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ABSTRACT

In this paper we propose improvements to the 3D radial layouts
that make it possible to visualize centrality measures of nodes in
a graph. Our improvements mainly relate edge drawing and the
evaluation of the 3D radial layouts. First, we projected the edges
onto the visualization surfaces in order to reduce the nodes overlap.
Secondly, we proposed a human-centered evaluation in order to
compare the efficiency score, the time to complete tasks and the
number of clicks of the 3D radial layouts to those of the 2D radial
layouts. The results showed that even if the overall improvements in
terms of time or errors are not statistically significant between the
various visualization surfaces, the participants have a better feeling
on the 3D and therefore the user experience is able to be improved
in data visualization.

Index Terms: Human-centered computing—3D graph visualiza-
tion—Centrality visualization—Layout evaluation

1 INTRODUCTION

Centrality measures are topological measures that describe the im-
portance of the nodes in a graph. There has been a lot of work carried
out in this topic for network analysis in order to answer the question
”Which are the most important nodes in a graph?” [16, 17]. Other
works in graph drawing chose to visually reveal these properties in
order to facilitate their exploratory analysis [2, 18]. For example,
in graph analytics, some works are interested in understanding and
describing the interaction structure by analyzing the topology of the
graph [6, 21]. Some others are interested in identifying and charac-
terizing the nodes that are particularly important [27] and how their
neighbors are connected to each other [29].

However, visualizing these measures in 2D could be difficult
when the size of the graph is important in terms of the number
of nodes and edges. Indeed, there would be a lot of nodes and
edges overlap and edge crossings, which are less of a problem in
3D than 2D [26]. Kobina et al. [13] therefore proposed new 3D
methods based on the 2D radial layouts that highlight the centrality
of the nodes by optimizing the spatial distribution of the nodes.
Nevertheless, in 3D some edges could hide others depending on the
position of the observer or the 3D layouts, as can be seen in the
proposed methods of Kobina et al. [13] using straight edges.

So, we first propose improvements to the 3D radial layouts by
projecting the edges onto the visualization surfaces in order to reduce
the nodes overlap. The purpose of our improvements is to provide a
better overall view of a complex and large graph than the 3D radial
techniques and to reduce the time in exploring and analyzing such a
graph. We then propose a task-based evaluation using a well-known
centrality measure in order to compare the efficiency score, the time
to complete tasks and the number of clicks of the 3D radial layouts
to those of the 2D radial layouts. The evaluation tasks are related to
the central nodes, to the peripheral nodes and to the dense areas of a
graph. The purpose of our evaluation is to show that the 3D radial
methods could be better to explore and to analyze graphs whatever
the interest, compared to the 2D radial layouts.

This paper is structured as follows: in section 2 we recall some
notion about centrality measures in graphs. We review related work
on centrality visualization in section 3. Then we present our im-
provements in section 4 and the human-centered evaluation of these
improvements in section 5. In section 6 we present the evaluation
results following experiments while in section 7 we present our dis-
cussion of the various results. In section 8 we present our conclusion
and we finally present our future work in section 9.

2 CENTRALITY MEASURES IN GRAPHS

In graph analytics, centrality measures [22] characterize the topo-
logical position of the nodes in a graph. In other words, centrality
measures make it possible to identify important nodes in the graph
and further provide relevant analytical information about the graph
and its nodes.

The importance of a node in a graph can be characterized by
centrality measures, the clustering coefficient [10] also known as a
high density of triangles. Some centrality measures, such as degree
centrality, can be computed using local information of the node.
The degree centrality quantifies the number of neighbors of a node.
Betweenness centrality and closeness centrality [8, 9] use global
information of the graph. The betweenness centrality is based on the
frequency at which a node is between pairs of other nodes on their
shortest paths. In other words, betweenness centrality is a measure
of how often a node is a bridge between other nodes. The closeness
centrality is the inverse of the sum of distances to all other nodes of
the graph.

The clustering coefficient measures to what extent the neighbors
of a node are connected to each other. If the neighbors of the node i
are all connected to each other, then the node i has a high clustering
coefficient.

3 CENTRALITY VISUALIZATION

Many works in graph drawing made it possible to convey relational
information such as centrality measures and clustering coefficient.
So, Brandes et al. [1] and Brandes and Pich [2] proposed radial
layouts that make it possible to highlight the betweenness and the
closeness centralities of the nodes in a graph. In these methods, each
node is constrained to lie on a circle according to its centrality value.
Thus, nodes with a high centrality value are close to the center and
those of low value are on the periphery.

Dwyer et al. [5] also proposed 3D parallel coordinates, orbit-
based and hierarchy-based methods to simultaneously compare five
centrality measures (degree, eccentricity, eigenvector, closeness,
betweenness). The difference between these three methods is how
centrality values are mapped to the node position. So, for 3D parallel
coordinates nodes are placed on vertical lines; for orbit-based nodes
are placed on concentric circles and for hierarchy-based nodes are
placed on horizontal lines. On the other hand, Raj and Whitaker [18]
proposed an anisotropic radial layout that makes it possible to high-
light the betweenness centrality of the nodes in a graph. In this
method, they proposed to use closed curves instead of concentric
circles, arguing that the use of closed curves offers more flexibility to
preserve the graph structure, compared to previous radial methods.

However, it would be difficult to visually identify some nodes
that have the same centrality value, compared to the radial layouts.
The proposed methods of Dwyer et al. make it possible to compare
many centrality measures, but it would be difficult to identify the
central nodes, compared to that of Brandes and Pich. On the other



hand, 2D methods suffer from lack of display space when one needs
to display a large graph in terms of number of nodes and edges.

So, Kobina et al. [13] proposed 3D extensions of the radial layouts
of Brandes and Pich [2] in order to better handle the visualization
of complex and large graphs (see Fig. 1). Their methods consist in
projecting 2D graph representations on 3D surfaces. These methods
reduce nodes and edges overlap and improve the perception of the
nodes connectivity. However, some nodes and edges are less visi-
ble depending on the projection surface and edge drawing method.
Indeed, the use of straight edges caused some to be inside the half-
sphere and others to cross the half-sphere. Furthermore, most of
the edges are on the surface for the conical projection and outside
the surface for the projection on the torus portion. Some nodes and
edges are therefore less visible.

4 IMPROVEMENT OF THE 3D RADIAL LAYOUTS

In order to reduce nodes and edges overlap in the proposed methods
of Kobina et al. [13], we projected the edges onto the visualization
surfaces.

Let e be an edge to be projected onto a visualization surface and
that connects nodes j and k, and Pi be every point belonging to e.

Pi = Pj +(Pk −Pj)t where Pj and Pk are respectively the position
of nodes j and k, and t = i

n−1 where n is the number of control
points of the edge e.

4.1 Edge projection onto the cone
In this section, we describe the various steps that are relevant to the
proposed method of projecting edges onto the cone:

• Compute the angle θ between the x axis and the z axis of the
point to be projected: θ = 180

π
atan2(zPi ,xPi)

• Rotate by θ about y axis. Let R be the rotation result:

R =

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 ·

x
y
z


• Compute the projected point Pro j =

xPi xR+yPi yR+zPi zR

||R|| ·R

• Compute the altitude yPro j = 1−
√

x2
Pro j + z2

Pro j

4.2 Edge projection onto the half-sphere
Here we describe the projection method of the edges onto the half-
sphere:

• Compute the projected point Pro j = Pi
||Pi||

• Compute the altitude yPro j =
√

1− (x2
Pro j + z2

Pro j)

4.3 Edge projection onto the torus portion
In this section, we describe the projection method of the edges onto
the torus portion in four steps:

• Compute the angle θ between the x axis and the z axis of Pi,
the point to be projected: θ = 180

π
atan2(zPi ,xPi)

• Rotate by θ about y axis. Let R be the rotation result:

R =

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 ·

x
y
z


• Compute the projected point Pro j = Pi

||Pi|| +R

• Compute the altitude of the point:
yPro j = 1−

√
1− ((r−1)(r−1)), with r =

√
x2

Pro j + z2
Pro j.

Fig. 2 illustrates the result of our projected edges, compared to
that of straight edges used in the proposed methods of Kobina et
al. [13] (Fig. 1).

Thus, by projecting the edges onto the visualization surfaces, we
improved the readability of the graph. Furthermore, there are no
edges that cross the visualization surface.

5 EVALUATION

We conducted a human-centered evaluation through a series of tasks
performed on generated graphs in order to compare the efficiency
score, the time to complete a task and the number of clicks of the 3D
layouts with projected edges (Fig. 2) to those of the 2D radial layouts.
We use these 3 metrics to determine if a kind of visualization is better
or worse than the others.

5.1 Tasks
Kobina et al. [13] suggested that the projections of the uniform 2D
representation highlight either the center, the periphery, or either
moderately the center and the periphery. So we chose these three
following tasks that are related to the central nodes, to the peripheral
nodes and to the dense areas of a graph:

• Task 1 (related to the central nodes). The participants were
asked to find the node that has the greatest degree among the
most central node’s neighbors.

• Task 2 (related to the peripheral nodes). The participants
were asked to find a least central node that has at least 2 neigh-
bors.

• Task 3 (related to the dense areas of a graph). The partic-
ipants were asked to find a node of degree at least 3 and that
has the highest clustering coefficient except 100%.

5.2 Hypothesis
Based on the proposed methods of Kobina et al. [13], we make the
following hypotheses:
H1. The 2D that emphasizes the periphery is the worst of the
visualization surfaces when one is interested in the central nodes.
H2. The 2D that emphasizes the center is the worst of the visualiza-
tion surfaces when tasks are related to the periphery.
H3. The combination of the peripheral emphasis and the different
3D projections highlights not only the peripheral nodes as the 2D
peripheral emphasis, but also improves the visibility of the center.
H4. The combination of the central emphasis and the different 3D
projections highlights not only the central nodes as the 2D central
emphasis, but also improves the visibility of the periphery.
H5. One spends less time in exploring and analyzing graphs on the
3D surfaces than on the 2D.
H6. There are fewer clicks on the 3D surfaces than on the 2D
representations.
H7. 3D surfaces are better suited for exploring the dense areas of a
graph than 2D representations.

5.3 Experimental protocol and measures
We conducted an experimental study using a WebGL version
of our graph visualization system because of the Covid-19.
Here is the link to our experiment for a given configuration:
https://anonymnam.github.io/radialvig3dxp. Each participant
could therefore perform the experiment remotely on his own laptop.
Kobina et al. [13] suggested that the combination of the uniform
2D representation and the different projections makes it possible
to obtain in addition an emphasis on the center or on the periphery.
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Figure 1: Betweenness centrality: uniform 3D radial visualization (419 nodes and 695 edges). The spherical projection spreads out more the
peripheral nodes than the central nodes while the projection on the torus portion spreads out more the central nodes than the peripheral nodes.
The conical projection evenly distributes nodes. Images are from [13].

spherical projection conical projection torus portion

Figure 2: Betweenness centrality: uniform 3D radial visualization (419 nodes and 695 edges). Edges are projected onto the visualization surfaces,
compared to straight edges observed in the proposed methods of Kobina et al. [13](Fig. 1).

So in this study, our goal is to show that these 3D methods could
be better to explore and to analyze graphs whatever the interest
(the central or peripheral nodes, the dense areas), compared to the
2D representations. Indeed, since Kobina et al. [13] optimized the
spatial distribution of nodes and we improved the edges drawing
by projecting them onto the surfaces, there could be less time in
exploration, less clicks and more accurate responses to different
tasks, because the perception of the nodes connectivity is improved.
Moreover, we want to analyze the usability of the 3D for exploring
and analyzing graphs. On the other hand, we want to identify the
best layout that could be used to visualize graphs.

For our experiment, we chose to use the betweenness centrality,
because it has an interesting use and regardless of the centrality
measure, the purpose of the evaluation remains the same. It will
therefore be enough to assess the interest of the proposed meth-
ods. We first generated, thanks to the Stochastic Block Model
algorithm [11, 15, 25], 6 different graphs (250 nodes and 855 edges)
that have equivalent topological characteristics (Fig. 3, Fig. 4), since
it is difficult to find in databases several graphs of the same size
with equivalent topological characteristics (density, clustering coeffi-
cient).

The stochastic Block Model is a probabilistic model based on
community structure in graphs. This model partitions the nodes in
blocks of arbitrary sizes, and places edges between pairs of nodes
independently, with a probability that depends on the blocks [24].
Thus, the structure of each community in the graph varies enough to
avoid a learning effect.

We then built 24 configurations with the various representation
surfaces so that each surface and graph is performed at least once as
first, using something similar to the concept of the Latin square [7,
19]. A Latin square is an n x n array filled with n different symbols
in such a way that each symbol occurs exactly once in each row and
exactly once in each column. For our configurations, we respected a
distribution order between 2D and 3D surfaces so that the running
order of a 2D representation corresponds to that of the equivalent 3D
surface. For example, if a configuration starts with the 2D surfaces
and the first surface is the one that emphasizes the center, then the
first 3D surface will be the torus portion, since it is the most to
highlight the center. So we make sure that each configuration is
tested as many times before as after each of the other configurations.

During the experiment and for each task and surface, we measure
an efficiency score, the time spent to complete a task and the number
of clicks to find an optimal response. As the experiment is done
remotely, each participant’s performance is automatically saved
when he validates his response. Below is how we compute the
efficiency score of the participants.

Task 1. Find the node that has the greatest degree among the
most central node’s neighbors.

scorei =

{
100∗ (degi/degideal), if d(ctr, i) = 1
0, otherwise

(1)

where degi is the degree of the selected nodei. degideal is the
greatest degree among the central node’s neighbors and d(ctr, i) is



Figure 3: Comparison of generated graphs: all graphs have the same
density, but a different clustering coefficient. The clustering coefficient
is high if the number of the closed triplets in a graph is important.

Figure 4: Comparison of generated graphs: all graphs have the same
diameter, but different number of triangles. As for the clustering
coefficient, the number of triangles is high if the number of the closed
triplets in a graph is important.

the shortest distance between the central node and nodei. Thus,
nodei must be directly connected to the central node, i.e. d(ctr, i)
must be equal to 1.

Task 2. Find a least central node that has at least 2 neighbors.

scorei =

{
100∗ (1− ci)/(1− cideal), if cideal ̸= 1
0, otherwise

(2)

where ci and cideal are respectively the centrality value of the nodei
and that of the ideal node. Furthermore, the score is 0 if the degree
of the selected node is less than 2. Indeed, it is easy to check that the
degree of the selected node is at least 2. Thus, the score is 0 if the
condition is not met. Otherwise, the score varies from 0 at the center
to 1 for a node of degree at least 2 and the most on the periphery.

Task 3. Find a node of degree at least 3 and that has the highest
clustering coefficient except 100%.

scorei =

{
100∗ (cc fi − cc fworst)/d, if d > 0
0, otherwise

(3)

where d = cc fideal − cc fworst . cc fi, cc fworst and cc fideal are respec-
tively the clustering coefficient of the nodei, the worst clustering
coefficient and the highest clustering coefficient except 100%. So,
the score is 0 if the degree of the selected node is less than 3 or if

the clustering coefficient of the selected node is 100%. Otherwise,
we compute the score using equation 3.

At the end of the experiment, each participant completes question-
naires related to the usability of the system and the user experience.
Since our experiment is done remotely, we organized a video con-
ference for each participant in order to supervise the experiment’s
process. The experiment consists of a training phase and an evalu-
ation phase. Before starting the training phase, each participant is
instructed about the experiment procedure, its environment, navi-
gation and interaction techniques. For example, when the mouse
hovers a node, a tooltip shows its clustering coefficient value and its
degree. He is also given the essential notions about graphs in order
to ensure that he has the useful knowledge for the experiment. In the
training phase, the participant is asked to perform the above tasks
on a small graph (the karate club’s graph [28]) and on each surface.
Once familiar with the system, he moves on to the evaluation phase,
but with generated graphs. If the participant is ready to start the
training or the evaluation, he clicks on a start button to see the first
task to complete and the next task is automatically displayed after
validating the previous task’s response.

5.4 Participants
For this project, we were needing a number of participants that would
be a multiple of 24 in order to encounter the same number of these
24 configurations mentioned above. So, there were 24 participants
(9 female, 15 male) and they were recruited among our colleagues
in the laboratory and among students: 50% are between 18 and 25
years old, 37.5% are between 25 and 35, and 12.5% are more than
35 years old. Moreover, most participants had no experience in
data analysis and data visualization, but some of them had gaming
experience.

6 RESULTS

6.1 User performance
We present here the main results from the analysis of the data
collected during our experiment through nonparametric tests us-
ing the Kruskal method [14] and post-hoc tests using the Dunn’s
method [4, 20]. We used nonparametric tests since none of the sam-
ples comes from a normal distribution (normality tests were done
using the Shapiro-Wilk method [23]). As a reminder, the variables
analyzed are the efficiency score, the time and the number of clicks
for each task and each surface.

6.1.1 Task 1: Find the Node that has the Greatest Degree
among the most Central Node’s Neighbors

Efficiency score. After an exploratory data analysis using box plots
(Fig. 5), the nonparametric test showed that there is a statistically
significant difference between the visualization surfaces and cannot
be due to chance (F − statistic = 31.46, p = 0.000 < 0.05). So, we
rejected the null hypothesis that the efficiency score is the same for
all the visualization surfaces when one is interested in the central
nodes. The result of the multiple pairwise comparison (Table 1)
showed that the 2D that emphasizes the periphery had a difference
of medians.

From the statistic test results, we validate hypothesis H1 that
the 2D representation that emphasizes the periphery is worse to
perform tasks that are related to the central nodes, compared to
all other surfaces. However, we validate hypothesis H3 that the
3D projections of the peripheral emphasis not only give the same
benefit on the periphery, but also provide the visibility of the center.

Time. Considering the results of Fig. 6 we could say that the par-
ticipants spent more time on the 2D that emphasizes the periphery,
compared to all other visualization surfaces. However, we failed
to reject the hypothesis of equality of medians (F − statistic =
5.990, p = 0.307 > 0.05). From our exploratory analysis results,



Table 1: Task 1: Efficiency score: P-values of the multiple pairwise comparison using Dunn’s method (significant p-values starred (* p < 0.05, ** p
< 0.01, *** p ≤ 0.001)).

2D central 2D peripheral 2D uniform Cone Half sphere Torus

2D central 1 0.00002*** 1 1 1 1
2D peripheral 0.00002*** 1 0.0008*** 0.00013*** 0.00067*** 0.00072***
2D uniform 1 0.0008*** 1 1 1 1
Cone 1 0.00013*** 1 1 1 1
Half sphere 1 0.00067*** 1 1 1 1
Torus 1 0.0007*** 1 1 1 1

Figure 5: Task 1: Efficiency score: Descriptive representation (mean
in red dashes, median in purple). The low mean of the 2D that
emphasizes the periphery shows that the participants had a low
efficiency score on this surface, compared to all other surfaces.

we cannot validate hypothesis H1, so we cannot prove that the
2D that emphasizes the periphery is worse to perform a task that
is related to the central node, compared to all other visualization
surfaces. Moreover, we reject hypothesis H5 that the participants
spend less time on the 3D surfaces, compared to the 2D surfaces.

Figure 6: Task 1: Time: Descriptive representation (mean in red
dashes, median in purple). Here, we could say that the participants
spent more time on the 2D that emphasizes the periphery, compared
to all other visualization surfaces.

Number of clicks. From the results of Fig. 7, we validate hypothe-
sis H6 that the participants clicked less on the 3D surfaces, compared
to the 2D representations. Furthermore, the nonparametric test result
showed that there is a statistically significant difference between
the visualization surfaces, since the F-statistic is 12.554 and the
corresponding p-value is 0.028 < 0.05. So we conclude that the type
of surface leads to statistically significant differences in the number
of clicks. A multiple pairwise comparison (Table 2) confirmed our
exploratory analysis that the 2D that emphasizes the periphery is

different from the other surfaces.

Figure 7: Task 1: Number of clicks: Descriptive representation (mean
in red dashes, median in purple). We could suppose that the partici-
pants clicked less on the 3D surfaces, compared to the 2D.

Unlike the score analysis, there is a statistically significant dif-
ference between the 2D that emphasizes the periphery and two 3D
surfaces (the half-sphere and the torus portion).

Ultimately, the 3D surfaces are well suited for carrying out tasks
that are related to the central nodes because Fig. 7 and Table 2
show that our hypothesis H6 is validated for the number of clicks.
Moreover, we validated hypothesis H1 and H3 for the efficiency
score. However we cannot prove that our hypotheses H1 and H5
could be validated with respect to the time of the task.

6.1.2 Task 2: Find a least Central Node that has at least 2
Neighbors

Efficiency score. From an exploratory analysis (Fig. 8) we validate
hypothesis H2 that the 2D representation that emphasizes the center
is worse when a task is related to the peripheral nodes, compared
to all other visualization surfaces, since the participants did not
have good scores on the 2D that emphasizes the center. Moreover,
there is a difference that is statistically significant between the 2D
that emphasizes the center and all the other surfaces (see Table 3),
because the F-statistic is 40.31 and the corresponding p-value is
0.000 < 0.05. Nonetheless, we validate hypothesis H4 that the 3D
projections of the central emphasis make it possible not only to get
the same visual effect on the center, but also to improve the visibility
of the periphery.
Time. As far as the time analysis is concerned, we could say that
the participants spent less time on the 3D surfaces and the uniform
2D, compared to the 2D surfaces that emphasize the center and the
periphery (Fig. 9). However, we failed to reject the hypothesis of
equality of medians (F − statistic = 1.65, p = 0.90 > 0.05). So, we
reject hypothesis H5 that the participants spent less time on the 3D
surfaces.

Number of clicks. Fig. 10 shows high values of medians and means
for the 2D that emphasizes the periphery and the cone, compared to



Table 2: Task 1: Number of clicks: P-values of the multiple pairwise comparison using Dunn’s method (significant p-values starred (* p < 0.05, ** p
< 0.01, *** p ≤ 0.001)).

2D central 2D peripheral 2D uniform Cone Half sphere Torus

2D central 1 0.679 1 1 1 1
2D peripheral 0.679 1 0.517 0.13 0.0435* 0.0377*
2D uniform 1 0.517 1 1 1 1
Cone 1 0.13 1 1 1 1
Half sphere 1 0.0435* 1 1 1 1
Torus 1 0.0377* 1 1 1 1

Table 3: Task 2: Efficiency score: P-values of the multiple pairwise comparison using Dunn’s method (significant p-values starred (* p < 0.05, ** p
< 0.01, *** p ≤ 0.001)).

2D central 2D peripheral 2D uniform Cone Half sphere Torus

2D central 1 0.00000*** 0.002** 0.00003*** 0.00000*** 0.001***
2D peripheral 0.00000*** 1 1 1 1 1
2D uniform 0.002** 1 1 1 0.752 1
Cone 0.00003*** 1 1 1 1 1
Half sphere 0.00000*** 1 0.752 1 1 0.986
Torus 0.001*** 1 1 1 0.986 1

Figure 8: Task 2: Efficiency score: Descriptive representation (mean
in red dashes, median in purple). We could say that the participants
did not have good scores on the 2D that emphasizes the center,
compared to all other surfaces.

Figure 9: Task 2: Time: Descriptive representation (mean in red
dashes, median in purple). We could say that the participants spent
less time on the 3D surfaces and the uniform 2D.

all other surfaces. So, it could suggest that the participants clicked
more on the 2D that emphasizes the periphery and on the cone. On
the other hand, the nonparametric test failed to reject the hypothesis
of median equality (F − statistic = 2.93, p = 0.71 > 0.05). So, as

for the time analysis, the difference in medians observed could
suggest that the 2D that emphasizes the periphery and the cone are
worse when one is interested in the peripheral nodes. So, we reject
hypothesis H6 that there are fewer clicks on the 3D surfaces.

Figure 10: Task 2: Number of clicks: Descriptive representation (mean
in red dashes, median in purple). It could suggest that the participants
clicked more on the 2D that emphasizes the periphery and on the
cone.

Based on the various analyses of task 2, that of the efficiency
score makes it possible to validate hypotheses H2 that the 2D that
emphasizes the center is the worst of the visualization surfaces
when tasks are related to the peripheral nodes, and H4 that our
3D projections make it possible not only to get the same benefit
on the center, but also to improve the visibility of the periphery.
Furthermore, Table 3 shows that the half-sphere and the cone are
well suited when one is interested in the peripheral nodes. However,
analyses of time and number of clicks show that the difference in
medians could suggest that the 2D that emphasizes the periphery
is worse, compared to other surfaces and that the 3D surfaces are
better, but we cannot prove that hypotheses H5 and H6 could be
validated.

6.1.3 Task 3: Find a Node of Degree at least 3 and that has
the Highest Clustering Coefficient except 100%

Efficiency score. From an exploratory analysis results (Fig. 11) we
could suppose that the participants got good scores on the 2D that



emphasizes the center. On the other hand, we failed to reject the
null hypothesis that the efficiency score is the same for all the visual-
ization surfaces, since the test statistic is 6.0 and the corresponding
p-value is 0.31 > 0.05. So, the difference in medians could lead us
to say that the 2D that emphasizes the center is better for exploring
the dense areas of the graph, compared to all other surfaces and that
our hypothesis H7 (3D surfaces are better suited for exploring the
dense areas of a graph) is rejected, but the statistic analysis failed to
demonstrate it.

Figure 11: Task 3: Efficiency score: Descriptive representation (mean
in red dashes, median in purple). We could suppose that the par-
ticipants got good efficiency scores on the 2D that emphasizes the
center.

Time. As for the score analysis, Fig. 12 shows the result of an
exploratory data analysis that could lead one to think that the par-
ticipants spent less time on the uniform 2D, compared to all other
surfaces. However, the median values are not significantly differ-
ent, since the nonparametric test did not reject the hypothesis of
median equality (F − statistic = 1.04, p = 0.96 > 0.05). So, we
reject hypotheses H5 that the participants spend less time on the 3D
surfaces and H7 that the 3D surfaces are better than the 2D surfaces
to explore the dense areas of a graph.

Figure 12: Task 3: Time: Descriptive representation (mean in red
dashes, median in purple). We could suppose that participant spent
less time on the uniform 2D, compared to other surfaces.

Number of clicks. Fig. 13 shows that the median value of the
torus portion is smaller than the median values of other visualization
surfaces. So we could say that the participants clicked less on
the torus portion, compared to all other surfaces. We could then
validate hypothesis H6 that there are less clicks on the 3D surfaces.
However, we failed to reject the null hypothesis that the number
of clicks is the same for all the visualization surfaces when tasks
are related to the dense areas (F − statistic = 5.0, p = 0.42 > 0.05).
So, we reject hypothesis H6 that there are fewer clicks on the 3D

surfaces, and hypothesis H7 that the 3D surfaces are better suited
than the 2D to explore the dense areas of a graph.

Figure 13: Task 3: Number of clicks: Descriptive representation (mean
in red dashes, median in purple). It could suggest that the participants
clicked less on the torus portion, compared to all other surfaces.

Unlike the various analyses carried out for tasks 1 and 2, those
of task 3 showed in exploratory analysis that some 3D visualization
surfaces are better than the 2D surfaces, but the statistic tests showed
that the differences of medians in efficiency score, in time and
in number of clicks are not statistically significant when one is
interested in the dense areas of the graph. So, we reject hypotheses
H5 that the participants spend less time in exploring and analyzing
graphs on the 3D surfaces, H6 that there are fewer clicks on the
3D surfaces and H7 that the 3D surfaces are better than the 2D to
explore the dense areas of a graph.

6.2 User experience

As mentioned above (in Sect. 5.3), at the end of the experiment, the
participants were asked to complete a questionnaire related to the
system usability and to their experience. As far as their experience is
concerned, they were asked whether they understood the requested
tasks, if they had difficulty interacting with the system, and if they
had visual fatigue. The results were that 23 participants over 24
understood the requested tasks, 7 over 24 had difficulty interacting
with the system and 7 participants over 24 declared having visual
fatigue.

The participants were also asked to specify the surfaces that
enabled them to better perform the requested tasks, on the one hand,
and to identify the surfaces with which they had difficulty completing
the requested tasks, on the other hand. Based on their feedback, 3D
surfaces have significantly contributed to the successful completion
of the various tasks, compared to the 2D representations (uniform
2D, the 2D that emphasizes the center or the periphery). Fig. 14 and
Fig. 15 illustrate the distribution of user preferences for a successful
and unsuccessful completion, respectively. Moreover, Fig. 14 shows
that the 2D that emphasizes the center and the 2D that emphasizes
the periphery alone total 80% of votes while the cone makes 0%.

7 DISCUSSION

Some nodes would be less visible with the use of the straight edges
in the proposed methods of Kobina et al. [13]. Indeed, combining
the peripheral emphasis and the projection of the nodes and edges
on the half-sphere or on the torus portion, some intermediate nodes
would be less visible due to the surface, unlike the conical projection.
Furthermore, with uniform projections, some nodes and edges would
be less visible in the dense areas according to the projection surface.
So, projecting the edges onto the visualization surface, we reduced
the overlap of the nodes and the edges, and we therefore improved
the overall readability of the graph.



Figure 14: Surfaces that the participants prefer when performing
tasks.

Figure 15: Surfaces that the participants do not like when performing
tasks.

As far as our evaluation is concerned, the results did not allow
us to identify which representation is best suited to visualize large
graphs and to improve graph analysis. However, we partially val-
idated hypotheses H1, H2, H3, H4 and H6, since some statistic
test results showed that there are differences in efficiency score and
in number of clicks.

Indeed, these results made it possible to validate hypotheses
H1 that the 2D that emphasizes the periphery is the worst of the
surfaces to visualize the center, and H2 that the 2D that emphasizes
the center is the worst of the surfaces to visualize the periphery
with respect to the efficiency score of tasks 1 and 2. Moreover, we
validated hypotheses: 1) H3 that the combination of the peripheral
emphasis and different 3D projections makes it possible not only
to get the same advantages on the periphery as the 2D peripheral
emphasis, but also to improve the visibility of the center; 2) H4
that combining the central emphasis and different 3D projections
makes it possible not only to get the same benefits on the center as
the 2D central emphasis, but also to improve the visibility of the
periphery, always regarding the efficiency score of tasks 1 and 2.
We also validated hypothesis H6 that there are fewer clicks on the
3D surfaces regarding the number of clicks of task 1.

On the other hand, we rejected hypotheses H5 and H7, since we
were not able to prove that: 1) participants spend less time on the 3D
surfaces and 2) the 3D surfaces are better than the 2D to explore the
dense areas of a graph. We could therefore say that the 2D versus 3D
debate still persists [3]. On the other hand, participants’ feedback
showed that the 3D surfaces could be well suited for completing the
various requested tasks successfully, compared to the 2D surfaces.

8 CONCLUSION

In this work, we improve the edge drawing of some 3D graph visu-
alization methods previously proposed. Our improvements consist
in projecting the edges onto each visualization surface in order to
reduce the nodes and edges overlap.

An online human-centered experimental study was conducted in
order to compare the efficiency score, the time to complete tasks
and the number of clicks of the various visualization surfaces. We
showed through our experiment that there is no difference that is
statistically significant in terms of time or errors between these
surfaces. However, the participants have a better feeling on the 3D
when carrying out the requested tasks, compared to the 2D layouts.
Thus, adding a third dimension to the 2D radial views improves the
user experience.

9 FUTURE WORK

In the future, we will also study in detail the results obtained with
large graphs in order to check whether current trends are confirmed.
Moreover, we projected the 2D views on other types of 3D surfaces
(a parabola, a Gaussian, a hyperboloid and a square root). Thus,
we will study in more details the results of these contributions in
order to identify the most appropriate approach or combination of
approaches that could be used to visualize large and complex graphs.

In order to declutter graphs in the proposed methods of Kobina et
al. [13], we have already implemented the kernel density estimation
edge bundling algorithm using computer graphics acceleration tech-
niques. Fig. 16 illustrates the result of a graph which was generated
using Stochastic Block Model algorithm presented in section 5.3.
So, with the bundled graph, it is possible to see how groups of nodes
are connected to each other, compared to the unbundled graph. How-
ever, we lose the detailed connectivity of a node (for instance, edges
between a node and its neighbors). It could be therefore useful to
combine the bundled and the unbundled edges for further analysis if
one would need to switch between detailed and bundled views.
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