDA 4.04 1.00× 44.97 Dream 6.93 1.00× 51.83
+ Fast-dLLM (Parallel+Cache) 22.56+18.52 5.58×+4.58 45.35+0.38 + Fast-dLLM (Parallel+Cache) 57.02+50.09 8.22×+7.22 44.95−6.88

+ SlowFast + Cache 36.04+32.00 8.92×+7.92 44.81−0.16 + SlowFast + Cache 70.20+63.27 10.13×+9.13 48.24−3.59

Code

MBPP
LLaDA 4.98 1.00× 40.80 Dream 8.92 1.00× 54.20

+ Fast-dLLM (Parallel+Cache) 22.18+17.20 4.45×+3.45 38.20−2.60 + Fast-dLLM (Parallel+Cache) 50.67+41.75 5.68×+4.68 50.40−3.80

+ SlowFast + Cache 27.26+22.28 5.47×+3.87 39.00−1.80 + SlowFast + Cache 69.48+60.56 7.79×+6.79 51.00−3.20

HumanEval
LLaDA 11.24 1.00× 31.71 Dream 11.49 1.00× 34.15

+ Fast-dLLM (Parallel+Cache) 26.25+15.01 2.34×+1.34 29.88−1.83 + Fast-dLLM (Parallel+Cache) 49.47+37.98 4.31×+3.31 29.27−4.88

+ SlowFast + Cache 41.14+29.90 3.66×+2.66 31.10−0.61 + SlowFast + Cache 47.86+36.37 4.17×+3.17 35.36+1.21

Sampling Strategy TPS↑ Score↑
Autoregressive (AR) 5.25 60.80

Diffusion Sampling 4.55 69.83

Semi-Autoregressive 5.44 66.41

SlowFast Sampling 9.87 69.59

Table 3: Comparison of Sam-
pling Strategies on inference
efficiency and generation per-
formance.

Method TPS↑ Speed(TPS)↑ Accuracy↑
LLaMA3 8B (Dubey et al., 2024) 33.79 21.12× 31.92

LLaDA 1.60−32.19 1.00× 31.47−0.45

+ SlowFast 25.00−8.79 15.63× 31.47−0.45

+ SlowFast + Cache (Kp = 100,Kr = 5) 48.80+15.01 30.50× 30.13−1.79

+ SlowFast + Cache (Kp = 500,Kr = 30) 54.75+20.96 34.22× 28.79−3.13

Table 4: Comparison of LLaDA 8B Base with other represen-
tative LLMs. Compared to LLaMA3 8B, LLaDA with SlowFast
Sampling and dLLM-Cache achieves significantly higher through-
put (up to +20.96 TPS) while maintaining comparable accuracy.

Whist = 2, and stable variance threshold σ2
stable = 1.0, consistent with the default configuration

used in Section 4.2 and ablation studies.

Compatibility with dLLM-Cache. Recently, several studies have explored leveraging feature cache
to reduce the computational cost of dLLM inference. Our SlowFast Sampling is highly compatible
with existing caching mechanisms and the integration can lead to higher acceleration compared
to using either alone. Table 2 compares the performance and inference speed of LLaDA with and
without applying our method in combination with dLLM-Cache. The results show that this integration
can deliver higher throughput while maintaining comparable model performance.

Comparison with Other Sampling Strategies. We compared our method SlowFast Sampling with
four alternative sampling strategies: diffusion sampling, diffusion semi-autoregressive sampling,
autoregressive (AR) sampling and Fast-dLLM (Wu et al., 2025). Diffusion sampling adopts a
remasking strategy to iteratively select token to decode in parallel, while AR sampling generates
tokens strictly from left to right. The semi-autoregressive approach generates blocks left-to-right and
applies the remasking strategy within each block. Fast-dLLM, in contrast, performs parallel decoding
only based on token confidence, and we report results for both its parallel and cache-augmented
variants. As shown in Table 1, 2 and 3, our method SlowFast Sampling achieves higher inference
efficiency while maintaining competitive generation quality.

4.3 ABLATION STUDY

Case Study of SlowFast Sampling in Sentence Generation. As shown in Figure 4, this case study
shows how SlowFast Sampling generates text by alternating slow and fast phases. In the slow phases,
the model outputs a few reliable tokens such as subjects, verbs, or punctuation to anchor the sentence.
The fast phases then produce longer spans of high-confidence tokens in one step, e.g., “she has 9 -
4 = 5 yuan left”, ensuring both efficiency and correctness. This balance of cautious slow decoding

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and confident fast decoding maintains accuracy while accelerating generation, making the approach
intuitive and effective.
Prompt: Jane sold 3 apples at 3 yuan each, then bought 2 pears at 2 yuan each. How much money does she have left?

step
token

0

0.5

1

Response: Jane sold 3 apples at 3 yuan each, so she earned 3 * 3 = 9 yuan. She bought 2 pears at 2 yuan each, so she spent 2 * 2 = 4 yuan. Therefore, she has 9 - 4 = 5 yuan left.

end point 1

end point 2

end point 3

end point 1

end point 2

end point 3

␣ Jane␣ Jane sold ␣ 3 apples at ␣ yuan Jane sold ␣ 3 apples at ␣ 3 yuan each

, , so , so she , so she earned ␣ 3 , so she earned ␣ 3 ␣ 3 = ␣ 9 , so she earned ␣ 3 * ␣ 3 = ␣ 9 yuan , so she earned ␣ 3 * ␣ 3 = ␣ 9 yuan.

each bought ␣ 2 pears at ␣ 2 yuan each, so she spent ␣ 2 * ␣ 2 = 4 yuan. \n bought ␣ 2 pears at ␣ 2 yuan each, so she spent ␣ 2 * ␣ 2 = 4 yuan. \n
Therefore \n she bought ␣ 2 pears at ␣ 2 yuan each, so she spent ␣ 2 * ␣ 2 = 4 yuan. \n Therefore \n she bought ␣ 2 pears at ␣ 2 yuan each, so she
spent ␣ 2 * ␣ 2 = 4 yuan. \n Therefore, \n she bought ␣ 2 pears at ␣ 2 yuan each, so she spent ␣ 2 * ␣ 2 = 4 yuan. \n Therefore, she has ␣ 9 - ␣ 4 = 5 yuan
left \n she bought ␣ 2 pears at ␣ 2 yuan each, so she spent ␣ 2 * ␣ 2 = 4 yuan. \n Therefore, she has ␣ 9 - ␣ 4 = ␣ 5 yuan left.

fast phase 1

fast phase 2

fast phase 3

blue font: the tokens decoded in current step

Figure 4: Case study of sentence generation with SlowFast Sampling. The figure illustrates the
dynamic evolution of the confidence map across three phases, where exploratory and accelerated
decoding are alternated. Blue tokens denote those generated in the current step, highlighting how the
method gradually builds on high-confidence spans to produce a coherent final response.
Effect of Hyperparameters in the Stability Check. The stability check, which transitions the
model from the slow to the fast phase, is governed by three hyperparameters whose effects are shown
in Figure 5. The maximum number of exploratory steps, Kmax, is for allowing the convergence
horizon to stabilize; we find Kmax = 8 provides sufficient exploration for high-quality generation
without incurring excessive overhead. This is complemented by the sliding window size, Whist.
Since prediction changes and convergence occur rapidly, we find a smaller window of Whist = 2
is effective, striking a strong balance between maintaining quality and maximizing inference speed.
Finally, a strict stable variance threshold of σ2

stable = 1.0 ensures that the accelerated phase is only
triggered for genuinely stable regions, solidifying the reliability of our method.

13.6

13.8

14

14.2

14.4

14.6

66

67

68

69

70

2 3 4 5 6 7 8 9

T
P

S

A
cc

ur
ac

y
(G

S
M

8K
)

Maximum exploratory steps

Accuracy
TPS

10

11

12

13

14

15

66

67

68

69

70

71

0.5 1 1.5 2 2.5 3 4

T
P

S

A
cc

ur
ac

y
(G

S
M

8K
)

Stable Varience

Accuracy
TPS

10

11

12

13

14

15

68

68.5

69

69.5

70

2 3 4 5 6
T

P
S

A
cc

ur
ac

y
(G

S
M

8K
)

Sliding Window

Accuracy
TPS

Original Acc. Original Acc.
Original Acc.

Figure 5: The sensitivity study on hyper-parameters in the stability-Check. Accuracy and TPS
vary with Kmax, σ2

stable, and Whist. The chosen defaults (Kmax = 8, σ2
stable = 1.0, Whist = 2)

offer strong speed-quality trade-offs.
Outperforming Autoregressive LLMs in Inference Speed. As shown in Table 4, when equipped
with our SlowFast Sampling and dLLM-Cache, LLaDA Base not only accelerates significantly over
its default setting but also outperforms the autoregressive LLaMA3 8B (Dubey et al., 2024) in
inference speed (54.75 vs. 33.79 TPS), while maintaining comparable accuracy. This demonstrates
that dLLMs, with proper sampling and optimization, can surpass traditional autoregressive models in
both efficiency and practicality.

5 CONCLUSION

In this work, we present SlowFast Sampling, a dynamic and principled approach to accelerate
diffusion-based large language models (dLLMs). By leveraging three key observations: token
certainty, convergence, and positional bias, we design a two-stage decoding pipeline that adaptively
balances exploration and efficient parallel decoding. Extensive experiments across benchmarks
demonstrate that our method not only significantly improves inference speed (up to 15.63× and up to
34.22× combined with dLLM-Cache on the GPQA benchmark), but also maintains strong generation
quality, outperforming even autoregressive LLMs in throughput. We believe this work marks an
important step toward making dLLMs practical and competitive in real-world deployment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The main text (Sections 3–4)
provides detailed descriptions of the proposed SlowFast Sampling method, its integration with dLLM-
Cache, and the corresponding experimental setups. Hyperparameter configurations and additional
implementation details are presented in Appendix A.3. Comprehensive performance comparisons
across benchmarks are reported in Tables 1–4. Ablation studies and a case study are provided in
Section 4.3 (e.g., Figure 4) to illustrate the robustness of our method. To facilitate replication, we
include the source code and scripts for running experiments in the supplementary materials.

ETHICS STATEMENT

This work focuses on developing efficient sampling strategies for diffusion-based large language
models (dLLMs). Our research does not involve human subjects, personal or sensitive data, or
applications directly impacting individuals. All experiments were conducted on publicly available
benchmarks, ensuring fairness, reproducibility, and transparency. We release code to promote open
research and to enable verification of our results. We are not aware of any potential misuse or harmful
applications of the proposed methods beyond standard concerns inherent to language models, such as
bias or misuse in downstream tasks, and we encourage responsible use in line with the ICLR Code of
Ethics.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching,
2025. URL https://github.com/maomaocun/dLLM-cache.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

10

https://github.com/maomaocun/dLLM-cache

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models, 2025. URL https://arxiv.org/abs/2505.15781.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text, 2025a. URL https://arxiv.org/abs/
2410.18514.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025b. URL https:
//arxiv.org/abs/2502.09992.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction, 2025. URL
https://arxiv.org/abs/2508.02558.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025. URL https://arxiv.org/abs/2505.22618.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2025. URL https://arxiv.org/abs/
2303.18223.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

11

https://arxiv.org/abs/2505.15781
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2508.02558
https://arxiv.org/abs/2505.22618
https://hkunlp.github.io/blog/2025/dream
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE STATEMENT.

We used a Large Language Model (LLM) solely to aid in polishing the writing and improving the
clarity of language. The LLM was not involved in research ideation, experimental design, data
analysis, or generation of scientific content. All research ideas, methods, analyses, and conclusions
presented in this paper are entirely the work of the authors. The authors take full responsibility for
the content of this paper.

A.2 COMPATIBILITY WITH ADVANCED SAMPLING METHODS.

13.8
13.9
14
14.1
14.2
14.3
14.4
14.5
14.6
14.7

66

66.5

67

67.5

68

68.5

69

69.5

70

0.05 0.07 0.1 0.15 0.2 0.25 0.3 0.35

T
P

S

A
cc

ur
ac

y
(G

S
M

8K
)

Minimum Confidence Threshold

Accuracy
TPS

8

10

12

14

16

18

20

65

66

67

68

69

70

0.7 0.75 0.8 0.85 0.9 0.95

T
P

S

A
cc

ur
a

cy
 (

G
S

M
8K

)

High Certainty Threshold

Accuracy
TPS

Original Acc. Original Acc.

Figure 6: Effect of Con-
fidence Thresholds on
GSM8K. τmin_conf controls
the exploratory range, and
τhigh_conf balances accuracy
and speed during fast decod-
ing. Other hyperparameters
follow the default settings in
Section 4.2.

Sensitivity to Confidence Thresholds. The core confidence thresholds, τmin_conf and τhigh_conf ,
dictate the behavior of our SlowFast pipeline. As shown in Figure 6, the minimum confidence
threshold τmin_conf defines the candidate region in the exploratory stage. A moderate value of
τmin_conf = 0.1 is optimal, as lower values lead to unstable regions and higher values create overly
conservative, inefficient regions. The high certainty threshold τhigh_conf directly manages the speed-
quality trade-off during the accelerated stage. A higher value leads to more cautious and accurate
generation at the cost of speed (TPS). We select τhigh_conf = 0.85, which achieves a near-peak
GSM8K score without a drastic reduction in inference speed, striking an effective balance.

A.3 EXPERIMENTAL DETAILS

To ensure fair and reproducible comparisons, we standardize the setting of inference generation across
benchmarks and run each model with its officially recommended settings. The benchmark-specific
parameters considered include the number of inference steps, the block length, the total generation
length, and the number of few-shot examples. For clarity, we summarize the settings for LLaDA and
Dream in Tables 5 and 6, respectively.

Table 5: Experimental settings for LLaDA across benchmarks.

Task Steps Block Length Generation Length Few-shot
MMLU 3 3 3 5
MMLU-pro 256 256 256 0
GSM8K 256 256 256 4
Math 256 256 256 0
GPQA 256 256 256 5
HumanEval 256 256 256 0
MBPP 256 256 256 3
BBH 256 256 256 3

Table 6: Experimental settings for Dream across benchmarks.

Task Steps Generation Length Few-shot
MMLU 3 3 5
MMLU-pro 256 256 0
GSM8K 256 256 8
Math 256 256 4
GPQA 256 256 5
HumanEval 256 256 0
MBPP 256 256 3
BBH 256 256 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.4 ABLATION STUDY ON HYPERPARAMETERS AND ROBUSTNESS.

Accuracy(Math) Accuracy(MBPP) Accuracy(HumanEval) TPS(Math) TPS(MBPP) TPS(HumanEval)

0

10

20

30

40

25

30

35

40

45

50

55

0.5 1 1.5 2 2.5 3 3.5

T
P

S

A
cc

ur
ac

y

Stable Varience

0

10

20

30

40

25

30

35

40

45

50

55

0.7 0.75 0.8 0.85 0.9 0.95

T
P

S

A
cc

ur
ac

y

High Certainty Threshold

0

10

20

30

40

25

30

35

40

45

50

55

0.050.07 0.1 0.15 0.2 0.25 0.3 0.35

T
P

S

A
cc

ur
ac

y

Minimum Confidence Threshold

Our setting
Our setting Our setting

Figure 7: Parameter Robustness and Sensitivity Across Multiple Benchmarks. Figure shows
sensitivity across MATH, MBPP, and HumanEval. Our setting is shown to be highly robust across all
tasks.

15.5

16

16.5

17

17.5

70

72

74

76

78

0.050.07 0.1 0.15 0.2 0.25 0.3 0.35

T
P

S

A
cc

ur
ac

y
(G

S
M

8K
)

Minimum Confidence Threshold

Accuracy
TPS

12

13

14

15

16

17

18

75

75.5

76

76.5

77

0.7 0.75 0.8 0.85 0.9 0.95

T
P

S

A
cc

ur
ac

y
(G

S
M

8K
)

High Certainty Threshold

Accuracy
TPS

16

16.5

17

17.5

75

75.5

76

76.5

77

0.5 1 1.5 2 2.5 3

T
P

S

A
cc

ur
ac

y
(G

S
M

8K
)

Stable Varience

Accuracy
TPS

Our setting Our setting Our setting

Figure 8: Parameter Stability Across Model Variants on Dream 7B. Sensitivity analysis for
τmin_conf , τhigh_conf , and σ2

stable was conducted on Dream 7B using the GSM8K benchmark. The
findings confirm that the unified set of hyperparameters successfully transfers to this demanding
model variant, validating overall parameter stability.

Hyperparameter Robustness and Generalization Analysis. The overall hyperparameter analysis
confirms the robustness and strong generalization ability of the SlowFast approach. As shown
in Figure 7, a single, unified parameter set maintains near-optimal performance across diverse
benchmarks (MATH, MBPP, HumanEval). This stability is further validated by Figure 8, where the
same unified settings successfully transfer to Dream 7B on the GSM8K benchmark. These findings
confirm that the SlowFast approach is highly robust and does not require extensive tuning for new
tasks or model variants.

A.5 PERFORMANCE-EFFICIENCY TRADE-OFF ACROSS STRATEGIES

0

10

20

30

40

50

28 29 30 31 32 33

T
P

S

Accurancy (GPQA)

LLaDA

LLaDA+Slow
Fast

Figure 9: Performance Effi-
ciency Trade-off on GPQA.

Figure 9 evaluates the Performance-Efficiency for our method
against various baselines under two distinct evaluation setups.
The results confirm that the integration of our method consistently
shifts the trade-off curve decisively towards the top-right corner
(higher TPS and higher Accuracy) compared to the baseline. This
superiority holds true across both the standard configuration (5-
shot, 256 tokens) and the more demanding scenario (8-shot, 1024
tokens), validating the robustness and scalability of our adaptive
sampling strategy.

A.6 CASE STUDIES ON POSITIONAL PRINCIPLE AND NON-CONTIGUOUS DECODING.

Robustness to Minor Positional Uncertainty. Figure 10 confirms SlowFast’s ability to cover
multiple stable blocks even when separated by unstable regions. Crucially, the distance between the
end of one stable block and the start of the next is generally small, allowing our adaptive mechanism to
efficiently jump over the intermediate low-confidence span. This ensures that the overall acceleration
is maintained without sacrificing accuracy, even when faced with minor positional uncertainties.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Prompt: Amy sold 4 books at 5 dollars each, then bought 1 pen at 2 dollars each. How much money does she have left?

token
0

0.5

1

Response: Amy
sold
4
books
at
5
dollars
each,
which
is
4
*
5
=
20
dollars.
Then
she
bought
1
pen
at
2
dollars
each,
which
is
1
*
2
=
2
dollars.
So,
she
has
20
-
2
=
18
dollars
left

step

block 1 block 2

fast phase 1

fast phase 2

fast phase 3

end point 1

end point 2

end point 3

Figure 10: Case Study I: Dynamic Span Coverage During Positional Jumps. This case study
illustrates a scenario where the model exhibits a positional jump between decoded tokens, confirming
that the dynamic search window of SlowFast successfully identifies and covers the subsequent stable
region.

Prompt: Jane sold 3 apples at 3 yuan each, then bought 2 pears at 2 yuan each. How much money does she have left?

token
0

0.5

1

 Response: Jane
sold
3
apples
at
3
yuan
each,
so
she
earned
3
x
3
=
9
yuan.
She
used
9
yuan
to
buy
2
pears
at
2
yuan
each,
so
she
has
9
-
4
=
5
yuan
left.

step

block 1 block 2

fast phase 1 fast phase 2

Figure 11: Case Study II: SlowFast’s Adaptive Response to Induced Non-Contiguous Blocks.
This case study demonstrates the adaptive capability of the SlowFast framework. By manually
inducing a positional jump, the figure shows how the dynamic adjustment mechanism immediately
recognizes and proceeds to the subsequent high-confidence region.

Adaptive Handling of Non-Contiguous Blocks. Figure 11 rigorously tests SlowFast’s adaptive
limits by manually constructing an extreme scenario featuring two widely separated high-confidence
blocks. The visualization confirms that upon encountering the unstable region between the blocks, the
dynamic adjustment mechanism successfully identifies the subsequent high-confidence region (Block
2) and resumes acceleration (Fast Phase 2). This successful navigation demonstrates the robustness
of SlowFast’s dynamic scheduling, confirming its ability to automatically identify and accelerate
multiple non-contiguous stable blocks even under extreme conditions.

A.7 ALGORITHM: SLOWFAST SAMPLING FOR DLLMS

Algorithm 1 outlines the SlowFast Sampling Strategy, a dynamic, two-phase framework for accelerat-
ing dLLMs. It starts with the Slow, Exploratory Stage, which proceeds step-by-step (Lines 10-12) to
determine a safe decoding span boundary. This boundary is validated by a Variance-based Stability
Check (Lines 16-22), confirming stability when the variance of endpoint predictions falls below
σ2
stable. Once stability is confirmed, the algorithm enters the Fast, Accelerated Decoding Stage. Here,

acceleration is achieved via In-Span Parallel Decoding (Lines 40-47), where high-confidence tokens
within the span are unmasked simultaneously. Additionally, Out-of-Span Caching (Lines 34-39)
prepares for the subsequent cycle. This adaptive, two-stage mechanism ensures maximum efficiency
is achieved only in reliably stable regions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 SlowFast Sampling Strategy

Require: Masked sequence y(N), Prompt c, Max steps N , Exploratory limit Kmax, History window
Whist, Stability threshold σ2

stable, Confidence thresholds τmin_conf , τhigh_conf .
Ensure: Generated sequence y(0).

1: k ← N ▷ Initialize diffusion step
2: scycle ← 1 ▷ Start of the current decoding cycle
3: HW ← ∅ ▷ History of convergence points
4: while k > 0 and scycle < L do
5: // Phase 1: Exploratory Stage (Slow)
6: step_count← 0
7: is_stable← False
8: while step_count < Kmax and k > 0 do
9: Predict r̂(k)0 and confidence Pθ(·|c, y(k))

10: Cautious Decoding:
11: Unmask Top-kslow tokens in range [scycle, L]
12: End Point Prediction:
13: e

(k)
cand ← max{i | i ∈ [scycle, L] ∧ Pθ(r̂

(k)
0,i) > τmin_conf}

14: Update history window HW with e
(k)
cand

15: Stability Check:
16: V arcurr ← Variance(HW)
17: if |HW | ≥Whist and V arcurr < σ2

stable then
18: is_stable← True
19: ecycle ← Mean(HW)
20: k ← k − 1
21: break ▷ Exit slow phase early
22: end if
23: Update state y(k−1) using standard scheduler
24: k ← k − 1
25: step_count← step_count+ 1
26: end while
27: if not is_stable then
28: ecycle ← e

(k)
cand ▷ Fallback if no convergence

29: end if
30: // Phase 2: Accelerated Decoding Stage (Fast)
31: if k > 0 then
32: Predict r̂(k)0 and confidence Pθ(·|c, y(k))
33: Out-of-Span Caching:
34: for i ∈ (ecycle, L] do
35: if Pθ(r̂

(k)
0,i) < τmin_conf then

36: Cache features for position i
37: end if
38: end for
39: In-Span Parallel Decoding:
40: Shigh ← {i | i ∈ [scycle, ecycle] ∧ Pθ(r̂

(k)
0,i) > τhigh_conf}

41: if Shigh ̸= ∅ then
42: y

(k−1)
i ← r̂

(k)
0,i for all i ∈ Shigh ▷ Aggressive unmasking

43: else
44: Unmask Top-kfast tokens in [scycle, ecycle] ▷ Fallback refinement
45: end if
46: scycle ← ecycle ▷ Advance the stable region start
47: k ← k − 1
48: end if
49: end while
50: return y(0)

15

	Introduction
	Related Work
	Diffusion Models for Language
	Acceleration Methods for diffusion-based LLMs

	Methodology
	Preliminary
	Three Golden Principles of dLLMs
	SlowFast Sampling

	Experiment
	Experiment Settings
	Main Results
	Ablation Study

	Conclusion
	Appendix
	LLM Usage Statement.
	Compatibility with Advanced Sampling Methods.
	Experimental Details
	Ablation Study on Hyperparameters and Robustness.
	Performance-Efficiency Trade-off Across Strategies
	Case Studies on Positional Principle and Non-Contiguous Decoding.
	Algorithm: SlowFast Sampling for dLLMs

