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ABSTRACT

Model-based reinforcement learning (MBRL) seeks to enhance data efficiency
by learning a model of the environment and generating synthetic rollouts from
it. However, accumulated model errors during these rollouts can distort the data
distribution, negatively impacting policy learning and hindering long-term plan-
ning. Thus, the accumulation of model errors is a key bottleneck in current MBRL
methods. We propose Infoprop, a model-based rollout mechanism that separates
aleatoric from epistemic model uncertainty and reduces the influence of the lat-
ter on the data distribution. Further, Infoprop keeps track of accumulated model
errors along a model rollout and provides termination criteria to limit data corrup-
tion. We demonstrate the capabilities of Infoprop in the Infoprop-Dyna algorithm,
reporting state-of-the-art performance in Dyna-style MBRL on common MuJoCo
benchmark tasks while substantially increasing rollout length and data quality.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful framework for solving complex decision-
making tasks like racing Vasco et al. (2024); Kaufmann et al. (2023) and gameplay OpenAI et al.
(2019); Bi & D’Andrea (2024). However, when applying RL in real-world scenarios, a significant
challenge is data inefficiency, which hinders the practicality of standard RL methods. Model-based
reinforcement learning (MBRL) addresses this issue by learning an internal model of the environ-
ment Deisenroth & Rasmussen (2011); Chua et al. (2018); Janner et al. (2019); Hafner et al. (2020).
By generating simulated interactions through model rollouts, MBRL can make informed decisions
while substantially reducing the need for real-world data collection.

The quality of data from model-based rollouts is critical for MBRL performance. Model errors can
distort the data distribution and hurt policy learning. Long-horizon planning is desirable, however,
often infeasible as model errors accumulate over time. This effect is demonstrated in Figure 1. Even
for a simple toy example (described in Appendix B), we see the data distribution of model-based
rollouts under the state-of-the-art Trajectory Sampling (TS) Chua et al. (2018) scheme diverging
quickly from the ground truth distribution of environment rollouts. Thus, data from TS rollouts
can even be harmful to policy learning after a couple of time steps. This is largely because the TS
mechanism does not explicitly address the effect of model errors on the propagated data distribution.

To tackle this challenge, we propose Infoprop , a novel model-based rollout mechanism that miti-
gates data distortion by addressing two key questions: How to propagate? and When to stop? We
build our mechanism on explicitly leveraging the ability of common MBRL models to distinguish
between aleatoric uncertainty due to process noise and epistemic uncertainty due to lack of data
Lakshminarayanan et al. (2017); Becker & Neumann (2022). Making use of this property leads to
substantially improved data consistency as depicted in Figure 1. In particular, we

• estimate and remove the stochasticity due to model error from the predictive distribution;
• formulate stopping criteria based on information loss to limit error accumulation; and
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Figure 1: Comparing Data Consistency of Model-based Rollouts. Trajectories under the pro-
posed Infoprop mechanism follow the ground truth distribution of environment rollouts closely while
rolling out the same model under the common TS scheme Chua et al. (2018) results in distorted data.

• demonstrate the potential of Infoprop as a direct plugin to standard MBRL methods using the
example of Dyna-style MBRL. The resulting Infoprop-Dyna algorithm yields state-of-the-
art performance in MBRL on common MuJoCo tasks, while substantially improving the data
consistency of model-based rollouts and thus allowing for longer rollout horizons.

2 BACKGROUND

In the following, we introduce the fundamental concepts of information theory and MBRL. Ap-
pendix A provides an overview of the notation introduced and used in the remainder of the paper.

2.1 INFORMATION THEORY

We will estimate the degree of data corruption in Infoprop rollouts using information-theoretic ar-
guments. Information theory serves to quantify the uncertainty of a random variable (RV) Shan-
non (1948). Given the discrete RVs X : Ω → X and Y : Ω → Y , the marginal entropy
H(X) = −

∑
x∈X P[X = x] log2(P[X = x]) describes the average uncertainty about X in bits.

Further, the conditional entropy H(X|Y = y) = −
∑

x∈X P[X|Y = y] log2(P [X|Y = y]) gives
the uncertainty about X , given a realization of Y . Based on marginal and conditional entropy, the
reduction in uncertainty about X given a realization of Y is described by mutual information

I(X;Y = y) = H(X)−H(X|Y = y), (1)

with I(X;Y = y) = 0 if the RVs are independent. In the following, we focus on Gaussian RVs and
use the notion of quantized entropy Cover & Thomas (2006) with details provided in Appendix D.1.

2.2 REINFORCEMENT LEARNING

Reinforcement learning addresses sequential decision-making problems where the environment is
typically modeled as a discrete-time Markov decision process (MDP) represented by the tupleM =
{S,A,R, PR, PS , ξ0, γ}. Here, S ⊆ RnS denotes the state space with St ∈ S being the RV of the
state at time t and st its realization. Similarly, A ⊆ RnA represents the action space with At ∈ A
the RV and at the realization of the action as well as R ⊆ R the set of rewards with Rt ∈ R and rt
the reward at time t. We make the common simplifying assumption Bellemare et al. (2023) that the
next state and reward are independent given the current state-action pair. Thus, a transition step in
the environment can be expressed concerning a reward kernel PR and a dynamics kernel PS as

Rt+1 ∼ PR(·|St, At) and St+1 ∼ PS(·|St, At). (2)

Further, initial states are distributed according to S0 ∼ ξ0, and actions according to the policy
At ∼ π(·|St). We aim to learn an optimal policy π∗ = argmaxπ Eπ [

∑∞
t=0 γ

tRt+1] that maximizes
the expected sum of rewards discounted by γ ∈ [0, 1), referred to as return.
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2.3 MODEL-BASED REINFORCEMENT LEARNING

There are four main categories of MBRL that all build on model-based rollouts. (i) Dyna-style
methods Sutton (1991); Janner et al. (2019) use model-based rollouts to generate training data for a
model-free agent. (ii) Model-based planning approaches Chua et al. (2018); Williams et al. (2017);
Nagabandi et al. (2018); Hafner et al. (2019) do not learn an explicit policy but perform planning
via model rollouts during deployment. (iii) Analytic gradient methods Deisenroth & Rasmussen
(2011); Hafner et al. (2020; 2021; 2023) optimize the policy by backpropagating the performance
gradient through model rollouts. (iv) Value-expansion approaches Feinberg et al. (2018); Buckman
et al. (2018) stabilize the temporal difference target using model-based rollouts.

The model architecture of an MBRL algorithm determines the set of mechanisms for model rollouts.
In this work, we focus on rolling out the particularly successful class of aleatoric epistemic separator
(AES) models Lakshminarayanan et al. (2017); Becker & Neumann (2022) that can distinguish
aleatoric uncertainty corresponding to the estimate of process noise from epistemic uncertainty.

2.4 ENVIRONMENT INTERACTION VS. MODEL-BASED ROLLOUTS

Model-based rollouts aim to substitute environment interaction in MBRL. Thus, we compare the
data generation process through environment interaction to the process of model-based rollouts.

We model environment dynamics as a nonlinear function µ(St, At) with additive heteroscedastic
process noise that is normally distributed with variance Σ(St, At). Thus, environment rollouts, as
depicted in Figure 1, are generated by iterating the dynamics

St+1 = µ(St, At) + L(St, At)Wt, (3)
with L(St, At)L(St, At)

⊤ = Σ(St, At) and the process noise Wt ∼ N (0, I). Consequently, the
transition kernel 1 of the environment is defined as PS (·|St, At) = N (µ(St, At),Σ(St, At)).

In MBRL, however, we do not have access to PS directly but typically rely on a parametric model
with the random parameters Θt ∈ ϑ. Besides estimates of nonlinear dynamics µ̂Θt

(St, At) and
process noise Σ̂Θt

(St, At), AES models provide an estimate of the parameter distribution Θt ∼ PΘ,
e.g. via ensembling Lakshminarayanan et al. (2017) or dropout Becker & Neumann (2022). These
models are typically propagated using the TS Chua et al. (2018) rollout mechanism via iterating

St+1 = µ̂Θt
(St, At) + L̂Θt

(St, At)Wt (4)

with L̂Θt
(St, At)L̂Θt

(St, At)
⊤ = Σ̂Θt

(St, At), Wt ∼ N (0, I), and Θt ∼ PΘ. This results in the
TS rollouts in Figure 1 and induces the kernel P̂S,TS(·|St, At) = N

(
µ̂Θt

(St, At), Σ̂Θt
(St, At)

)
.

The majority of recent MBRL approaches use the TS rollout mechanism, e.g. Chua et al. (2018);
Becker & Neumann (2022); Janner et al. (2019); Pan et al. (2020); Yu et al. (2020); Luis et al.
(2023). Pseudocode is provided in Algorithm 2 of Appendix C.

3 PROBLEM STATEMENT

Revisiting Figure 1 allows us to illustrate the effects of different sources of stochasticity by compar-
ing environment interaction under PS to TS rollouts under P̂S,TS. While different realizations of
process noise wt ∼ N (0, I) allow for keeping track of the environment distribution, the sampling
process θt ∼ PΘ introduces additional stochasticity that leads to an overestimated total variance in
the TS rollout distribution. This effect is amplified through the continued propagation of erroneous
predictions making data at later steps unfit for policy learning. We ask the following questions:

(i) How can we construct a predictive distribution closely resembling environment dynamics?
(ii) How can we quantify the degree of data corruption due to model error?

(iii) When should model-based rollouts be terminated due to data corruption?

We address these questions by proposing the Infoprop rollout mechanism. Infoprop isolates and
removes epistemic uncertainty for an improved predictive distribution, keeps track of data corruption
using information-theoretic arguments, and terminates rollouts based on the degree of corruption.

1As PR typically is a known deterministic function in the context of MBRL, while PS is the unknown
object we aim to model, the discussion henceforth focuses on approximating PS without loss of generality.
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4 INFOPROP ROLLOUT MECHANISM

In the following, we introduce the Info-
prop mechanism for model-based roll-
outs. As depicted in Figure 2, we de-
compose model predictions into a sig-
nal fraction representing the environ-
ment dynamics and noise fraction in-
troduced by model error. This perspec-
tive allows to interpret model rollouts as
communication through a noisy chan-
nel. We estimate both the signal and the
noise distribution and use these to in-
fer a belief over the environment state,
given an observation of the model state.
This belief state represents the founda-
tion of the Infoprop rollout mechanism.

Figure 2: Infoprop block diagram

4.1 THEORETICAL SETUP

First, we introduce additional notation to specify RVs under different transition kernels.
Definition 1 (Environment state). We define the environment state as the conditional expectation
under the environment dynamics given a realization of a state-action pair

Št+1 := EPS [St+1|St = st, At = at,Wt] . (5)

Thus, Št+1 is an RV, where the randomness is induced by the process noise and has an aleatoric
nature. If we additionally condition on the realization Wt = wt, we obtain a deterministic object.

Definition 2 (Model state). We define the model state as the conditional expectation under P̂S,TS

Ŝt+1 := EP̂S,TS
[St+1|St = st, At = at,Wt,Θt] . (6)

As discussed in Section 3, stochasticity in Ŝt+1 is induced not only by Wt but also by the randomness
in the parameters Θt. We project the uncertainty in the parameter space ϑ to S via an error process.
Definition 3 (Model error process). We define a model error process

∆t := Ŝt+1 − Št+1 (7)

that, given a realization of process noise Wt = wt, projects uncertainty in ϑ to S
E [∆t|Wt = wt] = EP̂S,TS

[St+1|st, at, wt,Θt]− EPS [St+1|st, at, wt] . (8)

We refer to the projected parameter uncertainty as epistemic uncertainty.
Further, we restrict model usage to a sufficiently accurate subset E ⊆ S × A, as proposed in
Frauenknecht et al. (2024). We define E amenable to the Infoprop setting in Section 4.4 and make
the following assumptions when performing model-based rollouts in E :

Assumption 1 (Consistent estimator of aleatoric uncertainty). The model’s predictive variance Σ̂Θt

is a consistent estimator of Σ following the definition of Julier & Uhlmann (2001), i.e.(
Σ̂Θt

(St, At)− Σ(St, At)
)
≽ 0 ∀(St, At) ∈ E . (9)

Assumption 2 (Unbiased estimator). The model bias µ∆ is negligible. Thus Ŝt+1 according to (4)
is an unbiased estimator of Št+1 according to (3), i.e.

E[Ŝt+1|St, At] = E
[
Št+1|St, At

]
∀(St, At) ∈ E . (10)

Figure 1 empirically shows that these assumptions are reasonable. The Infoprop distribution is
slightly more stochastic than the ground truth process, which indicates that Assumption 1 holds. As
(9) states, the model does not underestimate aleatoric uncertainty; the Infoprop rollouts should be
at least as stochastic as the true process. Further, we observe no substantial bias of the Infoprop
distribution underscoring the soundness of Assumption 2. Infoprop shows a similar behavior in high
dimensional problems as reported in Section 6.
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4.2 DECOMPOSING THE MODEL STATE IN SIGNAL AND NOISE

We aim to isolate the stochasticity due to parameter uncertainty in Ŝt+1. We use the model error
process (8) to project the noise in ϑ to the same space as the signal, i.e. the dynamics, which is
S. The parameter distribution Θt ∼ PΘ can induce arbitrarily complex distributions ∆t ∼ P∆. To
simplify the analysis, we solely consider the first two moments of P∆, namely µ∆ and Σ∆. This
allows to reformulate the propagation equation (4) of the model state

Ŝt+1 = Št+1 +∆t ≈ Št+1 + µ∆(St, At) + L∆(St, At)Nt (11)

concerning Št+1 and the model error ∆t represented by µ∆(St, At) the model bias, Σ∆(St, At) the
epistemic variance with Cholesky decomposition L∆(St, At), and Nt the epistemic noise.

By Assumption 2, we have µ∆(St, At) = 0 ∀(St, At) ∈ E . Consequently, we can interpret the
model rollout as communication through a Gaussian noise channel Cover & Thomas (2006) via (11).

Based on the propagation equation (11), we aim to infer the maximum likelihood estimate of Št+1

from E realizations of {E[Ŝt+1|Nt = ne
t ]}Ee=1, to use it as the predictive distribution for our rollout

scheme. As we cannot sample Nt directly, we instead use an equivalent definition of Ŝt+1.
Definition 4 (Model state concerning epistemic uncertainty). Based on the model error process (8)
the model state is defined as

Ŝt+1 = EP̂S,TS
[St+1|St = st, At = at,Wt,∆t] ≈ EP̂S,TS

[St+1|St = st, At = at,Wt, Nt] (12)

Reformulating (6) concerning ∆t does not change the information content or the induced sigma-
algebra, as ∆t is a measurable function of Θt. In the simplified setting of solely considering the first
two moments of P∆, Nt fully describes stochasticity due to model error. In reverse, we can obtain
realizations {E[Ŝt+1|Θt = θet ]}Ee=1 and interpret them as samples {E[Ŝt+1|Nt = ne

t ]}Ee=1.

Lemma 1. Given E realizations of E
[
Ŝt+1|Θt = θet

]
, we can estimate the environment state using

maximum likelihood as

Št+1 = E
[
Ŝt+1|Nt = 0

]
≈ S̄t+1 = µ̄(St, At) + L̄(St, At)Wt (13)

Proof. see Appendix D.2.1

Lemma 2. Following this line of thought, the maximum likelihood estimate of Σ∆ is given by

Σ̄∆(St, At) =
1

E

E∑
e=1

(
µ̂Θt=θe

t
(St, At)− µ̄(St, At)

) (
µ̂Θt=θe

t
(St, At)− µ̄(St, At)

)⊤
. (14)

Proof. see Appendix D.2.2

Given the maximum likelihood estimates of the environment state S̄t+1 and the epistemic variance
Σ̄∆, we can decompose the model state Ŝt+1 in a signal and noise fraction according to (11) in E .

4.3 CONSTRUCTING THE INFOPROP STATE

Having decomposed Ŝt+1 into signal S̄t+1 and noise Σ̄∆, allows us to define the Infoprop state.
Definition 5 (Infoprop state). We define the Infoprop state

S̃t+1 := E
[
S̄t+1|Ŝt+1 = ŝt+1

]
= EP̃S,IP

[
St+1|St = st, At = at, Ŝt+1 = ŝt+1, Ut

]
(15)

as the conditional expectation of the estimated environment state given a sample of
the model state. We derive the corresponding Infoprop kernel P̃S,IP(·|St, At, Ŝt+1) =

N
(
µ̃(St, At, Ŝt+1), Σ̃(St, At, Ŝt+1)

)
with the conditional noise Ut ∼ N (0, I) in Appendix D.3.

Consequently, the Infoprop state aims to infer the signal S̄t+1 given a noisy observation ŝt+1. Prop-
agating model-based rollouts using S̃t+1, yields favorable properties as stated in Theorem 1.
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(a) Perfect model. (b) Erroneous model. (c) Rollout propagation.

Figure 3: Infoprop rollout mechanism. (a), (b): Generating the Infoprop state S̃t+1 from the esti-
mated predictive distribution S̄t+1 and the model sample ŝt+1. (c) Performing an Infoprop rollout.

Theorem 1 (Infoprop state). By construction, S̃t+1 addresses questions (i) and (ii) of Section 3.

(i) The distribution of Infoprop states is identical to the estimated environment distribution.

S̃t+1
dist
= S̄t+1 (16)

Proof. see Appendix D.4.

(ii) The sum of marginal entropies of S̃t+1 defines the information loss along an Infoprop rollout.

H
(
S̄1, S̄2, . . . S̄T |S0 = s0, A0 = a0, Ŝ1 = ŝ1, . . . ŜT = ŝT

)
=

T∑
t=0

H
(
S̃t+1

)
(17)

Proof. see Appendix D.5.

Figure 3 illustrates the Infoprop rollout mechanism and provides intuition for Theorem 1. In the case
of a perfect model, i.e. Σ̄∆ = 0, depicted in Figure 3a, the realization ŝt+1 provides the information
about the process noise realization wt without ambiguity. Consequently, the belief about the environ-
ment state given the sample from the model S̃t+1 = E[S̄t+1|Ŝt+1 = ŝt+1] is a deterministic object
and H(S̃t+1) = 0. In the general scenario of Σ̄∆ > 0 depicted in Figure 3b, the epistemic uncer-
tainty results in ambiguity about the environment state given ŝt+1, such that H(S̃t+1) > 0. Notably,
conditioning S̄t+1 on ŝt+1, results in Infoprop predictions S̃t+1 following estimated environment
distribution S̄t+1 as stated in Theorem 1 (i). This results in a data distribution that closely resem-
bles the environment dynamics as desired in question (i) of Section 3. Finally, Figure 3c depicts a
Infoprop rollout propagated via realization s̃t+1. We measure data corruption due to model error us-
ing the conditional entropy of a rollout under the estimated environment dynamics (S̄1, S̄2, . . . S̄T )

given the realizations observed from the model (S0 = s0, A0 = a0, Ŝ1 = ŝ1, . . . ŜT = ŝT ), i.e.
given the observed model trajectory, how sure are we on how the corresponding environment trajec-
tory would look like?. As per Theorem 1 (ii), this trajectory-based approach to uncertainty can be
addressed with the accumulated marginal entropy of S̃t+1, addressing question (ii) of Section 3.

4.4 ROLLOUT TERMINATION CRITERIA

Having introduced how to propagate Infoprop rollouts, the question remains when to terminate them.
In the following, we propose two termination criteria to address question (iii) of Section 3.

First, Infoprop rollouts build on the assumption that model usage is restricted to a sufficiently accu-
rate subset E ⊆ S ×A, following the ideas of Frauenknecht et al. (2024).

Definition 6 (Sufficiently accurate subset). We define the sufficiently accurate subset

E := {(st, at) ∈ S ×A | H(S̃t+1) ≤ λ1, ŝt+1 ∼ P̂S,TS(·|st, at)} (18)

based on a threshold λ1 for the single-step information loss H(S̃t+1).
Second, we restrict Infoprop rollouts to sufficiently accurate paths to limit uncertainty accumulation.
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Definition 7 (Sufficiently accurate path). Based on the estimated information loss along a rollout
(17), we define the set of sufficiently accurate paths of length t′ ∈ {1, . . . , T} as

Pt′ :=

(st, at)
t′

t=0 ∈ (S ×A)t
′

∣∣∣∣∣∣
t′∑

t=0

H(S̃t+1) ≤ λ2

 . (19)

Heuristics for determining values of λ1 and λ2 depend on the class of AES model and MBRL
algorithm at hand with an example provided in Section 5. Combining the steps above yields the
Infoprop rollout mechanism illustrated in Algorithm 1.

Algorithm 1 Infoprop

Require: s0
while t < T + 1 do

at ∼ π(·|st)
for e ∈ {1, . . . , E} do

θet ∼ PΘ

S̄t+1(st, at) from (13), and Σ̄∆(st, at) from (14)
ŝt+1 = E

[
Ŝt+1|Wt = wt,Θt = θe

′

t

]
with wt ∼ N (0, I), θe

′

t ∼ U({θ1t , . . . , θEt })
S̃t+1 from (51) and H(S̃t+1) from (24)
if H(S̃t+1) > λ1 then

break
else if

∑t
t′=0 H(S̃t′+1) > λ2 then

break
else

st ← E[S̃t+1|Ut = ut] with ut ∼ N (0, I)

5 AUGMENTING STATE-OF-THE-ART: INFOPROP-DYNA

While the Infoprop rollout mechanism is applicable to different kinds of MBRL with AES models,
we illustrate its capabilities in a Dyna-style architecture with probabilistic ensemble (PE) models
Lakshminarayanan et al. (2017). We design Infoprop-Dyna by integrating the Infoprop rollout
mechanism in the state-of-the-art framework proposed in Janner et al. (2019) with minor adaptions.

As discussed in Section 4.4, heuristics for λ1 and λ2 depend on the algorithm at hand. In Infoprop-
Dyna , we take the common approach Chua et al. (2018); Janner et al. (2019) of neglecting cross-
correlations between state dimensions for computational reasons. Thus, we can consider data cor-
ruption of each state dimension independently. As the predictive quality of different state dimensions
can differ substantially, we choose both thresholds as nS dimensional vectors, such that a rollout is
terminated as soon as the data corruption of any dimension overshoots the corresponding threshold.

In Dyna-style MBRL Janner et al. (2019), the dynamics model is trained on the data distribution ob-
served during environment interaction. The corresponding transitions are stored in an environment
replay buffer Denv = {(š(b)t , ǎ

(b)
t , ř

(b)
t+1, š

(b)
t+1)}

|Denv|
b=1 , where (b) indicates the index in the replay

buffer. After a fixed number of interaction steps between a model-free RL agent and the environ-
ment, the dynamics model is retrained on the data in Denv, model-based rollouts are performed, and
the data is stored stored in a replay buffer Dmod to train the model-free RL agent. Consequently, we
assume the PE model to be accurate within the data distribution of Denv and build the heuristic for
λ1 and λ2 on the predictive uncertainty within the environment buffer.

After each round of retraining the PE model, we compute a set of dimension-wise Infoprop state
entropies for single-step predictions in Denv according to

Hk =
{
H
(
S̄k
t+1|St = š

(b)
t , At = ǎ

(b)
t , Ŝk

t+1 = ŝ
k,(b)
t+1

)
= H

(
S̃
k,(b)
t+1

)}|Denv|

b=1
(20)
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where k ∈ {1, . . . , nS} indicates the corresponding state dimension. We define the dimension-wise
thresholds λk

1 and λk
2 based on the cumulative distribution function of dimension-wise entropies

FHk(h) =
1

|Hk|
∑

h′∈Hk

1[h′ ≤ h]. (21)

The kth element of λ1 is defined as the ζ1 quantile of the single-step entropy set

λk
1 = inf

{
h ∈ Hk : FHk(h) ≥ ζ1

}
(22)

and limits model usage to the sufficiently accurate subset E . To restrict rollouts of length t′ to Pt′ ,
we define the kth element of λ2 as the ζ2 quantile of the entropy set scaled by ξ

λk
2 = ξ inf

{
h ∈ Hk : FHk(h) ≥ ζ2

}
. (23)

Here, ζ2 denotes a quantile corresponding to precise predictions and ξ to the number of prediction
steps we are willing to accumulate the resulting data corruption. We choose ζ1 = 0.99, ζ2 = 0.01
and ξ = 100 for all experiments in Section 6 without further hyperparameter tuning.

We use pink noise for environment exploration Eberhard et al. (2023) to quickly expand E
Frauenknecht et al. (2024). Pseudocode is provided in Algorithm 3 of Appendix C.

6 EXPERIMENTS AND DISCUSSION

To demonstrate the benefits of the Infoprop mechanism, we compare Infoprop-Dyna to state-of-the-
art Dyna-style MBRL algorithms on MuJoCo Todorov et al. (2012) benchmark tasks. We report

• substantial improvements in the consistency of predicted data, especially over long horizons;
• effective rollout termination based on accumulated model error propagation; and
• state-of-the-art performance in Dyna-style MBRL on several MuJoCo tasks.

Furthermore, we discuss the limitations of naively integrating Infoprop into the standard Dyna-style
setup Janner et al. (2019) and point to further research questions.

6.1 EXPERIMENTAL SETUP

We compare Infoprop-Dyna to Model-Based Policy Optimization (MBPO) Janner et al. (2019) and
Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption (MACURA) Frauenknecht
et al. (2024) as well as to Soft Actor-Critic (SAC) Haarnoja et al. (2018) that represents the model-
free learner of all the Dyna-style approaches above. We build our implementation2 on the code base3

provided by Frauenknecht et al. (2024). Further details are provided in Appendix E.1

6.2 PREDICTION QUALITY

To compare different rollout mechanisms, we train an Infoprop-Dyna agent on hopper for 120000
environment interactions and perform model rollouts from states in Denv.

First, we evaluate the consistency of Infoprop and TS rollouts, propagating 20 steps without ter-
mination. Figure 4a depicts the resulting distributions for the 11th dimension of the hopper state.
Infoprop rollouts show substantially improved data consistency compared to TS rollouts, underscor-
ing the ability of Infoprop to effectively mitigate model error propagation.

Next, we compare the rollout mechanisms of MBPO and MACURA based on TS sampling with
Infoprop-Dyna rollouts. Figure 4b shows the results for 11th dimension of the hopper and a maxi-
mum rollout length of 100 steps. MBPO rollouts are propagated for 11 steps following the schedule
proposed in Janner et al. (2019), resulting in a widely spread distribution. In contrast, MACURA
has an adaptive rollout length capped at 10 steps Frauenknecht et al. (2024), leading to better data
consistency. The improved predictive distribution and capability to estimate accumulated error of
Infoprop allows for substantially longer rollouts up to 100 steps. The Infoprop termination criteria
reliably stop distorted rollouts, resulting in consistent rollouts over long horizons. Appendix E.2
provides additional results for setting the maximum rollout length of all three approaches to 100.

2https://github.com/Data-Science-in-Mechanical-Engineering/infoprop
3https://github.com/Data-Science-in-Mechanical-Engineering/macura
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Figure 5: Evaluation on MuJoCo tasks. (a) Infoprop-Dyna shows state-of-the-art performance for
Dyna-style MBRL on several MuJoCo tasks while considerably increasing average rollout length on
most tasks. (b) Infoprop-Dyna shows substantially improved consistency between Denv and Dmod.

6.3 PERFORMANCE EVALUATION

As depicted in the top row of Figure 5a, Infoprop-Dyna performs on par with or better than
MACURA, while substantially outperforming MBPO with respect to data efficiency and asymptotic
performance. Notably, Infoprop-Dyna consistently outperforms SAC with a fraction of environment
interaction. The bottom row of Figure 5a depicts the average rollout lengths. Infoprop-Dyna shows
substantially increased rollout lengths compared to prior methods in all environments but ant.

A major concern of this work is the consistency of model-based rollouts with the environment dis-
tribution. Figure 5b depicts the data distribution in Denv and Dmod of the respective Dyna-style
approaches throughout training for the 11th dimension of the hopper state. The distributions are
illustrated via histograms over environment steps. It can be seen that the model data distribution
of Infoprop-Dyna closely follows the distribution observed in the environment, while both the data
from MBPO and MACURA show severe outliers. This is the case, even though the rollout data in
Infoprop-Dyna is obtained from substantially longer rollouts as can be seen from Figure 5a which
indicates the capabilities of the Infoprop rollout mechanism.
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6.4 LIMITATIONS AND OUTLOOK

Despite the excellent quality of model-generated data with the Infoprop rollout, the limitations of
Infoprop-Dyna are most apparent on MuJoCo humanoid with results provided in Appendix E.3.
These show instabilities in learning and point to structural problems when integrating Infoprop roll-
outs naively into standard Dyna-style architectures Janner et al. (2019).

Figure 5b shows that the long rollouts of Infoprop-Dyna can cause rapid distribution shifts in Dmod,
especially early in training. These nonstationary buffers are a well-known challenge to deep Q-
learning methods Mnih et al. (2015). Another issue is primacy bias in model learning Qiao et al.
(2023), where the model overfits to initial data and subsequently struggles to generalize, as seen in
the decreasing rollout length for ant in Figure 5a. The main problem with Infoprop-Dyna is likely
overfitting critics and plasticity loss Nikishin et al. (2022); D’Oro et al. (2023), as also reported
by Frauenknecht et al. (2024) for Dyna-style MBRL trained on high-quality data. We provide an
ablation on this observation and sketch methods to counteract this phenomenon in Appendix E.4.

7 RELATED WORK

The negative effects of accumulated model error on the performance of MBRL methods is a long-
studied problem Venkatraman et al. (2015); Talvitie (2016); Asadi et al. (2018b;a).

Different model architectures have been proposed to mitigate this issue, such as trajectory models
Asadi et al. (2019); Lambert et al. (2021), bidirectional models Lai et al. (2020), temporal segment
models Mishra et al. (2017) or self-correcting models Talvitie (2016). These architectures, however,
imply substantial additional effort for model learning, such that state-of-the-art performance in the
respective fields of MBRL is often reported for simpler single-step model architectures Chua et al.
(2018); Janner et al. (2019); Buckman et al. (2018).

These approaches address the problem of error accumulation by keeping model-based rollouts suf-
ficiently short. Janner et al. (2019) introduce the concept of branched rollouts that allows to cover
relevant parts of S with short model rollouts. Other methods weight rollouts of different lengths
according to their single-step uncertainty Buckman et al. (2018) or use single-step uncertainty to
schedule rollout length Pan et al. (2020); Frauenknecht et al. (2024). Infoprop allows to infer model
data consistent with the environment distribution over long rollout horizons using comparatively
simple model architectures and computationally cheap conditioning operations.

Infoprop is inspired by an information-theoretic view on RL Lu et al. (2023). Thus far, information-
theoretic arguments have been mostly used to improve the exploration Haarnoja et al. (2018); Lu
& Roy (2019); Ahmed et al. (2019); Mohamed & Rezende (2015) and generalization Tishby & Za-
slavsky (2015); Lu et al. (2020); Igl et al. (2019); Islam et al. (2023) of model-free RL methods.
While aspects of dynamical systems such as causality, modeling, and control Lozano-Duran & Ar-
ranz (2021), predictability Kleeman (2011) or dealing with noisy observations Gattami (2014) have
been studied from an information theoretic perspective, these works do not directly apply to the
MBRL setup nor extend to long model-based rollouts.

8 CONCLUDING REMARKS

Data consistency of model-based rollouts is a key criterion for the performance of MBRL ap-
proaches. This work proposes the novel Infoprop mechanism that substantially improves rollouts
with common AES models. We reduce the influence of epistemic uncertainty on the predictive
distribution of model-based rollouts, keep track of data corruption through propagated model error
over long horizons, and terminate rollouts based on data corruption. This allows for considerably
increased rollout lengths while substantially improving data consistency simultaneously.

While Infoprop is applicable to a broad range of MBRL methods, we demonstrate its capabilities
by naively integrating Infoprop into a standard Dyna-style MBRL architecture Janner et al. (2019)
resulting in the Infoprop-Dyna algorithm. We report state-of-the-art performance in several MuJoCo
tasks while pointing to necessary adaptions to the existing algorithmic framework to fully unleash
the potential of Infoprop rollouts.
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A NOTATION

A.1 RANDOM VARIABLES

St Random variable of a general state
Št Random variable of the environment state
Ŝt Random variable of the model state
S̄t Random variable of the estimated environment state
S̃t Random variable of the Infoprop state
At Random variable of the action
∆t Random variable of the model error
Wt Random variable of the aleatoric noise
Nt Random variable of the epistemic noise
Ut Random variable of the conditional noise
Θt Random variable of the model parameters

A.2 REALIZATIONS

st Realization of a general state
št Realization of the environment state
ŝt Realization of the model state
s̄t Realization of the estimated environment state
s̃t Realization of the Infoprop state
at Realization of the action
wt Realization of the aleatoric noise
nt Realization of the epistemic noise
ut Realization of the conditional noise
θt Realization of the model parameters

A.3 TRANSITION KERNELS

PS (·|St, At) = N (µ(St, At),Σ(St, At)) Environment Transition Kernel
P̂S,TS(·|St, At) = N

(
µ̂Θt

(St, At), Σ̂Θt
(St, At)

)
Trajectory Sampling Kernel

P̃S,IP(·|St, At, Ŝt+1) = N
(
µ̃(St, At, Ŝt+1), Σ̃(St, At, Ŝt+1)

)
Infoprop Kernel
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B TOY EXAMPLE

In Figure 1, we illustrate the data consistency of Trajectory Sampling Chua et al. (2018) and Infoprop
in a one-dimensional random walk example with S ⊆ R and A ⊆ R. The dynamics follow (3) with
µ(St, At) = St + At and L(St, At) = 0.01. Actions are distributed according to At ∼ N (0, 0.1).
All rollouts start from s0 = 0 and are propagated for 100 steps. We perform 1000 rollouts under the
environment dynamics and train a Probabilistic Ensemble Lakshminarayanan et al. (2017) model
according to the information provided in Table 1. Subsequently, we perform 1000 model-based
rollouts with this model and the respective rollout mechanism.

Hyperparameter Value
number of ensemble members 5

number of hidden neurons 2
number of layers 1

learning rate 0.001
weight decay 0.00001

number of epochs 4

Table 1: Hyperparameters used for training the model on the random walk dataset.

C PSEUDOCODE ALGORITHMS

Algorithm 2 Trajectory Sampling Chua et al. (2018)

Require: s0
while t < T + 1 do

at ∼ π(·|st)
ŝt+1 = E

[
Ŝt+1|Wt = wt,Θt = θt

]
with wt ∼ N (0, I) and θt ∼ PΘ

st ← ŝt+1

Algorithm 3 Infoprop-Dyna (Pseudocode adapted from Janner et al. (2019))

Require: Policy π, predictive AES model pΘ, environment bufferDenv, model bufferDmod, rollout
parameters T , ζ1, ζ2, ξ
for N epochs do

for J steps do
Interact with the environment according to π; add to Denv

Train model pΘ on Denv

Perform single-step predictions with pΘ in Denv

Compute λ1 (22) and λ2 (23)
for M model rollouts do

Sample s0 uniformly from Denv

Perform Infoprop rollouts according to Algorithm 1; add to Dmod

for G · J gradient updates do
Update π on Denv ∪ Dmod
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D DERIVATIONS

D.1 QUANTIZED ENTROPY

For a RV Z ∈ Z ⊆ RnZ with Z ∼ N (µZ ,ΣZ) and discretization step size ∆z(k) of the kth

dimension, the quantized entropy Cover & Thomas (2006) is

H(Z) =
1

2
log2 ((2πe)

nZ |ΣZ |)−
nZ∑
k=1

log2

(
∆z(k)

)
. (24)

D.2 MAXIMUM LIKELIHOOD PREDICTIVE DISTRIBUTION

D.2.1 PROOF OF LEMMA 1

Proof. We introduce the conditional expectation over the next state under the model, given a real-
ization θet

Ŝe
t+1 := EP̂S,TS

[
Ŝt+1|Θt = θet

]
. (25)

Further, µ̂e := µ̂Θt=θe
t
, Σ̂e := Σ̂Θt=θe

t
and L̂e := L̂Θt=θe

t
such that

Ŝe
t+1 = µ̂e(St, At) + L̂e(St, At)Wt. (26)

Given E RVs Ŝe
t+1 we define their joint distribution Ŝ1

t+1
...

ŜE
t+1

 ∼ N

 µ̂1

...
µ̂E

 ,

 Σ̂1 · · · Σ̂1E

...
. . .

...
Σ̂E1 · · · Σ̂E




=: Ŝ ∼ N
(
µ̂, Σ̂

) (27)

with Σ̂ef := Cov
[
Ŝe
t+1, Ŝ

f
t+1

]
. We aim to track St+1 such that

HSt+1 ∼ N
(
µ̂, Σ̂

)
(28)

where we use H = [I, I, . . . , I]⊤ ∈ RnS ·E×nS to project St+1 to the dimension of the joint Ŝ.

We define the maximum likelihood loss

L(St+1) = p(Ŝ|St+1) =
1

|2πΣ̂| 12
exp

(
−1

2

(
Ŝ −HSt+1

)
Σ̂−1

(
Ŝ −HSt+1

))
(29)

such that

log (L(St+1)) = −
1

2
log
(
|2πΣ̂|

)
− 1

2

(
Ŝ −HSt+1

)
Σ̂−1

(
Ŝ −HSt+1

)
. (30)

We aim to obtain the maximizer of the log-likelihood such that

S̄t+1 = argmax
St+1

log (L(St+1)) . (31)

Consequently,
∂

∂St+1
log (L(St+1)) = −

1

2
H⊤Σ̂−1

(
Ŝ −HSt+1

)
:= 0

⇒ H⊤Σ̂−1Ŝ −H⊤Σ̂−1HS̄t+1 = 0

⇒ S̄t+1 =
(
H⊤Σ̂−1H

)−1

H⊤Σ̂−1Ŝ.

(32)

As a result, we obtain

µ̄ = E
[
S̄t+1

]
=
(
H⊤Σ̂−1H

)−1

H⊤Σ̂−1µ̂ (33)
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and

Σ̄ = Var
[
S̄t+1

]
= Var

[(
H⊤Σ̂−1H

)−1

H⊤Σ̂−1Ŝ

]
=
(
H⊤Σ̂−1H

)−1

H⊤Σ̂−1Var
[
Ŝ
]
Σ̂−1H

(
H⊤Σ̂−1H

)−1

=
(
H⊤Σ̂−1H

)−1

H⊤Σ̂−1Σ̂Σ̂−1H
(
H⊤Σ̂−1H

)−1

=
(
H⊤Σ̂−1H

)−1

(34)

which corresponds to standard results in Kalman fusion. However, as the cross-correlations Σ̂ef

are unknown in practice, we approximate the Kalman fusion results (33) and (34) using covariance
intersection fusion Julier & Uhlmann (2001) with uniform weights, making use of Assumption 1.
This results in

Σ̄ =

(
1

E

E∑
e=1

(
Σ̂e
)−1

)−1

(35)

and

µ̄ = Σ̄

(
1

E

E∑
e=1

(
Σ̂e
)−1

µ̂e

)
. (36)

Hence, we can estimate the environment state as

S̄t+1 = µ̄(St, At) + L̄(St, At)Wt, (37)

with L̄L̄⊤ = Σ̄ and Wt ∼ N (0, I).

D.2.2 PROOF OF LEMMA 2

Proof. We continue here using the quantities we estimated in the previous section. To estimate Σ∆,
we interpret {µ̂1}Ee=1 as samples from a distribution whose mean is known to be µ̄. With this, the
maximum likelihood estimate of Σ∆ can be obtained trivially as

Σ̄∆ =
1

E

E∑
e=1

(µ̂e − µ̄) (µ̂e − µ̄)
⊤
. (38)

D.3 INFOPROP STATE

As introduced in (15), the Infoprop state is defined as

S̃t+1 := E
[
S̄t+1|Ŝt+1 = ŝt+1

]
= EP̃S,IP

[
St+1|St = st, At = at, Ŝt+1 = ŝt+1, Ut

]
(39)

Combining (11) and Assumption 2, we have

Ŝt+1 = Št+1 + L∆(St, At)Nt. (40)

Plugging the respective maximum likelihood estimates into (40) yields

Ŝt+1 = S̄t+1 + L̄∆(St, At)Nt (41)

with
S̄t+1 = µ̄(St, At) + L̄(St, At)Wt (42)

according to (13). As we can generally consider model uncertainty as independent from process
noise, i.e. Nt ⊥ Wt, the Infoprop state S̃t+1 = E[Št+1|Ŝt+1 = ŝt+1] can be computed using a
standard Kalman update.

The general form of the Kalman update Simon (2006) considers two Gaussian RVs X ∼
N (µX ,ΣX) and Y = X + N with N ∼ N (0,ΣN ) and X ⊥ N . Then, given an observation
y we can compute the conditional expectation of X

E [X|Y = y] ∼ N
(
µX|Y=y,ΣX|Y=y

)
(43)
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with
µX|Y=y = µX +K(y − µX), (44)

ΣX|Y=y = (I −K) ΣX , (45)
and

K = ΣX (ΣX +ΣN )
−1

. (46)

Following (15), we can compute the Infoprop state via (43) choosing

µX = µ̄(st, at), (47)

ΣX = Σ̄(st, at), (48)
ΣN = Σ̄∆(st, at), (49)

and
y = µ̄(st, at) + L̄(st, at)wt + L̄∆(st, at)nt. (50)

This yields the propagation equation of the Infoprop state

S̃t+1 = µ̃(St = st, At = at, Ŝt+1 = ŝt+1) + L̃(St = st, At = at, Ŝt+1 = ŝt+1)Ut (51)

with
µ̃(st, at, ŝt+1) = µ̄(st, at) +K(st, at)

(
L̄(st, at)wt + L̄∆(st, at)nt

)
, (52)

Σ̃(st, at, ŝt+1) = (I −K(st, at)) Σ̄(st, at), (53)

K(st, at) = Σ̄(st, at)
(
Σ̄(st, at) + Σ̄∆(st, at)

)−1
, (54)

L̃(st, at)L̃(st, at)
⊤ = Σ̃(st, at), (55)

and
L̄∆(st, at)L̄

∆(st, at)
⊤ = Σ̄∆(st, at). (56)

D.4 INDUCED STATE DISTRIBUTION BY THE INFOPROP ROLLOUT

Lemma 3. As introduced in (57), the next state distribution induced by the Infoprop rollout is the
same as that given by the estimated ground truth:

S̃t+1
dist
= S̄t+1 (57)

Proof. We show equality in distribution via comparison of the cumulative distribution functions
(CDF) of S̃t+1 and S̄t+1. If we can show that the CDFs are identical, i.e. P(S̃t+1 ≤ s̄t+1) =
P(S̄t+1 ≤ s̄t+1) ∀s̄t+1 ∈ S, the equality in distribution follows.

We compute P(S̃t+1 ≤ s̄t+1) using S̃t+1 = E[S̄t+1|Ŝt+1 = ŝt+1] and marginalizing over Ŝt+1

P(S̃t+1 ≤ s̄t+1) =

∫
S
P(E[S̄t+1|Ŝt+1] ≤ s̄t+1|Ŝt+1 = ŝt+1)fŜt+1

(ŝt+1)dŝt+1 (58)

with fŜt+1
the probability density function of Ŝt+1.

By construction, E[S̄t+1|Ŝt+1] describes the behavior of S̄t+1 given Ŝt+1. Consequently,

P(E[S̄t+1|Ŝt+1] ≤ s̄t+1|Ŝt+1 = ŝt+1) = P(S̄t+1 ≤ s̄t+1|Ŝt+1 = ŝt+1) (59)

and therefore

P(S̃t+1 ≤ s̄t+1) =

∫
S
P(S̄t+1 ≤ s̄t+1|Ŝt+1 = ŝt+1)fŜt+1

(ŝt+1)dŝt+1. (60)

The right hand side of (60) represents the law of total probability for P (S̄t+1 ≤ s̄t+1)

P(S̄t+1 ≤ s̄t+1) =

∫
S
P(S̄t+1 ≤ s̄t+1|Ŝt+1 = ŝt+1)fŜt+1

(ŝt+1)dŝt+1. (61)

Therefore, we have
P(S̃t+1 ≤ s̄t+1) = P(S̄t+1 ≤ s̄t+1) ∀s̄t+1 ∈ S (62)

and can conclude
S̃t+1

dist
= S̄t+1. (63)
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D.5 INFORMATION LOSS ALONG A INFOPROP ROLLOUT

Lemma 4. As introduced in (17), the total information loss incurred during a Infoprop equals the
accumulated entropy of the Infoprop state:

H
(
S̄1, S̄2, . . . , S̄T |S0 = s0, A0 = a0, Ŝ1 = ŝ1 . . . ŜT = ŝT

)
=

T−1∑
t=0

H
(
S̃t+1

)
(64)

Proof.

H
(
S̄1, S̄2, . . . , S̄T |S0 = s0, A0 = a0, Ŝ1 = ŝ1 . . . ŜT = ŝT

)
=

T−1∑
t=0

H
(
S̄t+1 | S̄1, S̄2, . . . , S̄t, S0 = s0, A0 = a0, Ŝ1 = ŝ1 . . . ŜT = ŝT

)
(a)
=

T−1∑
t=0

H
(
S̄t+1 | S̄1, S̄2 . . . S̄t, S0 = s0, A0 = a0, Ŝ1 = ŝ1, . . . , ŜT = ŝt

)
(b)
=

T−1∑
t=0

H
(
S̄t+1 | St = st, At = at, Ŝt+1 = ŝt+1

)
=

T−1∑
t=0

H
(
S̃t+1

)

(65)

where (a) follows from causality and (b) follows from the Markov property.

20



Published as a conference paper at ICLR 2025

E EXPERIMENTS

E.1 EXPERIMENTAL SETUP

We used Weights&Biases 4 for logging our experiments and run 5 random seeds per experiment.

The respective hyperparameters for Infoprop-Dyna on MuJoCo are given below. Table 2 addresses
model learning, Table 3 the Infoprop mechanism, and Table 4 training the model-free agent.

Table 2: Hyperparameters used to train the model of Infoprop-Dyna in the Mujoco Tasks.

Hyperparameter Halfcheetah Walker Hopper Ant

ensemble size E 7

number of hidden neurons 200 400

number of hidden layers 4

learning rate 0.0003 0.0006 0.0004 0.001

weight decay 0.00005 0.0007 0.0008 0.00002

patience for early-stopping 10 9 8 9

retrain interval 250 environment steps

4https://wandb.ai/site
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Table 3: Hyperparameters of the Infoprop rollouts in the Mujoco Tasks.

Hyperparameter Halfcheetah Walker Hopper Ant

accurate quantile ζ1 0.99

exceptionally accurate quantile ζ2 0.01

scaling factor ξ 100

rollout interval 250 environment steps

rollout batch size 100000

Table 4: Hyperparameters used to train the SAC agent of Infoprop-Dyna in the Mujoco Tasks.

Hyperparameter Halfcheetah Walker Hopper Ant

number of hidden neurons 1024 512 1024

number of hidden layers 2

learning rate 0.0003 0.0002 0.0004 0.0005

SAC target entropy -6 -7 1 0

target update interval 1 4 6 5

update steps G 10 20

The results for SAC, MBPO and MACURA are obtained from Frauenknecht et al. (2024).

E.2 PREDICTION QUALITY

We provide additional results for the rollout consistency experiments introduced in Section 6.2. Fig-
ure 6 depicts model-based rollouts for the 10th dimension of hopper under MBPO, MACURA and
Infoprop-Dyna when setting the maximum rollout length of all approaches to 100. In the original ex-
periment depicted in Figure 4b the maximum rollout length was 11 for MBPO and 10 for MACURA,
following the hyperparameter settings reported in the respective publications Janner et al. (2019);
Frauenknecht et al. (2024).

We observe a vastly spread distribution of MBPO rollouts, as every rollout is propagated for 100
steps, irrespective of model uncertainty, as long as it does not reach a terminal state of the hop-
per task. MACURA rollouts have an improved consistency compared to MBPO, especially in the
beginning of the rollouts. Over long horizons, however, the TS propagation mechanism and the
single-step termination criterion cannot produce consistent data. In contrast, Infoprop-Dyna is able
to propagate consistent rollouts over long horizons.
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Figure 6: Rollout consistency MBPO vs. MACURA vs. Infoprop-Dyna for 100 steps. Comparison
of the respective rollout mechanisms similar to Figure 4b but with a maximum rollout length of 100
for all approaches.
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Figure 7: Performance on Humanoid

E.3 PERFORMANCE ON HUMANOID

Figure 7 depicts the return on MuJoCo humanoid. We observe instabilities in the performance of
Infoprop-Dyna towards the end of training. We assume this occurs due to overfitting and plasticity
loss in the critic of the model-free learner Nikishin et al. (2022); D’Oro et al. (2023). This is reflected
in the peaking critic loss depicted in Figure 8 concurrently with the performance drops. We set the
update ratio G (see Algorithm 3) to a relatively low value of 10 which explains the slower learning
behavior than MACURA. For higher values of G, instabilities occur even earlier in the training
process, underscoring our assumption of overfitting critics.

Model rollout inconsistency does not appear to be the destabilizing factor, as rollout data is consis-
tent with the environment distribution as depicted in Figure 10 and the rollout adaption mechanism
seems to react to policy shifts induced by high critic losses through reducing the average rollout
length as depicted in Figure 10.

E.4 INVESTIGATING INSTABILITIES IN LEARNING

Although Infoprop gives better quality data over longer rollout horizons than TS rollouts, we observe
instabilities in learning when naively integrating Infoprop into the conventional Dyna setting. We
hypothesize that the main cause of these instabilities is due to the agent overfitting to the higher
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Figure 8: Critic Loss on Humanoid
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Figure 9: Comparison between Denv and Dmod for the 45th dimension of Humanoid

quality data produced by Infoprop rollouts, followed by loss of plasticity Nikishin et al. (2022);
D’Oro et al. (2023). To investigate this, we carried out an ablation by varying the values of ζ1,
which we introduced in Equation 22. This hyperparameter controls the size of the subset E where
the model is considered sufficiently accurate. The smaller the value of ζ1, the more aggressive the
filtering of single-step information losses, leading to a smaller E .

Figure 11 shows the returns obtained on the Hopper task for three values of ζ1. For ζ1 = 0.97,
we see that the returns are unstable throughout training, even though this setting gives the best
quality data. On the other hand, ζ1 = 0.9999 produces a more stable learning curve compared to
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Figure 10: Average Rollout Length on Humanoid

25 50 75 100 125
Steps 1e3

1

2

3

Re
tu

rn

1e3 Hopper

ζ1 = 0.97

ζ1 = 0.99

ζ1 = 0.9999

Figure 11: Ablation Study on Hopper.

ζ1 = 0.99, which was used for all the experiments in Section 6. This shows that better data quality
does not necessarily lead to better training performance since if that was the case, ζ1 = 0.97 would
have produced the best performance. A similar observation is reported in Frauenknecht et al. (2024),
where low values of the scaling factor ξ, corresponding to accurate model rollouts, led to instabilities
in learning.

Our observations show that producing high-quality synthetic data in the conventional Dyna setting
leads to issues seen in MFRL when using a high update-to-data (UTD) ratio. There have been
recent works on regularization methods to counteract agent overfitting and loss of plasticity. One
such approach is applying layer normalization Smith et al. (2023); Nauman et al. (2024). Figure 12
shows the same settings as in Figure 11 but with layer normalization applied to the critic and actor
networks. It can be seen that even for ζ1 = 0.97, the learning is stable.

The primary aim of this paper is to introduce the conceptual framework of the Infoprop rollout,
as well as show its application to MBRL. Hence, we do not spend additional effort on tuning the
hyperparameters or adding regularizations since this takes us away from the main objective. We
defer such enhancements for future work.
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Figure 12: Ablation Study on Hopper with layer normalization.
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