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ABSTRACT

Diffusion-based language models (ALLMs) have emerged as a promising alternative
to traditional autoregressive LLMs by enabling parallel token generation and
significantly reducing inference latency. However, existing sampling strategies for
dLLMs, such as confidence-based or semi-autoregressive decoding, often suffer
from static behavior, leading to suboptimal efficiency and limited flexibility. In
this paper, we propose SlowFast Sampling, a novel dynamic sampling strategy
that adaptively alternates between exploratory and accelerated decoding stages.
Our method is guided by three golden principles: certainty principle, convergence
principle, and positional principle, which govern when and where tokens can
be confidently and efficiently decoded. We further integrate our strategy with
dLLM-Cache to reduce redundant computation. Extensive experiments across
various benchmarks demonstrate the efficiency of our method. Specifically, on the
GPQA benchmark, SlowFast Sampling achieves up to 15.63x speedup on LLaDA
with minimal accuracy drop, and up to 34.22x when combined with caching.
Notably, our approach outperforms strong autoregressive baselines like LLaMA3
8B in throughput, demonstrating that well-designed sampling can unlock the full
potential of dLLMs for fast and high-quality generation. Our codes are available
in the supplementary materials and will be released on Github.

1 INTRODUCTION

Large Language Models (LLMs) (Zhao et al.,|2025) have rapidly become cornerstone technologies
in artificial intelligence, demonstrating remarkable capabilities across a diverse range of natural
language understanding and generation tasks. However, the prevalent autoregressive nature of most
LLMs, where tokens are generated sequentially one after another, introduces significant inference
latency, particularly for long sequences. To address this inherent bottleneck, diffusion-based LLMs
(dLLMs) (Ye et al., 2025 Nie et al.,2025b) have emerged as a promising alternative paradigm. These
models are capable of generating multiple tokens in parallel, departing from the strict token-by-token
process. This parallel decoding capability offers the distinct advantage of potentially accelerating
text generation significantly, positioning dLLMs as a compelling and forward-looking direction for
efficient language model inference.

However, current ways of sampling with dLLMs often don’t perform as well as they could. Common
methods include confidence-based selection (Chang et al.| [2022) like Fast-dLLM (Wu et al.| 2025)),
where tokens exceeding a confidence threshold are selected for decoding. Another popular method,
semi-autoregressive decoding (Arriola et al., 2025), divides the sequence into fixed blocks and
decodes within them. Unfortunately, these methods frequently yield unsatisfactory results (i.e.,
significant accuracy drop when decoding many tokens in parallel), and are characterized by a static,
constant sampling speed throughout the generation process. This lack of flexibility highlights the
need for a more dynamic sampling approach: one that can smartly decide how many tokens to sample
at each step and where these tokens should be located in the sequence.

Motivated by these limitations, we introduce a novel dynamic sampling approach designed to
accelerate dLLMs, aiming to unlock the real potential of dLLMs under high-parallel decoding. As
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Figure 1: The Three Golden Principles for sampling in diffusion LLMs. (a) Convergence
Principle: As decoding proceeds, the confidence values of tokens largely converge to high values,
while a few tokens converge to lower values. (b) The confidence map over 256 diffusion steps: High-
confidence tokens (in deep red) emerge progressively and are preferentially decoded (the Certainty
Principle), while selection tends to cluster in contiguous regions (the Positional Principle), enabling
cache reuse and acceleration.

illustrated in Figure[I] our method is guided by three core observations, which we formulate as the
Three Golden Principles for effective acceleration:

* The Certainty Principle: Tokens exhibiting higher confidence are inherently more determined.
Consequently, they are more likely to be decoded correctly early in the process and require less
adjustment in subsequent diffusion steps.

* The Convergence Principle: As the diffusion process unfolds and tokens are progressively refined,
the semantic meaning of many tokens stabilizes, and their associated confidence scores converge
towards a steady value. This convergence indicates that these tokens have largely settled into their
final form and require minimal further refinement.

* The Positional Principle: We observe that even without explicit constraints, the model’s sampling
preferences often gravitate towards tokens in specific, frequently neighboring or clustered, positions.
This inherent positional bias can be strategically exploited. For instance, parts of the sequence can
be effectively cached, leading to significant acceleration gains.

Integrating these principles, we propose SlowFast Sampling with two phases: an Exploratory Stage
and an Accelerated Decoding Stage. In the exploratory stage, the model loosely decodes to locate
spans with emerging certainty and convergence. The accelerated stage then parallelly decodes these
high-certainty tokens, reducing effort on already determined parts. This division yields significant
speedups, reaching 15.63x on LLaDA and up to 34.22x when combined with dLLM-Cache (Liu
et al.| 2025) on the GPQA benchmark, with minimal accuracy loss. Our contributions are threefold:

1. We propose three golden principles based on token certainty, convergence, and positional influence,
which critically govern effective and efficient sampling in dLLMs.

2. Building on these principles, we introduce SlowFast Sampling, a novel two-stage dynamic strategy
specifically designed to leverage these principles for optimal acceleration of dLLM.

3. Through experiments on various benchmarks, we demonstrate that SlowFast Sampling achieves
significant inference acceleration (e.g., up to 15.63 x on LLaDA with SlowFast Sampling alone,
and up to 34.22 x when combined with dLLM-Cache on the GPQA dataset) without compromising
response quality, thereby offering a superior speed-quality trade-off compared to baseline and simpler
sampling methods.

2 RELATED WORK

2.1 DIFFUSION MODELS FOR LANGUAGE

Diffusion Models (DMs) (Sohl-Dickstein et al., 20155 [Ho et al.l |2020; Song et al.| 2021)) have
revolutionized generative modeling, particularly in continuous domains like images (Rombach et al.}
2022; Peebles & Xie| [2023). However, adapting these models to discrete data such as text presents
unique challenges due to its discrete nature. A promising approach in discrete diffusion models
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GPQA (8-shot) Generate Length=1024, Acc.=31.47%
LLaDA TPS: 1.60 tokens/sec

Slow-Fast Speed Up = 15.63x
Acc.=30.13%
LLaDA Speed Up = 30.50x

+ Slow-Fast Acc.=28.79%
Speed Up = 34.22x

Figure 2: Throughput and accuracy comparison on GPQA (8-shot, Length=1024) on LLaDA
with our method, including (1) vanilla decoding, (2) SlowFast Sampling, and (3) SlowFast Sampling
further enhanced by dLLM-Cache. Compared to the vanilla setting, SlowFast Sampling alone
achieves a 15.63 x speedup while maintaining comparable accuracy. With dLLM-Cache, throughput
improves further to 54.75 tokens/sec (up to 34.22x speedup), with only minor drops in accuracy.

involves Masked Diffusion Models (MDMs) (Austin et al.|, 2021} [Lou et al., 2023} [Shi et al.} [2024;
Nie et al.}, [2025a}b; [Hoogeboom et al.l 2021} [Campbell et al., [2022), which iteratively predict masked

tokens based on their context. These advancements have transformed text generation, offering a
compelling alternative to autoregressive paradigms in large language models (LLMs). Notable
examples include LLaDA 2025Db), an 8B MDM trained from scratch with a bidirectional
Transformer, and Dream 2025)), which initializes from pre-trained ARM weights. Both
models demonstrate performance comparable to similarly-sized ARMs like LLaMA3 8B
et al.} [2024). Their bidirectional architecture may overcome ARM limitations such as the reversal
curse (Berglund et al} [2023)), making diffusion a competitive alternative for foundational LLMs.

2.2 ACCELERATION METHODS FOR DIFFUSION-BASED LLMS

The high inference latency of dLLMs, primarily due to their iterative denoising process (Nie et al.|
2025b; [Ye et all [2025), has spurred research into acceleration techniques. Various strategies have
been developed, mainly including caching mechanisms and advanced sampling techniques.

Caching Mechanisms. Feature caching reduces redundant computations by reusing intermediate
features. dLLM-Cache [2025) combines long-interval prompt and short-interval response
caching with a V-verify mechanism for faster inference. Sparse-dLLM 2025)) applies
dynamic cache eviction with sparse attention, retaining only salient tokens to cut memory and
boost speed. dKV-Cache adopts delayed KV caching to reuse decoded tokens’
representations, achieving 2—10x acceleration.

Advanced Sampling Techniques. Optimizing the sampling process itself is another major direction
for accelerating dLLMs. Low-confidence remasking (Chang et al.,[2022} Nie et al.}[2025b) prioritizes
high-confidence tokens to speed up convergence; semi-autoregressive (Nie et al., [2025b} [Arriolal
remasking divides sequences into blocks, applying random and low-confidence strategies.
Additionally, exact simulation methods for MDMs like the first-hitting sampler (Zheng et al.} 2024)
have made progress in reducing sampling steps or enhancing per-step efficiency.

3 METHODOLOGY

3.1 PRELIMINARY

Inference Process of Diffusion Large Language Models. Diffusion Large Language Models
(dLLMs) generate text y = (y1,-..,yr) from a prompt ¢ = (cy,...,cpr) through an iterative
denoising process. The model refines an intermediate state y(*) € 7 over N discrete steps, from
k = N to k = 0, where 7T is the token vocabulary. The process begins with a fully masked sequence:

y®™) = ([MASK],..., [MASK]) (1)

L times

where [MASK] € 7T is the special mask token.
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Ateachstep k € {N,N — 1,...,1}, a mask predictor py estimates the original clean sequence
ro = (70,1, - -,70.z) from the noisy state y*) and prompt c:
Py(role,y ™)) &)
An estimate of the clean sequence at step k, fék), is obtained through greedy decoding:
7*(()12-) = argen;ax Py(ro; = vlc,y®) vie{l,...,L} 3
v

Although the predictor py can decode all masked tokens [MASK] in one step, to ensure high-quality
generation, dLLM adopts a multi-step decoding process. At each step, the remask strategy refines the
tokens. The transition to the next state y(*~1) is governed by a sampling strategy S:

y &0 = 5@ y® k) )

This iterative denoising process is a sampling procedure. Our work aims to improve the sampling
efficiency of dLLM inference, which can be computationally expensive due to the [V sequential steps.
Using LLaDA (Nie et al.|[2025b) as an example, we describe its core sampling strategies. In LLaDA,
time steps are defined as ¢, = k/N and t;,_1 = (k — 1)/N.

LLaDA explores various strategies for the transition function .S in Equation[d] which differ mainly in

how tokens from f‘((]k) update y¥) to form y(*~1), especially for positions that were [MASK] in y(*):

Random Remasking. In this strategy, for each position i:
If yl(k) # [MASK], then ygk_l) = yfk) (known tokens are preserved).

If yik) = [MASK], then ygk_l) is set to fé{? with probability 1 — %, and remains [MASK] with
probability % ensuring the expected number of masked tokens aligns with the noise schedule.

Low-Confidence Remasking. This deterministic strategy aims to improve sample quality by

selectively unmasking tokens. For each position ¢, if ygk) = [MASK], the model predicts TA(()I,? and
computes its confidence. Specifically, the confidence c; is given by:
¢; = Py(ig le,y ™). 5)
1f y™ £ [MASK], then ¢; = 1.
The target number of unmasked tokens for state y(*~1) is given by:
= 120 -0 = 12 (1= 21 ©

The tokens corresponding to the 7,,,, highest confidences are unmasked in y (*~1), while the remaining
positions are set to [MASK].

Semi-Autoregressive Remasking. This strategy is used in LLaDA after Supervised Fine-Tuning.
The sequence is divided into blocks, and generation proceeds block by block from left to right. Within
each block, the random remasking or the low-confidence remasking strategy is applied iteratively to
denoise the block before moving to the next.

The choice of sampling strategy .S, along with the number of steps [V, significantly affects both the
generation quality and latency.

3.2 THREE GOLDEN PRINCIPLES OF DLLMSs

Building upon the iterative denoising process outlined in Section[3.1} our empirical analysis of dLLM
behavior, particularly with models like LLaDA, has revealed consistent patterns in token generation.
These patterns, which we term the Three Golden Principles, form the bedrock of our proposed
acceleration strategy. They describe how token certainty, convergence, and positional effects interact
during the diffusion process, offering key insights into optimizing sampling.

The Certainty Principle: High Confidence Indicates Determination. We observe that tokens
predicted with high confidence by the mask predictor py are significantly more likely to be part of the
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final, correct sequence and tend to remain unchanged in subsequent denoising steps. The confidence

for a predicted token r( ) at position ¢ and step k is given by P@( \c, y(k)). As illustrated in
Figure[T] (b), at any glven step k, a subset of tokens typically exhibits substantially higher confidence
scores compared to others. These high-confidence tokens are prime candidates for early "acceptance"
or less frequent resampling.

Implication for Acceleration: By prioritizing tokens that quickly reach a high confidence threshold,
we can reduce redundant computations on already determined parts of the sequence.

The Convergence Principle: Tokens Stabilize Over Iterations. During the iterative reﬁnement

process, individual tokens (both their predicted identity 7 Yy ) and their confidence Py (7 )|c (&)))
undergo a period of fluctuation before settling. As shown in Flgureﬂ] (a), a representative token mlght
initially change its predicted identity and confidence across several early diffusion steps. However, as
k decreases, the token’s confidence converges are often to a stable value. This convergence signals
that the model has formed a consistent belief about the token’s identity within its current context.

Implication for Acceleration: Tokens that have demonstrated convergence (i.e., stable identity and
confidence over a window of recent steps) are less likely to change. Aggressively decoding can
prevent unnecessary re-evaluation, thereby speeding up the process.

The Positional Principle: Decoding Exhibits Regional Preferences. Beyond individual token
behaviors, we find that the generation process often exhibits spatial patterns. High-confidence and
early-converging tokens do not appear randomly scattered throughout the sequence. Instead, they
frequently emerge in contiguous blocks or localized regions, as suggested by Figure [1|(b). This
phenomenon might be due to local semantic dependencies or the influence of strongly contextualized
parts of the prompt c. For example, after a few initial steps, a particular span of tokens might
collectively achieve high confidence and stability, while other regions remain largely masked or
uncertain. The model appears to focus its decoding efforts on specific segments at different stages.

Implication for Acceleration: Recognizing these regions allows for targeted decoding. Instead of
uniformly processing all tokens, computational resources can be concentrated on regions that are
currently most amenable to decoding.

These three principles collectively indicate that a one-size-fits-all, static sampling strategy is inherently
inefficient. They motivate a dynamic approach where the number of tokens sampled, their selection
criteria, and their locations are adapted based on the evolving state of the generated sequence. Our
SlowFast Sampling methodology, detailed in Section is designed to explicitly leverage these
observations to achieve significant inference speedups.

3.3 SLOWFAST SAMPLING

1. Exploratory Stage (Slow Phase): Identifying the Next Stable Region. As illustrated in Figure
the primary goal of this stage is to cautiously advance decoding while identifying a promising, stable
region for subsequent rapid processing. Starting from ... and extending to the end of the full
sequence L, this stage operates as follows for a limited number of dLLM steps:

» Cautious Decoding: At each dLLM step & within this stage, we perform a conservative decoding
update. We select the top-ksjow tokens within the current exploratory window [scycle, L] that

exhibit the highest confidence Pg( |c y(* )) and these are unmasked to form part of (k) (as per
Equation 3] for these tokens, followed by Equation d).

* End Point of Convergence Prediction: Concurrently, the model predicts a end point of candidate
(k) This is defined as the furthest token position i € [scyere, L] for which

convergence, €., .
the predicted confidence P@(’f'(()]i-) lc,y®)) exceeds a minimum confidence threshold T,nin con -

Mathematically:

(k)

€cand = max{i | i € [Scycle7 LI N Py (72(()],?|Ca y(k)) > Tmin,conf} (7

This ega)n . Tepresents an estimate of how far into the sequence the model can confidently decode at

the current step k.

* Stability Check: Throughout the Exploratory Stage, candidate convergence horizons e(fl)n 4 pre-

dicted at each dLLM step j are tracked. Let Hyy (ks) = {e(l) |l € [max(1, ks —Whist +1), ks]}

cand
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Figure 3: Overview of the SlowFast Sampling Pipeline. The method alternates between a Slow
(Exploratory) stage and a Fast (Accelerated) stage for efficient token generation. In the Slow phase
(left), the model conducts cautious decoding by selecting top-k high-confidence tokens per step while
continuously predicting the End Point of Convergence and calculating confidence variance across a
history window. Once variance drops below threshold (e.g., 0.22 < 0.23), the corresponding region
[scycle, €cycze] is considered stable. In the Fast phase (right), this stable span is decoded in parallel
with aggressive unmasking of high-confidence tokens, while tokens beyond the span are temporarily
skipped and their results cached for reuse. This alternating structure reduces redundant computation
and accelerates decoding while maintaining output quality.

be the set of candidate horizons in the sliding window of the latest W},;5; predictions ending at
exploratory step k. Stability is achieved, concluding this stage, when Var(Hy (k;)) < 02, ;. for
a window where k5 > Wp,4. The exploratory stage ends at step k finq1, defined as:

kfinal = min ({ks | Whist S ks S Kma:v A Var(HW(ks)) < O-Etable} U {Kmax}) (8)

If the stability criterion is not met by K,,,, (the maximum allotted exploratory steps), then
kfinal = Kmagz- The cycle’s convergence horizon ey, is then set to the mean of the candidate
horizons in the final window Hyy (k finai):

1 §
cvele M H k ina 1 Hw (Kinat)|
Ecycle = ean( W( f l)) |HW(kfznal)| cHw (k )e ( )
e WAR final

Once this stability criterion is met, the Exploratory Stage concludes. The endpoint for the subsequent

Accelerated Decoding Stage, €.y cie, is set to the last recorded candidate horizon, egz)n 4+ If stability is
not achieved within a maximum number of exploratory steps, e.ycie can be set to a conservatively

determined position or the process might default to a full-sequence cautious decode for that cycle.

2. Accelerated Decoding Stage (Fast Phase): Rapid Parallel Refinement. As shown in the right
half of Figure once a stable region [Scycie, €cyeie] 1S identified, this stage aims to rapidly denoise
tokens within this span, while efficiently handling tokens outside it:

* Out-of-Span Caching: For tokens outside the identified span (i.e., positions 7 > ecyce), if their

current predicted confidence is low (e.g., below Tyin_cony), their predicted values r(() ) from one
dLLM step within this stage are computed and then cached. These cached values can be reused in
subsequent dLLM steps for these positions, provided they remain outside an active decoding span,
thus saving redundant computations.

* In-Span Parallel Decoding: Within the span [Scycie, €cycle], an aggressive parallel decoding is

(k) _

attempted. All tokens y,”’ = [MASK] fori € [Scycze, ecycle} for which the predicted confidence

Py (7 671-) |c, y(*) ) exceeds the high certainty threshold Th;45,_con s, i€,

P9 (72(()],?|Ca y(k)) > Thigh_conf (10)

are unmasked by setting their value to the corresponding prediction ré Z) This update is performed

simultaneously for all such qualifying tokens in a single conceptual step to form fék).
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Table 1: Performance of LLaDA 8B and Dream 7B with SlowFast Sampling on 8 benchmarks.

Task ‘ Method ‘ Inference Efficiency ‘ Performance ‘ Method ‘ Inference Efficiency ‘ Performance
‘ ‘ TPST Speedt ‘ Scoret ‘ ‘ TPST Speedt ‘ Scoret
Mathematics & Science

LLaDA 1.55 1.00x 69.83 Dream 8.16 1.00x 77.02
GSM8K + Fast-dLLM (Parallel) | 7.455.9 1.64x 1961 | 69.60 3 + Fast-dLLM (Parallel) | 12.72, 456  1.55X 055 | 73.09 3.3
+ SlowFast 14.57 1002 3.20X4220 69.59_¢.27 + SlowFast 1715899 2.10x 110 | 76.50 (.52

LLaDA 3.31 1.00x 31.47 Dream 543 1.00x 35.93
GPQA + Fast-dLLM (Parallel) | 11.72.5 11 3.54% 554 | 32.13.0.66 + Fast-dLLM (Parallel) | 15.88,10.45 2.92X.195 | 31.01 ;o
+ SlowFast 16.36. 1505 4.94x.500 3191044 + SlowFast 16.56. 1113 3.05% 505 | 35.94. .01

LLaDA 5.14 1.00x 30.16 Dream 8.48 1.00x 38.68
Math + Fast-dLLM (Parallel) | 8.94 55 1.74% 1074 | 30.52. .36 + Fast-dLLM (Parallel) | 22.51 11405 2.65X.165 | 34.14_, 54
+ SlowFast 11.27 613 2.19% 1119 29.64 (50 + SlowFast 23.00 1450 2.71X41.71 | 38.24 .44

General Tasks

LLaDA 9.16 1.00 23.30 Dream 14.97 1.00 24.14
MMLU-pro | + Fast-dLLM (Parallel) | 15.62.6.45  1.71x.071 | 23.5040.90 + Fast-dLLM (Parallel) | 25.50, 1055 1.70x.070 | 19.53 4,
+ SlowFast 2314113098 2.53%4153 23.85:055 + SlowFast 22.80.7.83 1.52% 1052 | 22911 23

LLaDA 5.02 1.00 62.11 Dream 8.46 1.00 72.61
MMLU + Fast-dLLM (Parallel) | 12.94, 79>  2.58x. ;55 | 61.67 + Fast-dLLM (Parallel) | 17.39 5093  2.05X. 105 | 64.59 50
+ SlowFast 16.81 11179 3.35x4235 66.564.45 + SlowFast 1843997  2.18xy1.18 | 75.13 1252

LLaDA 1.04 1.00x 14.97 Dream 6.93 1.00x 51.83
BBH + Fast-dLLM (Parallel) | 10.73. 659  2.66X 166 | 44.13 (s + Fast-dLLM (Parallel) | 27.84 5091 4.01X 301 | 52.28 .45
+ SlowFast 21191715 524X.404 44.60 37 + SlowFast 28149191 4.06X.306 | 50.55_1 98

Code

LLaDA 4.98 1.00x 40.80 Dream 8.92 1.00x 54.20
MBPP + Fast-dLLM (Parallel) | 8.155 17 1.64% .64 | 40.800.00 + Fast-dLLM (Parallel) | 22.87. 1305 2.56X.156 | 49.40 45
+ SlowFast 13.32,8.34 2.67% 1167 41.0040.20 + SlowFast 29.07 9015 3.26X .96 | 54.60.0 40

HumanEval LLaDA 11.24 1.00x 31.71 Dream 11.49 1.00x 34.15
+ Fast-dLLM (Parallel) | 23.05.1151 2.05x.105 | 32322061 + Fast-dLLM (Parallel) | 24.33. 1550 212X 19 | 3292 o3
+ SlowFast 35462400 3.15%X4215 33.54,1s3 + SlowFast 25381380 2.21X.101 | 35.36.1.91

* Fallback Top-k Refinement: If the number of tokens meeting the Thign_cony criterion within
the span is insufficient to make substantial progress (e.g., less than one), we revert to a more
conservative update for this dLLM step within the span. Specifically, we select the top-£ ¢ tokens
within [Scycre, €cyere] based on confidence and unmask them. This ensures steady progress even
when widespread high certainty is not yet achieved.

After the Accelerated Decoding Stage completes, the starting position for the next cycle’s Exploratory
Stage is updated to Scycie < €cycie- This cyclical process of exploration and accelerated decoding
continues until the entire sequence is generated. This SlowFast approach dynamically adapts the
decoding focus and intensity, leveraging the Certainty and Positional principles to identify promising
regions and the Convergence principle to stabilize them efficiently.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Implementation Details To evaluate the effectiveness of our proposed dynamic sampling approach
SlowFast Sampling, we conducted experiments on representative dLLMs: LLaDA 8B (Nie et al.
2025b)) and Dream 7B (Ye et al., |2025)), focusing on measuring the inference acceleration across
various benchmarks. All experiments were conducted on NVIDIA RTX 4090 GPUs.

Evaluation Metrics We evaluated sampling acceleration and generation quality of SlowFast Sampling
using quantitative metrics. Inference speed is measured in Tokens Per Second (TPS), indicating the
average number of tokens generated per second. Generation quality is assessed using task-specific
metrics, e.g., accuracy on GSM8K, reflecting the model’s performance under inference acceleration.

4.2 MAIN RESULTS

Performance and efficiency gains across models. Table [I]reports throughput and model perfor-
mance for both LLaDA 8B and Dream 7B, with and without SlowFast Sampling. These results
demonstrate that our method brings significant improvements in inference efficiency and achieves loss-
less acceleration in most cases. In our experiments, the key hyperparameters of SlowFast Sampling,
Tmin_conf AN Thigh_conf, Were set to 0.1 and 0.85, respectively. The remaining hyperparameters
in our method were set as follows: maximum exploratory steps K, = 8, sliding window size
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Table 2: Performance of LLaDA 8B and Dream 7B with SlowFast Sampling and dLLM-Cache.

Task ‘ Method ‘ Inference Efficiency ‘ Performance ‘ Method ‘ Inference Efficiency ‘ Performance
‘ TPST Speed(TPS)t ‘ Scoret ‘ ‘ TPST Speed(TPS)T ‘ Score
Mathematics & Science
LLaDA 4.55 1.00x 69.83 Dream 8.16 1.00 77.02
GSMBK + Fast-dLLM (Parallel+Cache) | 15.50; 1095 341X 2.4 68.77 1 o6 + Fast-dLLM (Parallel+Cache) | 31.07 ;2591  3.81X .54 6945 ;57
+ SlowFast + Cache 269919244 5.93X 1403 69.60_ 23 + SlowFast + Cache 46.17 3501  5.66X 466 72.10_4.92
LLaDA 3.31 1.00x 31.47 Dream 543 1.00 35.93
GPQA + Fast-dLLM (Parallel+Cache) | 30.21 2600 9.13% 53 33.03. 1 5¢ + Fast-dLLM (Parallel+Cache) | 40.98. 5555 7.54% .45 3237 556
+ SlowFast + Cache 29.06, 0575 8.78X 778 33.48.50m + SlowFast + Cache 39.63:3420 7.30%.:6.30 3482 111
LLaDA 5.14 1.00x 30.16 Dream 8.48 1.00 38.68
Math + Fast-dLLM (Parallel+Cache) | 21.50, 1656 4.18% 315 28.34 | o + Fast-dLLM (Parallel+Cache) | 46.80 3530 5.52X 45 33.24
+ SlowFast + Cache 265042136 5.16X44.16 2942 .74 + SlowFast + Cache 56.44 4796 6.66X 566 37.10 1 55
General Tasks
LLaDA 9.16 1.00x 23.30 Dream 14.97 1.00 24.14
MMLU-pro | + Fast-dLLM (Parallel+Cache) | 27.85. 1560 3.04x 504 27.66. 435 + Fast-dLLM (Parallel+Cache) | 42.73. 577 2.85X. g5 22.57
+ SlowFast + Cache 33380402 3.64X 264 25531923 + SlowFast + Cache 291101 21.81
LLaDA 5.02 1.00x 62.11 Dream 8.46 1.00 2.61
MMLU + Fast-dLLM (Parallel+Cache) | 32.36, 2731 6.45X 5.5 61.45 (4 + Fast-dLLM (Parallel+Cache) | 44.73 . 5607 5.28X. 408 64.46_ |5
+ SlowFast + Cache 3842, 3340 7.65% 665 61.20_¢9 + SlowFast + Cache 4418 5570 5.22X 490 71.57_1.0.
BBH LLaDA 1.04 1.00x 14.97 Dream 6.93 1.00 51.83
+ Fast-dLLM (Parallel+Cache) | 22.56, 1550 5.58X 458 45.35 . 0.38 + Fast-dLLM (Parallel+Cache) | 57.02. 50.00 8.22X .72 44.95 .5
+ SlowFast + Cache 36.0413200 892X%47.92 44.81 ¢ 15 + SlowFast + Cache 70.20. 6307 10.13X 913 4824 359
Code
LLaDA 4.98 1.00x 40.80 Dream 8.92 1.00 54.20
MBPP + Fast-dLLM (Parallel+Cache) | 22.18, 709 4.45X 3.5 38.20 5.0 + Fast-dLLM (Parallel+Cache) | 50.67. 4 75 5.68x_ 45 50.40_5 <
+ SlowFast + Cache 272642228 547X 4387 39.00_1.50 + SlowFast + Cache 69.48 . 6056 7.79%:6.79 51.00
LLaDA 11.24 1.00x 31.71 Dream 11.49 1.00 34.15
HumanEval | + Fast-dLLM (Parallel+Cache) | 26.25 1501 2.34x ;34 29.88 | 43 + Fast-dLLM (Parallel+Cache) | 49.47 . 5795 4.31X.33; 29.27 .x
+ SlowFast + Cache 41.14 9990  3.66X 1266 31.10_¢¢ + SlowFast + Cache 47.86. 3637 4.17x.317 35.36.41.21
Sampling Strategy | TPST | Score? Method | TPS?T | Speed(TPS)t | Accuracy?
Autoregressive (AR) | 525 | 60.80 LLaMA3 8B (Dubey et al.|[2024) | 33.79 | 21.12x | 31.92
Diffusion Sampling ‘ 4.55 ‘ 69.83 LLaDA 1.60 55 19 1.00x 31.47 .45
- . + SlowFast 25.00 579 15.63x 31.47 .45
Semi-Autoregressive | 5.44 66.41 - ' e
€ ‘ ‘ + SlowFast + Cache (K, = 100, K. = 5) 48.8015.01 30.50% 30.13 179
SlowFast Sampling | 9.87 | 69.59 + SlowFast + Cache (K, = 500, K, = 30) | 54.75.20.05 34.22x 28.79 514

Table 3: Comparison of Sam-
pling Strategies on inference
efficiency and generation per-
formance.

Table 4: Comparison of LLaDA 8B Base with other represen-
tative LLMs. Compared to LLaMA3 8B, LLaDA with SlowFast
Sampling and dLLM-Cache achieves significantly higher through-
put (up to +20.96 TPS) while maintaining comparable accuracy.

Whist = 2, and stable variance threshold o2, ,,. = 1.0, consistent with the default configuration
used in Section @.2]and ablation studies.

Compatibility with dLLM-Cache. Recently, several studies have explored leveraging feature cache
to reduce the computational cost of dLLM inference. Our SlowFast Sampling is highly compatible
with existing caching mechanisms and the integration can lead to higher acceleration compared
to using either alone. Table[2]compares the performance and inference speed of LLaDA with and
without applying our method in combination with dLLM-Cache. The results show that this integration
can deliver higher throughput while maintaining comparable model performance.

Comparison with Other Sampling Strategies. We compared our method SlowFast Sampling with
four alternative sampling strategies: diffusion sampling, diffusion semi-autoregressive sampling,
autoregressive (AR) sampling and Fast-dLLM (Wu et al. 2025). Diffusion sampling adopts a
remasking strategy to iteratively select token to decode in parallel, while AR sampling generates
tokens strictly from left to right. The semi-autoregressive approach generates blocks left-to-right and
applies the remasking strategy within each block. Fast-dLLM, in contrast, performs parallel decoding
only based on token confidence, and we report results for both its parallel and cache-augmented
variants. As shown in Table[I] [2]and [3] our method SlowFast Sampling achieves higher inference
efficiency while maintaining competitive generation quality.

4.3 ABLATION STUDY

Case Study of SlowFast Sampling in Sentence Generation. As shown in Figure[d] this case study
shows how SlowFast Sampling generates text by alternating slow and fast phases. In the slow phases,
the model outputs a few reliable tokens such as subjects, verbs, or punctuation to anchor the sentence.
The fast phases then produce longer spans of high-confidence tokens in one step, e.g., “she has 9 -
4 = 5 yuan left”, ensuring both efficiency and correctness. This balance of cautious slow decoding
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and confident fast decoding maintains accuracy while accelerating generation, making the approach
intuitive and effective.

Prompt: Jane sold 3 apples at 3 yuan each, then bought 2 pears at 2 yuan each. How much money does she have left?
Response: Jane sold 3 apples at 3 yuan each, so she earned 3 * 3 = 9 yuan. She bought 2 pears at 2 yuan each, so she spent 2 * 2 = 4 yuan. Therefore, she has 9 - 4 = 5 yuan left.
token

0.5

CET LT e T T
EEEE ENEEEEEEEEEEEED
end point 3
fast phase 3 L] ]
|
1
end point 1 — Jane_— Jane sold _ 3 apples at _ yuan — Jane sold _ 3 apples at _ 3 yuan each blue font: the tokens decoded in current step |

endpointz > SO > ,soshe - ,sosheeamed 3+ ,sosheearned .3 _3=_9 - ,sosheeaned_3*_3=_9yuan—+ ,sosheearned _3*_3=_9yuan.

each — bought _ 2 pears at _ 2 yuan each, so she spent _ 2 * _ 2 =4 yuan. \n = bought _ 2 pears at _ 2 yuan each, so she spent _ 2* _ 2 =4 yuan. \n
Therefore = \n she bought _ 2 pears at _ 2 yuan each, so she spent _ 2 * _ 2 =4 yuan. \n Therefore - \n she bought _ 2 pears at _ 2 yuan each, so she
spent _ 2* _ 2=4yuan.\n Therefore, - \n she bought _ 2 pears at _ 2 yuan each, so she spent _ 2 * _ 2 =4 yuan. \n Therefore, she has _9- _4 =5 yuan
left = \n she bought _ 2 pears at _ 2 yuan each, so she spent _ 2 * _ 2 =4 yuan. \n Therefore, she has _ 9- _ 4 = _ 5 yuan left.

end point 3

Figure 4: Case study of sentence generation with SlowFast Sampling. The figure illustrates the
dynamic evolution of the confidence map across three phases, where exploratory and accelerated
decoding are alternated. Blue tokens denote those generated in the current step, highlighting how the
method gradually builds on high-confidence spans to produce a coherent final response.

Effect of Hyperparameters in the Stability Check. The stability check, which transitions the
model from the slow to the fast phase, is governed by three hyperparameters whose effects are shown
in Figure 5] The maximum number of exploratory steps, K4z, is for allowing the convergence
horizon to stabilize; we find K,,,, = 8 provides sufficient exploration for high-quality generation
without incurring excessive overhead. This is complemented by the sliding window size, Wp,;s;.
Since prediction changes and convergence occur rapidly, we find a smaller window of W, = 2
is effective, striking a strong balance between maintaining quality and maximizing inference speed.
Finally, a strict stable variance threshold of 02, ;. = 1.0 ensures that the accelerated phase is only
triggered for genuinely stable regions, solidifying the reliability of our method.

70 14.6 7 15 70 — 15
onicinal Ace. "7 - _ o o - Original Acc._ _ _
§ 69 9 /.\/_\/ N | 144 §70 __N_Qsigipel_ﬁcs;__ " 2eos | " 14
7} 14.2 ¢ 0 69 183 @ 13
© 68 | 2o N 29 69 — 4
> " 14 F S8 12F3 12F
£ 67 ~m- Accuracy £ «~#- Accuracy g 68.5 &= Accuracy
5 138 567 1M 3 11
8 TPS 3 TPS 3] TPS
< 66 136 <66 10 < 68 10
2 3 4 5 6 7 8 9 05 1 15 2 25 3 4 2 3 4 5 6
Maximum exploratory steps K max Stable Varience 02,5, Sliding Window Wy,

Figure 5: The sensitivity study on hyper-parameters in the stability-Check. Accuracy and TPS
vary with Koz, 02,110 a0d Whise. The chosen defaults (Ko = 8, 02,17, = 1.0, Whist = 2)
offer strong speed-quality trade-offs.

Outperforming Autoregressive LLMs in Inference Speed. As shown in Table[d when equipped
with our SlowFast Sampling and dLLM-Cache, LLaDA Base not only accelerates significantly over
its default setting but also outperforms the autoregressive LLaMA3 8B (Dubey et al.,[2024)) in
inference speed (54.75 vs. 33.79 TPS), while maintaining comparable accuracy. This demonstrates
that dLLMSs, with proper sampling and optimization, can surpass traditional autoregressive models in
both efficiency and practicality.

5 CONCLUSION

In this work, we present SlowFast Sampling, a dynamic and principled approach to accelerate
diffusion-based large language models (dLLMs). By leveraging three key observations: token
certainty, convergence, and positional bias, we design a two-stage decoding pipeline that adaptively
balances exploration and efficient parallel decoding. Extensive experiments across benchmarks
demonstrate that our method not only significantly improves inference speed (up to 15.63 x and up to
34.22 x combined with dLLM-Cache on the GPQA benchmark), but also maintains strong generation
quality, outperforming even autoregressive LLMs in throughput. We believe this work marks an
important step toward making dLLMs practical and competitive in real-world deployment.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The main text (Sections [3H4)
provides detailed descriptions of the proposed SlowFast Sampling method, its integration with dLLM-
Cache, and the corresponding experimental setups. Hyperparameter configurations and additional
implementation details are presented in Appendix [A.3] Comprehensive performance comparisons
across benchmarks are reported in Tables [TH4] Ablation studies and a case study are provided in
Section (e.g., Figure 4)) to illustrate the robustness of our method. To facilitate replication, we
include the source code and scripts for running experiments in the supplementary materials.

ETHICS STATEMENT

This work focuses on developing efficient sampling strategies for diffusion-based large language
models (dLLMs). Our research does not involve human subjects, personal or sensitive data, or
applications directly impacting individuals. All experiments were conducted on publicly available
benchmarks, ensuring fairness, reproducibility, and transparency. We release code to promote open
research and to enable verification of our results. We are not aware of any potential misuse or harmful
applications of the proposed methods beyond standard concerns inherent to language models, such as
bias or misuse in downstream tasks, and we encourage responsible use in line with the ICLR Code of
Ethics.
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A APPENDIX

A.1 LLM USAGE STATEMENT.

We used a Large Language Model (LLM) solely to aid in polishing the writing and improving the
clarity of language. The LLM was not involved in research ideation, experimental design, data
analysis, or generation of scientific content. All research ideas, methods, analyses, and conclusions
presented in this paper are entirely the work of the authors. The authors take full responsibility for
the content of this paper.

A.2 COMPATIBILITY WITH ADVANCED SAMPLING METHODS.
Figure 6: Effect of Con-
147 70 0 fidence Thresholds on

~
o

I, Kj’_{@:‘*—';‘;&"" e g | T/ giemaiace |15 GSMS8K. Tyin cons controls
5686: ~4 /\ s 8o // 12 0 the exploratory range, and
Fers \/ 128 Bo = W Thigh_cony balances accuracy
8.7 ey |14 § e = pcraey | 1 find speed during fast decod-
66 138 65 s ing. Other hyperparameters
o e iy follow the default settings in

Section

Sensitivity to Confidence Thresholds. The core confidence thresholds, Tynin_conf and Thigh_con -
dictate the behavior of our SlowFast pipeline. As shown in Figure [6] the minimum confidence
threshold Ty,in_cons defines the candidate region in the exploratory stage. A moderate value of
Tmin_cons = 0.1 1s optimal, as lower values lead to unstable regions and higher values create overly
conservative, inefficient regions. The high certainty threshold 7,;45_con s directly manages the speed-
quality trade-off during the accelerated stage. A higher value leads to more cautious and accurate
generation at the cost of speed (TPS). We select Thign_cony = 0.85, which achieves a near-peak
GSMBEK score without a drastic reduction in inference speed, striking an effective balance.

A.3 EXPERIMENTAL DETAILS

To ensure fair and reproducible comparisons, we standardize the setting of inference generation across
benchmarks and run each model with its officially recommended settings. The benchmark-specific
parameters considered include the number of inference steps, the block length, the total generation
length, and the number of few-shot examples. For clarity, we summarize the settings for LLaDA and
Dream in Tables[5]and [6] respectively.

Table 5: Experimental settings for LLaDA across benchmarks.

Task Steps  Block Length  Generation Length  Few-shot
MMLU 3 3 3 5
MMLU-pro 256 256 256 0
GSMS8K 256 256 256 4
Math 256 256 256 0
GPQA 256 256 256 5
HumanEval 256 256 256 0
MBPP 256 256 256 3
BBH 256 256 256 3

Table 6: Experimental settings for Dream across benchmarks.

Task Steps  Generation Length Few-shot
MMLU 3 3 5
MMLU-pro 256 256 0
GSMSK 256 256 8
Math 256 256 4
GPQA 256 256 5
HumanEval 256 256 0
MBPP 256 256 3
BBH 256 256 3

12
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A.4 ABLATION STUDY ON HYPERPARAMETERS AND ROBUSTNESS.
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Figure 7: Parameter Robustness and Sensitivity Across Multiple Benchmarks. Figure shows
sensitivity across MATH, MBPP, and HumanEval. Our setting is shown to be highly robust across all
tasks.
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Figure 8: Parameter Stability Across Model Variants on Dream 7B. Sensitivity analysis for
Tmin_conf> Thigh_conf» and aﬁtable was conducted on Dream 7B using the GSM8K benchmark. The
findings confirm that the unified set of hyperparameters successfully transfers to this demanding
model variant, validating overall parameter stability.

Hyperparameter Robustness and Generalization Analysis. The overall hyperparameter analysis
confirms the robustness and strong generalization ability of the SlowFast approach. As shown
in Figure [7} a single, unified parameter set maintains near-optimal performance across diverse
benchmarks (MATH, MBPP, HumanEval). This stability is further validated by Figure[8] where the
same unified settings successfully transfer to Dream 7B on the GSM8K benchmark. These findings
confirm that the SlowFast approach is highly robust and does not require extensive tuning for new
tasks or model variants.

A.5 PERFORMANCE-EFFICIENCY TRADE-OFF ACROSS STRATEGIES

Figure 0] evaluates the Performance-Efficiency for our method

50 against various baselines under two distinct evaluation setups.
40 The results confirm that the integration of our method consistently

g 30 [[O-ttanA shifts the trade-off curve decisively towards the top-right corner
20 | [~ LLaDAsSIow : (hlghe?r TPS and higher Accuracy) compared to the baselme'. This

10 | Fe- LLaDA+SIon superiority holds true across both the ;tandard cpnﬁguraﬂon (5-

. Fast+Cache ’ shot, 256 tokens) and the more demanding scenario (8-shot, 1024

tokens), validating the robustness and scalability of our adaptive

28 29 30 31 32 33 .
sampling strategy.

Accurancy (GPQA)

Figure 9: Performance Effi-
ciency Trade-off on GPQA.

A.6 CASE STUDIES ON POSITIONAL PRINCIPLE AND NON-CONTIGUOUS DECODING.

Robustness to Minor Positional Uncertainty. Figure [10] confirms SlowFast’s ability to cover
multiple stable blocks even when separated by unstable regions. Crucially, the distance between the
end of one stable block and the start of the next is generally small, allowing our adaptive mechanism to
efficiently jump over the intermediate low-confidence span. This ensures that the overall acceleration
is maintained without sacrificing accuracy, even when faced with minor positional uncertainties.
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Prompt: Amy sold 4 books at 5 dollars each, then bought 1 pen at 2 dollars each. How much money does she have left?
Response Amy sold 4 books at 5 dollars each, which is 4 * 5 = 20 dollars. Then she bought 1 pen at 2 dollars each, which is 1 * 2 = 2 dollars. So, she has 20 - 2 = 18 dollars left.
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Figure 10: Case Study I: Dynamic Span Coverage During Positional Jumps. This case study
illustrates a scenario where the model exhibits a positional jump between decoded tokens, confirming
that the dynamic search window of SlowFast successfully identifies and covers the subsequent stable
region.

Prompt: Jane sold 3 apples at 3 yuan each, then bought 2 pears at 2 yuan each. How much money does she have left?
Response: Jane sold 3 apples at 3 yuan each, so she earned 3 x 3 = 9 yuan. She used 9 yuan to buy 2 pears at 2 yuan each, so she has 9 - 4 = 5 yuan left.
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Figure 11: Case Study II: SlowFast’s Adaptive Response to Induced Non-Contiguous Blocks.
This case study demonstrates the adaptive capability of the SlowFast framework. By manually
inducing a positional jump, the figure shows how the dynamic adjustment mechanism immediately
recognizes and proceeds to the subsequent high-confidence region.

Adaptive Handling of Non-Contiguous Blocks. Figure [TT]rigorously tests SlowFast’s adaptive
limits by manually constructing an extreme scenario featuring two widely separated high-confidence
blocks. The visualization confirms that upon encountering the unstable region between the blocks, the
dynamic adjustment mechanism successfully identifies the subsequent high-confidence region (Block
2) and resumes acceleration (Fast Phase 2). This successful navigation demonstrates the robustness
of SlowFast’s dynamic scheduling, confirming its ability to automatically identify and accelerate
multiple non-contiguous stable blocks even under extreme conditions.

A.7 ALGORITHM: SLOWFAST SAMPLING FOR DLLMS

Algorithm 1 outlines the SlowFast Sampling Strategy, a dynamic, two-phase framework for accelerat-
ing dLLMs. It starts with the Slow, Exploratory Stage, which proceeds step-by-step (Lines 10-12) to
determine a safe decoding span boundary. This boundary is validated by a Variance-based Stability
Check (Lines 16-22), confirming stability when the variance of endpoint predictions falls below
02, 1.~ Once stability is confirmed, the algorithm enters the Fast, Accelerated Decoding Stage. Here,
acceleration is achieved via In-Span Parallel Decoding (Lines 40-47), where high-confidence tokens
within the span are unmasked simultaneously. Additionally, Out-of-Span Caching (Lines 34-39)
prepares for the subsequent cycle. This adaptive, two-stage mechanism ensures maximum efficiency
is achieved only in reliably stable regions.
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Algorithm 1 SlowFast Sampling Strategy

Require: Masked sequence y™V), Prompt ¢, Max steps N, Exploratory limit &, 4, History window
Whist, Stability threshold meble, Confidence thresholds Tonin_con fs Thigh_conf-

Ensure: Generated sequence y(%).

1: k< N > Initialize diffusion step
20 Seyete < 1 > Start of the current decoding cycle
3: Hy + 0 > History of convergence points
4: while £ > 0 and s.yc;c < L do
5: // Phase 1: Exploratory Stage (Slow)
6: step_count < 0
7: is_stable < False
8: while step_count < K4, and k > 0 do
9: Predict 7" and confidence Py (-|c, y*))
10: Cautious Decoding:
11: Unmask Top-k;0., tokens in range [Scycre, L]
12: End Point Prediction:
13: ecind — max{i | 7 € [scyete; L] A Pg(f[(){?) > Tonin_conf }
14: Update history window Hyy with egz)n d
15: Stability Check:
16: Varcy,r < Variance(Hyy)
17: if |[Hw| > Whise and Varey,, < 02,,,. then
18: 1s_stable <+ True
19: €cycle < Mean(Hyy)
20: k+— k-1
21: break > Exit slow phase early
22: end if
23: Update state y*~1) using standard scheduler
24: k< k-1
25: step_count < step_count + 1

26: end while

27: if not is_stable then
28: €cycle eg?nd
29: end if

30: // Phase 2: Accelerated Decoding Stage (Fast)
31: if £ > 0 then

> Fallback if no convergence

32: Predict 7" and confidence Py (-|c, y*))

33: Out-of-Span Caching:

34: for i € (ecycie, L] do

35: if Pg(f(()]i-)) < Tmin_conf then

36: Cache features for position ¢

37: end if

38: end for

39: In-Span Parallel Decoding:

40: Shigh — {l ‘ 1€ [Scyclea ecycle] A P0 ('fléi)) > 7—high_conf}

41: if Shign # () then

42: yi(k_l) — f'é{? forall i € Shign > Aggressive unmasking
43: else

44: Unmask Top-k fqs¢ tokens in [Scycie, €cycle] > Fallback refinement
45: end if

46: Scycle € Ceyele > Advance the stable region start
47: k+ k-1

48: end if

49: end while
50: return y(®)
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