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A Decoupled Multi-Task Network for Shadow
Removal

Jiawei Liu∗ ID , Qiang Wang∗ ID , Huijie Fan ID ,Wentao Li, Liangqiong Qu ID , Yandong Tang ID

Abstract—Shadow removal, which aims to restore the illumina-
tion in shadow regions, is challenging due to the diversity of shad-
ows in terms of location, intensity, shape, and size. Different from
most multi-task methods, which design elaborate multi-branch or
multi-stage structures for better shadow removal, we introduce
feature decomposition to learn better feature representations.
Specifically, we propose a single-stage and decoupled multi-task
network (DMTN) to explicitly learn the decomposed features for
shadow removal, shadow matte estimation, and shadow image
reconstruction. First, we propose several coarse-to-fine semi-
convolution (SMC) modules to capture features sufficient for
joint learning of these three tasks. Second, we design a theoret-
ically supported feature decoupling layer to explicitly decouple
the learned features into shadow image features and shadow
matte features via weight reassignment. Last, these features are
converted to a target shadow-free image, affiliated shadow matte,
and shadow image, supervised by multi-task joint loss functions.
With multi-task collaboration, DMTN effectively recovers the
illumination in shadow areas while ensuring the fidelity of non-
shadow areas. Experimental results show that DMTN competes
favorably with state-of-the-art multi-branch/multi-stage shadow
removal methods, while maintaining the simplicity of single-stage
methods. We have released our code to encourage future explo-
ration in powerful feature representation for shadow removal
(https://github.com/nachifur/DMTN).

Index Terms—Shadow removal, multi-task, feature decoupling,
illumination compensation, decomposition.

I. INTRODUCTION

THE shadow is a ubiquitous physical phenomenon in
nature and is formed when direct illumination is blocked

by an object. Shadows often degrade the performance of
some computer vision tasks, such as segmentation, detection,
recognition, and tracking [1]–[10]. Shadow removal can be
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Fig. 1. Overview of the existing shadow removal networks. Our method
decouples the learned features into three task domains by the proposed
feature decoupling layer, while other multi-task methods learn the features
corresponding to each task by redundant feature encoding and decoding.

incorporated into these tasks to improve their robustness
to direct illumination variations. Early approaches [11]–[17]
determined illumination parameters to remove shadows by
physically modeling them. These methods, however, highly
rely on prior knowledge (such as illumination conditions and
gradients [11], [18], [19]), and often work poorly in the umbra
or penumbra regions.

Recently published large-scale datasets [20]–[25] have stim-
ulated the emergence of two types of deep learning-based
methods for shadow removal, including single-task and multi-
task networks. Single-task methods [20], [26] apply a single-
stage structure, such as in Fig. I (a), while multi-task learn-
ing methods usually have a multi-stage [21], [22], [27],
[28], multi-branch [24], or multi-branch+multi-stage” [29]–
[31] structure, as shown in Fig. I (b)–(d). A single-stage
shadow removal network, while simple and efficient, may
not be optimal for scenes with complex backgrounds and
shadows. Consequently, recent research has favored multi-
task networks that leverage complementary information from
multiple tasks (e.g., shadow detection [21], [24], [27], matte
estimation [22], [29], and shadow generation [23], [31]–[34])
to further improve the performance of shadow removal.

Even with variant network structures, these two types of
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Fig. 2. Visual comparison results of removing tiny shadows, penumbras (on SRD [20]) and self-shadows (on our SSRD). With multi-task collaboration, our
method better removes penumbras and tiny shadows.

methods share an underlying shadow removal principle: input
a shadow image, learn the features from it, aggregate them, and
output its corresponding shadow-free image. This indicates
that it is not trivial to directly learn the features from the
shadow image to sufficiently represent a target shadow-free
image through a single-stage network. Multi-task methods can
learn such features more efficiently through complex task de-
composition or multi-task collaboration, resulting in superior
performance. However, the widely applied multi-branch/multi-
stage structures in multi-task methods may lead to redundant
encoding/decoding modules or unsatisfactory performance,
since they may be vulnerable to erroneous performance of
the previous stage.

In this paper, instead of an elaborately designed multi-
branch or multi-stage network, we introduce feature decom-
position to learn better feature representations for the target
shadow-free image. Motivated by the well-known image de-
composition theory in the image domain,1 we argue for a
similar decomposition theory in the feature space, i.e., the fea-
tures for the target shadow-free image can be decomposed as
shadow image features and shadow matte2 features. Hence we
propose a single-stage, decoupled multi-task network (DMTN)
to explicitly learn the decomposed features for better shadow
removal, as shown in Fig. I (e) and Fig. 3.

Specifically, we first propose several coarse-to-fine semi-
convolution (SMC) modules to progressively convert the orig-
inal shadow features to shadow matte features, while the
remaining features are untouched to represent the shadow
image. Although such a structure allows us to learn the features
that can represent the shadow image and shadow matte, it
is still unclear which part of the features represent shadow
image and which part represents the shadow matte. We then
design a theoretically supported feature decoupling layer to
explicitly decouple the learned features into shadow image

1Image decomposition: a target image can be decomposed as an input image
and residual image, as derived from residual learning [35]. This is widely used
in image restoration [29], [34], [36]–[42].

2The shadow matte here is defined as the residual between the target
shadow-free image and the input shadow image.

features and shadow matte features via weight reassignment.
Finally, these features are converted to the target shadow-free
image, affiliated shadow matte, and shadow image, supervised
by multi-task joint loss functions.

Experimental results show that our DMTN competes fa-
vorably with state-of-the-art multi-branch/multi-stage shadow
removal methods (see Fig. 2), while maintaining the simplicity
of a single-stage network. We envision our research could
open new possibilities for the design of a better shadow
removal network, highlighting the importance of good feature
representation for target shadow-free images.

II. RELATED WORK

We review the development process of single image shadow
removal from shadow modeling to deep learning.

Model-based Shadow Removal: Early methods [11]–[16]
solved illumination parameters to remove shadows by physical
modeling, based on the prior information of shadow positions.
However, removing shadows with shadow detection cannot
handle penumbras. Another way to cope with uneven illumina-
tion is intrinsic decomposition [43]–[46], but the pixel values
of the intrinsic image are changed in the non-shadow areas.

Deep-Learning-based Shadow Removal: We first re-
view the single-stage shadow removal network. Our previous
work [20] proposed the first end-to-end network to remove
shadows by estimating illumination attenuation in shadow re-
gions, which is a multi-context architecture based on intrinsic
image decomposition. Hu et al. [26] proposed a single-stage
multi-branch network to detect or remove shadows at multiple
scales by capturing directional features.

Recent research has favored multi-task shadow removal
to further improve the performance of single-stage shadow
removal networks. This makes sense because shadow removal
aims to recover shadow regions without changing the color of
non-shadow regions, which implies the importance of shadow
location information and the rationality of decomposing the
shadow removal task into multiple stages. Khan et al. [7]
applied multiple CNNs to detect shadows, and a Bayesian
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model to remove them. Wang et al. [21] proposed a stacked
generative adversarial network (GAN) for joint learning of
shadow detection and shadow removal in a unified manner.
Ding et al. [27] proposed a recurrent GAN-based network
consisting of multiple cascaded detection and removal net-
works to progressively remove shadows. Subsequently, some
researchers used the shadow mask detected by the shadow
detection network as prior information to improve the perfor-
mance of shadow removal. Le and Samaras [22], [25] proposed
a two-stage network to estimate the physical illumination
parameters to remove shadows based on the shadow linear
model [13] and shadow image decomposition [47]. Fu et
al. [28] modeled shadow removal as a multiple exposure
problem and proposed a three-stage network consisting of
exposure estimation, exposure fusion, and boundary-aware
refinement networks. Zhu et al. [48] proposed an interpretable
unfolding network for shadow removal, based on a shadow
removal optimization algorithm.

However, cascaded multi-stage networks are susceptible to
the output of the previous stage. Cun et al. [24] proposed
a single-stage network for shadow detection and removal,
which can alleviate the dependency of auxiliary tasks through a
parallel branch structure. Zhang et al. [29] proposed a shadow
removal network without shadow detection by introducing
more complementary information. They used three networks
in parallel to estimate the residual, illumination, and coarse
shadow-free images, and fused them for shadow removal by
an encoder-decoder structure. Chen et al. [30] proposed a
two-stage shadow removal network based on block matching.
In the first stage, they used two parallel encoders to extract
the shadow image features and obtain contextual matching
pairs from the shadow unaware image, transferred the features
of non-shadow regions to shadow regions, and obtained a
coarse shadow-free image. The second stage used a refinement
network. Zhu et al. [31] used shadow masks and shadow-
invariant color images as prior information to mitigate the
dependence on one of the auxiliary tasks and improve the
robustness of shadow removal. In addition, shadow synthesis
can improve the performance of shadow removal by data
augmentation [24], [49] or joint learning of shadow removal
and generation [23], [31]–[34].

In this paper, we propose a novel decoupled multi-task
shadow removal network that jointly learns shadow removal,
shadow matte estimation, and shadow image reconstruction
in one stage and one branch structure, with the help of the
proposed constrained feature decoupling layer.

Comparison with Shadow Mask: Shadow masks are
widely used for the shadow removal task to improve perfor-
mance [21], [22], [24], [28], [31], [48]. The shadow mask is
a binary image (0 or 1). Le and Samaras [22], [25] estimate
shadow mattes (β) to remove shadows based on the shadow
linear model (Irelit = k · Is + b) [13] and shadow image de-
composition (If = Is ·(1−β)+Irelit ·β) [47]. Irelit is the relit
image and k, b are illumination parameters. The shadow matte
β in [22], [25] is a grayscale image, which is a soft shadow
mask (0-1). In this paper, our shadow matte (Im) represents the
value of the illumination compensation of shadow areas in an
image. Our shadow matte (Im) is the residual image between

the shadow-free (If ) and the shadow image (Is), which is
an RGB image (0-255). Compared to the shadow mask that
only indicates the approximate shadow position and loses the
shadow intensity information, our shadow matte provides clues
to the shadow removal task in terms of shadow location and
intensity, and avoids manually adjusting the ground truth of
shadow mask [21]. In addition, obtaining the ground truth of
our shadow matte requires only one step (by Eq. 1), while Le
and Samaras [22], [25] obtain the shadow matte (β) requiring
two steps.

III. PROPOSED METHOD

The illumination of a surface in non-shadow areas can
be expressed as L = La + Ld, where La is the ambient
illumination and Ld is the direct illumination [13]. The essence
of shadow removal is to restore Ld in shadow areas. Given a
shadow image Is in source domain S and its corresponding
shadow-free image If in target domain T , our goal is to learn
the mapping M : S → T , where T = S +R, and R is direct
illumination compensation (also known as shadow matte Im).
We can formulate a shadow-free image as

If = Is + Im. (1)

Modern learning-based methods usually directly learn the
mapping M with a deep neural network (G) to restore a
shadow-free image3 Ĩf that is close to the reference If , i.e,
Ĩf = G(Is), which requires aggregating the features F learned
by G into Ĩf in the last layer of G. Notably, all channels of F
are destined to represent If in the training of G. However,
similar to the image decomposition principle of Eq. 1 in
the image domain, we argue that a similar decomposition
principle should also work in the feature space, where some
channels of F represent Im, and others represent Is. We refer
to this decomposition principle in the feature space as feature
decomposition.

To this end, we embed feature decomposition in our shadow
removal network. Specifically, we first propose a single-stage
and decoupled multi-task network (Sec. III-A) that learns the
features (F ) decoupled in the channel dimension for three
tasks, i.e., Ĩf , Ĩm, Ĩs = G(Is). Second, we illustrate how to
capture the features F that are capable of representing Im
and Is by feature transformation and refinement (Sec. III-B).
Third, we design a feature decoupling layer (Sec. III-C) that
can automatically select the feature channels of Ĩm and Ĩs
from F , which are mutually exclusive. Finally, these decoupled
features are aggregated into Ĩf , Ĩm, and Ĩs, supervised by
multi-task joint loss functions (Sec. III-D).

A. Overall Network Architecture

Our DMTN (Fig. 3) takes a shadow image as input and
simultaneously restores a shadow-free image, estimates a
shadow matte, and reconstructs a shadow image. It consists
of three steps. (1) Feature extraction: We apply a well
pretrained VGG19 [50] for feature extraction and perform

3Throughout the paper, I denotes the original image from the dataset, and
Ĩ represents the image generated by a neural network.
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3 × 3 convolution after the SE module [51] to automatically
select global context and local detailed features [52], [53]. (2)
Feature transformation and refinement: We adopt a coarse-
to-fine structure to convert and refine some extracted features
into shadow matte features, while retaining other features
for shadow image reconstruction. (3) Feature decoupling:
We decouple the learned features into three task domains by
reassigning weights to feature channels.

B. Feature Transformation and Refinement

Because we extract features from Is, some features should
be allowed directly through the network to represent Is, and
some converted to represent Im. Thus, we first introduce a
semi-convolution (SMC) module that only processes half of
the feature channels without processing the other half, and
then concatenates and shuffles features (inspired by Real-
NVP [54] and ShuffleNet [55]), as shown in Fig. 4. However,
the vanilla convolution module in ShuffleNet [55] has three
cascaded convolutions (1× 1, 3× 3 depthwise [56], [57], and
1 × 1), which cannot accurately estimate shadow matte due
to the absence of a large receptive field. Thus, we design
a convolution unit including dilated and 3 × 3 convolution
to model the direct illumination compensation to represent

Im. BatchNorm [58] in ShuffleNet [55] degrades shadow
removal performance (see Table V(a)). Hence our DMTN
uses adaptive normalization [59]. Then we adopt a coarse-to-
fine structure consisting of multiple SMC modules (Fig. 3) to
progressively convert the original shadow features to shadow
matte features, while the remaining features are untouched to
represent shadow images. Finally, we use a spatial pooling
pyramid [60] to cope with shadows of various sizes.

The dilation rate of dilated convolution in the k-th (k ≥ 0)
SMC module is set to 2(k%6). At the coarse level, the feature
map size is halved by a downsampling layer. At the refinement
level, the features are refined to the original image resolution
to improve the spatial accuracy of illumination compensation.

C. Feature Decoupling

After feature transformation and refinement using the intro-
duced SMC module, we cannot identify which channels of the
learned features F represent Is, and which represent Im. As
shown in Fig. 5, we propose a constrained feature decoupling
layer (CFDL) that can explicitly identify the feature channels
belonging to each target task by weight decoupling to resolve
the feature entanglement dilemma in multi-task learning.

1) Weight Constraint: First, we consider the most direct
way to learn multiple tasks with one feature. In the last layer
of the network, the learned features F (dim=[C,H,W]) are
aggregated into RGB images (dim=[3,H,W]),

Ĩs = ωs × F,
Ĩm = ωm × F,
Ĩf = ωf × F,

(2)

where ωs, ωm, and ωf are the parameters (dim=[3,C]) of 1×1
convolutions. Due to the absence of any constraint in Eq. 2,
all channels of F are used for the three tasks.

Then, we try to introduce weight constraints to decouple
the features in the channel dimension. Combining Eq. 1 and
Eq. 2, we have ωf × F = ωs × F + ωm × F , i.e.,

ωf = ωs + ωm. (3)
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decoupled. The figure shows the weights of the R channel only. Therefore, for some channels in Fig. 5(b) with weight values of 0, this does not mean that
the channel is invalid because they are used for the aggregation of G or B channel (see Fig. 7).
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Fig. 6. Visualization of weight constraint (Eq. 3) for R, G, B channels. In (a)–(c), the visualization of the weights (ωs, ωm) does not clearly show which
feature channels are used for shadow image reconstruction (ωs), and which for shadow matte estimation (ωm). In fact, almost every feature channel is used
to learn the two tasks simultaneously. This means that feature entanglement still exists if only Eq. 3 is used to constrain these weights. We use −ωm instead
of ωm to clearly visualize all weights.

Eq. 3 is the embodiment of the shadow image decomposition
model (Eq. 1) in parameter space. However, the visualization
of the Eq. 3 (see Fig. 6 or Fig. 5(a)) does not clearly show
which feature channels are used for shadow image reconstruc-
tion, and which for shadow matte estimation. In fact, almost
all channels are used to learn the two tasks simultaneously,
which means that feature entanglement still exists if only
Eq. 3 is used to constrain these weights. Thus, a new feature
decoupling mechanism is needed.

2) Weight Decoupling: To decouple the features F learned
by DMTN for multi-task learning, we expect to learn a
parameter that can induce weight (ωs, ωm) decoupling by a
weight adjustment function. Our motivation is to make the
difference between ωs and ωm progressively larger in the
channel dimension, and then to identify which target task
the channel belongs to by comparing the magnitudes of the
weights. Thus, we design a weight adjustment function (Eq. 4)
with learnable parameters ωb (dim=[3,C]) to induce weight

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3252271

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shenyang Institute of Automation. Downloaded on April 01,2023 at 13:39:36 UTC from IEEE Xplore.  Restrictions apply. 



6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

i-th feature

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

we
igh

t

(a) Red channel

(a): ωas (b): -ωam (c): ωaf

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

i-th feature

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

we
igh

t

(b) Green channel

(a): ωas (b): -ωam (c): ωaf

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

i-th feature

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

we
igh

t

(c) Blue channel

(a): ωas (b): -ωam (c): ωaf

Fig. 7. Visualization of weight decoupling (Eq. 4) for R, G, B channels. In (a)–(c), almost each feature channel is used for only one task (shadow image
reconstruction or shadow matte estimation) for each color channel (R, G, B), which shows that Eq. 4 can decouple features. These decoupled features are
finally aggregated into a shadow-free image, shadow matte, and reconstructed shadow image. We use −ωa

m instead of ωa
m to clearly visualize all weights.

Fig. 8. Visualization of feature maps learned by DMTN with 64 hidden layers. By constrained feature decoupling layer (CFDL) and multi-task joint loss,
some features can represent shadow images (Is), and others can represent shadow matte (Im). The weights corresponding to these feature channels are shown
in Fig. 7(a)–(c).

decoupling,
ωa
s = MedReLU+(ωs × (1 + ωb)),
ωa
m = MedReLU−(ωm × (1− ωb)),
ωa
f = N(ωa

s ) +N(ωa
m),

(4)

where ωa
s , ωa

m, and ωa
f are the decoupled weights (dim=[3,C]),

MedReLU±(x) = relu(x − median(x) ± b), Nx→z : z =
y/max(y), y = x −min(x). median(x) ± b is the adaptive
median. In Eq. 4, if the weight of a channel is less than the
median value in the channel dimension, the weight of the
channel is set to zero by MedReLU−, which means that the
channel is not used to aggregate into Ĩm, and does not belong
to the shadow matte estimation task. Considering that ωa

s and
ωa
m may not be on the same scale after weight adjustment, we

normalize the weights by N .
Fig. 7 (or Fig. 5(b)) shows the visualization of weight

decoupling, i.e., (ωa
s )i · (ωa

m)i → 0, i ∈ {R,G,B}. The
dimensions of (ωa

s )i are [1,C]. Notably, the weights in Fig. 7

come from a well-trained network. With the help of weight
decoupling, we can achieve feature decoupling, i.e., some
channels of F represent shadow images (Im), and others
represent shadow matte (Im), as shown in the upper right
corner of Fig. 5 (or Fig. 8).

We use the same learnable parameters b (dim=[3,1]) in
MedReLU+ and MedReLU− to balance the tasks of shadow
image reconstruction and shadow matte estimation. b is initial-
ized to zero. If b = 0, the values of half the channels are set
to zero, and the numbers of channels belonging to Ĩs and Ĩm
are equal. If b > 0, the number of channels of Ĩs increases,
and if b < 0, the number of channels of Ĩm increases. Thus, b
balances the number of channels used to learn the two tasks.

3) Theory Analysis for Weight Decoupling: We analyze
why the weights are decoupled by Eq. 4. If only `1 loss is
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considered, these learnable weights in Eq. 4 are updated as

ωsk+1
= ωsk + ηs(1 + ωbk), (5)

ωmk+1
= ωmk

+ ηm(1− ωbk), (6)
ωbk+1

= ωbk + ηb(ωsk − ωmk
), (7)

where ηs, ηm, and ηb are the step sizes. ωs and ωm are
initialized using a normal distribution (N(0,1)), while ωb are
initialized to zero. If we subtract Eq. 6 from Eq. 5, we have

∆(ωs − ωm)k = (ηs + ηm)ωbk + (ηs − ηm), (8)

where ∆(ωs − ωm)k = ωsk+1
− ωmk+1

− (ωsk − ωmk
). If

ωs > ωm, then ωb > 0 (Eq. 7), which leads to ∆(ωs−ωm) ↑
(Eq. 8). In other words, ωb makes the difference between
ωs and ωm larger in the process of parameter updating. It
is the same for ωs < ωm. Only those channels with weights
greater than the median value are retained, while the others are
discarded by MedReLU±. Thus, ωb can induce the weights
to be decoupled, i.e., ωa

s · ωa
m → 0 in Fig. 5(b) (or Fig. 7).

4) Feature Aggregation: In Eq. 4, the weights (ωa
s , ω

a
m, ω

a
f )

are forced to be normalized to [0,1], which is actually a redun-
dant limitation to aggregate the learned features F to images.
This may limit the representation capability of the network,
and thus we perform an adaptive linear transformation by
learning the parameters αi and βi (i ∈ {s,m, f}, dim=[3,1,1]).

Ĩs = αs · ωa
s × F + βs,

Ĩm = αm · ωa
m × F + βm,

Ĩf = αf · ωa
f × F + βf .

(9)

αi and βi are initialized to 1 and 0, respectively.

D. Multi-task Collaborative Learning
The estimated shadow matte determines shadow areas and

illumination compensation, while the reconstructed shadow
image, as a constraint, preserves the features of the input image
as much as possible. We adopt the `1 norm to constrain these
two tasks,

Ls = EĨs,Is

[
λs

∥∥∥Ĩs − Is∥∥∥
1

]
, (10)

Lm = EĨm,Im

[
λm

∥∥∥Ĩm − Im∥∥∥
1

]
. (11)

From Eq. 1, we obtain the ground truth of the shadow matte by
Im = If − Is. For shadow removal, to restore a shadow-free
image without artifacts and ensure the fidelity of non-shadow
areas, we utilize the `1 norm to capture the low frequency,
adversarial loss to capture high-frequency details [61], [62],
and perceptual loss to improve perceptual quality [53], [63],

Lf = λ1L`1 + λ2Ladv + λ3Lperc. (12)

Concatenating If and Is into the discriminator D, the adver-
sarial loss is

Ladv = EIf ,Is [log [D(If , Is)]] + EĨf ,Is

[
log
[
1−D(Ĩf , Is)

]]
.

(13)

The perceptual loss is

Lperc =

5∑
k=1

EĨf ,If

[∥∥∥Φk(Ĩf )− Φk(If )
∥∥∥
1

]
, (14)

where Φk is the k-th activation map from the pretrained
VGG19 [50]. Our final objective is

arg min
G

max
D

(Ls + Lm + Lf ). (15)

We empirically set λs = 2550, λm = 255, λ1 = 2550, λ2 = 1,
λ3 = 1000.

IV. EXPERIMENTS

A. Implementation Details

DMTN was implemented with PyTorch and optimized with
Adam (β1=0.9 and β2=0.999) [64]. In the feature trans-
formation and refinement structure, the downsampling and
upsampling layers were implemented using bilinear interpo-
lation followed by 3 × 3 convolution. For training stability,
we used historical images instead of the latest generated
images to update the discriminator [65] with spectrum nor-
malization [66], [67]. Identity parameter initialization [59]
and random normal initialization were applied to initialize the
generator and discriminator, respectively. The learning rates of
the discriminator and generator were initially set to 1× 10−4

and 5 × 10−5, respectively. Similar to [24], we set the batch

Input Ground TruthDSC
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DHAN

[24]

LG-ShadowNet

[32]

FusionNet

[28] (+Mask)

DMTN 

(Ours)

DMTN+Mask

(Ours)

UnfoldingNet

[48] (+Mask)

Fig. 9. Visual comparison results on ISTD dataset [21].
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TABLE I
QUANTITATIVE COMPARISON RESULTS ON THE ISTD DATASET [21]. WE REPORT THE RMSE, SSIM AND PSNR IN THE SHADOW AREA, NON-SHADOW

AREA, WHOLE IMAGE (ALL). “↑” INDICATES THAT LARGER VALUES ARE BETTER, WHILE “↓” INDICATES THAT LOWER VALUES ARE BETTER. BEST AND
SECOND BEST RESULTS ARE highlighted AND UNDERLINED. THE RESULTS MARKED “∗”, “¶” AND “‡” ARE REPORTED BY [21], [24] AND [30],

RESPECTIVELY. DA REPRESENTS DATA AUGMENTATION BY DATA SYNTHESIS [24] FOR TRAINING. “-” REPRESENTS THAT THE TEST RESULTS ARE NOT
AVAILABLE.

Method RMSE(↓) SSIM(↑) PSNR(↑)
Shadow Non-shadow ALL Shadow Non-shadow ALL Shadow Non-shadow ALL

Yang [68] ∗ 19.82 14.83 15.63 0.933 - - 28.01 - -
Guo [69] (TPAMI’12) ∗ 18.95 7.46 9.30 0.964 0.966 0.920 27.76 26.44 23.08
Gong [16] (BMVC’14) ∗ 14.98 7.29 8.53 0.973 0.972 0.926 30.14 26.98 24.71
ST-CGAN [21] (CVPR’18) 10.33 6.93 7.47 0.981 0.958 0.929 33.74 29.51 27.44
ARGAN [27] (ICCV’19) ‡ 9.21 6.27 6.63 - - - - - -
DSC [26] (TPAMI’19) ¶ 9.48 6.14 6.67 0.967 - - 33.45 - -
RIS-GAN [29] (AAAI’20) ‡ 9.21 6.27 6.63 - - - - - -
DHAN [24] (AAAI’20) 8.14 6.04 6.37 0.983 - - 34.50 - -
DAD [70] (CVPR’20) - - 6.57 - - - - - -
CANet [30] (ICCV’21) 8.86 6.07 6.15 - - - - - -
LG-ShadowNet [32] (TIP’21) 10.23 5.38 6.18 0.979 0.967 0.936 31.53 29.47 26.62
DiNet [71] (TMM’22) - - 6.28 - - - - - -
Ours (DMTN) 7.36 5.05 5.43 0.989 0.973 0.958 35.29 31.25 29.04
FusionNet [28] (CVPR’21+Mask) 7.77 5.56 5.92 0.975 0.880 0.945 34.71 28.61 27.19
UnfoldingNet [48] (AAAI’22+Mask) 7.87 4.72 5.22 0.987 0.978 0.960 36.95 31.54 29.85
BMNet [31] (CVPR’22+Mask) 7.60 4.59 5.02 0.988 0.976 0.959 35.61 32.80 30.28
Ours (DMTN+Mask) 7.00 4.28 4.72 0.990 0.979 0.965 35.83 33.01 30.42
DHAN [24] (AAAI’20+DA) 7.52 5.43 5.76 0.984 - - 34.98 - -
Ours (DMTN+DA) 6.86 4.71 5.06 0.989 0.973 0.959 35.97 31.76 29.72
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[26]

DC-ShadowNet
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FusionNet

[28] (+Mask) 
UnfoldingNet

[48] (+Mask)

DMTN

(Ours)

DMTN+Mask

(Ours)

DHAN

[24]

Fig. 10. Visual comparison results on SRD dataset [20].

size to 1 and randomly resize images for data augmentation.
We trained DMTN in 90 epochs with data augmentation (total
150 epochs). Training and testing were performed on a single
Nvidia GTX 3090.

B. Datasets and Evaluation Metrics

We evaluated our method on the widely used shadow
removal datasets SRD [20], ISTD [21], and ISTD+ [22].
SRD [20] contains shadow images and shadow-free images
(2,680 for training; 408 for testing). ISTD [21] contains
shadow images, shadow masks, and shadow-free image triplets
(1,330 for training; 540 for testing). ISTD+ [22] is an
improved dataset to deal with the color inconsistencies in
ISTD [21]. Cun et al. [24] trained a shadow matting GAN
to synthesize the shadow dataset (ISTD+DA), which uses the
shadow-free images in USR [23] and the shadow mask in

ISTD [21]. The training set of ISTD+DA contains the original
training set [21] and a synthetic training set [24]. We evaluated
the SRD dataset using the shadow masks of Cun et al. [24].
The quantitative results of shadow removal were evaluated by
root mean square error (RMSE), structural similarity (SSIM),
and peak signal to noise ratio (PSNR).

C. Comparison with the State-of-the-art Methods

We compared DMTN with the following methods: (1)
Yang [68], Guo [69], and Gong [16] are traditional methods;
(2) DeShadowNet [20], DSC [26], and DHAN [24] are single-
stage networks; (3) ST-CGAN [21], ARGAN [27], Param+M-
Net [22], RIS-GAN [29], FusionNet [28], CANet [30], Un-
foldingNet [48], and BMNet [31] are multi-stage networks;
(4) Mask-ShadowGAN [23], DC-ShadowNet [34], and LG-
ShadowNet [32] are unsupervised methods; (5) Param+M+D-
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Fig. 11. Visual result of penumbra removal on SRD [20]. Last column is shadow matte estimated by our network.
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Fig. 12. Visual comparison results on ISTD+ dataset [22].

TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE SRD DATASET [20] IN
RMSE (THE LOWER THE BETTER). THE RESULTS MARKED ∗, ¶ AND ‡

ARE REPORTED BY [20], [24] AND [30], RESPECTIVELY. ALL
REPRESENTS THE WHOLE IMAGE. BEST AND SECOND BEST RESULTS ARE

highlighted AND UNDERLINED.

Method Shadow Non-shadow ALL

Yang [68] (TIP’12) ∗ 23.43 22.26 22.57
Guo [69] (TPAMI’12) ∗ 29.89 6.47 12.60
Gong [16] (BMVC’14) ∗ 19.58 4.92 8.73
DeShadowNet [20] (CVPR’17) 11.78 4.84 6.64
ARGAN [27] (ICCV’19) ‡ 8.13 6.05 6.23
DSC [26] (TPAMI’19) ¶ 10.89 4.99 6.23
RIS-GAN [29] (AAAI’20) ‡ 8.09 6.02 6.17
DHAN [24] (AAAI’20) 8.94 4.80 5.67
DAD [70] (CVPR’20) - - 5.82
CANet [30] (ICCV’21) 7.82 5.88 5.98
DC-ShadowNet [34] (ICCV’21) 7.70 3.39 4.66
DiNet [71] (TMM’22) - - 5.38
Ours (DMTN) 6.53 3.11 4.06
FusionNet [28] (CVPR’21+Mask) 8.56 5.75 6.51
UnfoldingNet [48] (AAAI’22+Mask) 7.44 3.74 4.79
BMNet [31] (CVPR’22+Mask) 6.61 3.61 4.46
Ours (DMTN+Mask) 5.92 3.03 3.82

Net [72] and G2R-ShadowNet [33] are weakly-supervised
methods; (6) DAD [70] and DiNet [71] are unified frameworks
for superimposed image decomposition.

We present the quantitative comparison results with these
state-of-the-art methods on the ISTD dataset [21] in Table I
(visual results are shown in Fig. 9). For fair comparisons,
the results of these methods are provided from the original

TABLE III
QUANTITATIVE COMPARISON RESULTS ON ISTD+ [22]. ALL

REPRESENTS THE WHOLE IMAGE. “WEAKLY” REPRESENTS
WEAKLY-SUPERVISED METHODS. BEST AND SECOND BEST RESULTS ARE

highlighted AND UNDERLINED.

Method Learning ShadowNon-shadowALL

Yang [68] (TIP’12) traditional 24.7 14.4 16.0
Guo [69] (TPAMI’12) traditional 22.0 3.1 6.1
Mask-ShadowGAN [23] (ICCV’19) unsupervised 12.4 4.0 5.3
DC-ShadowNet [34] (ICCV’21) unsupervised 10.3 3.5 4.6
LG-ShadowNet [32] (TIP’21) unsupervised 9.7 3.4 4.4
Param+M+D-Net [72] (ECCV’20) weakly 9.7 3.0 4.0
G2R-ShadowNet [33] (CVPR’21) weakly 8.8 2.9 3.9
DeShadowNet [20] (CVPR’17) supervised 15.9 6.0 7.6
ST-CGAN [21] (CVPR’18) supervised 13.4 7.7 8.7
Param+M-Net [22] (ICCV’19+Mask) supervised 7.9 3.1 3.9
FusionNet [28] (CVPR’21+Mask) supervised 6.5 3.8 4.2
BMNet [31] (CVPR’22+Mask) supervised 5.6 2.5 3.0
Ours (DMTN) supervised 6.5 3.1 3.7
Ours (DMTN+Mask) supervised 6.1 2.6 3.2

papers as much as possible. If not specified, DMTN has 12
SMC modules in the coarse level, 2 SMC modules in the
refinement level, and 64 hidden layers. First, we report the
shadow removal performance of DMTN, which decreases the
RMSE of shadow regions by 16.9% compared to CANet [30]
(the lower the better). Second, similar to [22], [25], [28],
[31], [48], [72] using shadow masks as auxiliary information
to locate shadow areas, we concatenate the shadow masks
with the extracted VGG features as the input to the feature
selection module, denoted as DMTN+Mask. Using a shadow
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mask to facilitate shadow removal reduces the RMSE in
the whole image from 5.43 to 4.72. Finally, we explore
training our network with synthetic shadow images for data
augmentation, denoted as DMTN+DA. The results show that
synthetic shadow images improve the performance of shadow
removal, and DMTN+DA achieves the best RMSE (6.86) in
the shadow regions. In addition to RMSE, we also report the
quantitative comparison of PSNR and SSIM in Table I. These
results show the superiority of our method.

We present the quantitative results on the SRD dataset [20]
in Table II. Our method clearly achieves the best shadow
removal performance. Fig. 10 shows that our network can
effectively recover the illumination in the shadow regions by
multi-task collaboration. We analyze why our network can
achieve good visual results for shadow removal by visualizing
the output of the shadow matte estimation task in the last col-
umn of Fig. 11. The shadow matte estimated by our network
can accurately model direct illumination compensation, which
is the key to removing penumbra and tiny shadows. These
results validate the effectiveness of our multi-task learning.

Table III presents quantitative results on the ISTD+
dataset [22] (visual results are shown in Fig. 12). Our method
achieves the second-best performance, with a slightly lower
RMSE (0.2) than BMNet [31] in the whole image. BMNet [31]
achieves the best performance by introducing shadow masks
and shadow-invariant color images as prior information, which
shows that more priors can improve the performance of single-
image shadow removal.

D. Ablation Studies

We conducted ablation experiments to demonstrate the
effectiveness of our method. Due to the simplified training
settings, the quantitative results of ablation experiments differ
from the comparison results described above.

TABLE IV
DMTN ARCHITECTURE ANALYSIS ON THE ISTD DATASET [21].

”DMTN/C=64/12-SMC/2-SMC” HAS 64 HIDDEN LAYERS, 12 SMC
MODULES IN THE COARSE LEVEL AND 2 SMC MODULES IN THE
REFINEMENT LEVEL. ”W/O VGG” DENOTES THE VGG WITHOUT

PRETRAINED WEIGHTS FOR FEATURE EXTRACTION. ”W/O FS” REFERS TO
THE 3×3 CONVOLUTION WITHOUT SE CHANNEL ATTENTION [51] FOR
FEATURE SELECTION. ”W/O SPP” DENOTES THE DMTN WITHOUT SPP

MODULE IN FIG. 3.

Method/Channel/Coarse/Refine Shadow Non-Shadow ALL

DMTN/C=64/4-SMC/2-SMC 7.53 5.71 6.00
DMTN/C=64/8-SMC/2-SMC 7.99 5.60 5.98
DMTN/C=64/16-SMC/2-SMC 8.22 5.73 6.12
DMTN/C=64/12-SMC/1-SMC 7.56 5.49 5.82
DMTN/C=64/12-SMC/3-SMC 7.82 5.72 6.05
DMTN/C=64/12-SMC/4-SMC 7.30 5.56 5.84
DMTN/C=64/14-SMC/0-SMC 7.62 5.61 5.93
DMTN/C=64/0-SMC/14-SMC 8.01 5.90 6.23
DMTN/C=16/12-SMC/2-SMC 9.02 6.41 6.82
DMTN/C=32/12-SMC/2-SMC 8.45 5.78 6.20
DMTN/C=64/12-SMC/2-SMC (Ours) 7.22 5.50 5.77
DMTN/C=128/12-SMC/2-SMC 7.07 5.30 5.58
DMTN/C=256/12-SMC/2-SMC 7.20 5.33 5.62
w/o VGG/C=64/12-SMC/2-SMC 8.24 6.22 6.54
w/o FS/C=64/12-SMC/2-SMC 7.58 5.64 5.94
w/o SPP/C=64/12-SMC/2-SMC 7.43 5.59 5.88

TABLE V
QUANTITATIVE COMPARISON WITH SHUFFLENET [55], [73] ON THE ISTD
DATASET [21] IN RMSE. SHUFFLENETV1 [73] AND SHUFFLENETV2 [55]

USE BATCHNORM [58] AS THE DEFAULT SETTING, WHILE OUR DMTN
USES ADAPTIVE NORMALIZATION (”ADANORM”) [59]. (A)

QUANTITATIVE COMPARISON WITH SHUFFLENET. ”G=4” REPRESENTS
THAT THE NUMBER OF GROUPS IS 4 IN GROUP CONVOLUTION.

SHUFFLENETV1, SHUFFLENETV2, AND DMTN HAVE 64 HIDDEN
LAYERS. (B) QUANTITATIVE COMPARISON OF RESOURCE EFFICIENCY AND

PERFORMANCE. ”C=44” DENOTES 44 HIDDEN LAYERS. ”MACS”
DENOTES MULTIPLY–ACCUMULATE OPERATION. RESOURCE EFFICIENCY

(PARAMS AND MACS) IS ANALYZED BY THOP4 .

(a) Method Shadow Non-Shadow ALL

ShuffleNetV1 [73]/g=1 12.36 7.54 8.30
ShuffleNetV1 [73]/g=2 13.19 8.14 8.93
ShuffleNetV1 [73]/g=4 12.21 7.18 7.97
ShuffleNetV1 [73]/g=8 11.85 8.54 9.06
ShuffleNetV1 [73]/g=1/AdaNorm 8.00 5.94 6.27
ShuffleNetV1 [73]/g=2/AdaNorm 8.28 5.91 6.28
ShuffleNetV1 [73]/g=4/AdaNorm 8.70 5.97 6.40
ShuffleNetV1 [73]/g=8/AdaNorm 8.10 6.06 6.38
ShuffleNetV2 [55] 12.32 7.44 8.21
ShuffleNetV2 [55]/AdaNorm 8.27 6.03 6.38
Ours (DMTN) 7.22 5.50 5.77

(b) Method ShadowNon-ShadowALLParams (M)MACs (G)

ShuffleNetV2 [55]/c=44 9.13 6.16 6.63 21.44 58.42
Ours (DMTN/c=32) 8.45 5.78 6.20 21.35 48.81
ShuffleNetV2 [55]/c=80 8.08 5.59 5.98 22.56 104.06
Ours (DMTN/c=64) 7.22 5.50 5.77 22.83 93.65
ShuffleNetV2 [55]/c=184 7.59 5.58 5.90 27.89 306.12
Ours (DMTN/c=128) 7.07 5.30 5.58 27.90 230.22

The results in Table IV show that the coarse-to-fine struc-
ture is effective and essential for shadow removal, proba-
bly because the encoder-decoder structure can capture the
global context to locate shadows, and the image processing
network [24], [41], [59] at the original image resolution is
conducive to restoring spatially accurate details. In addition,
we discuss our network scalability for shadow removal by
changing the number of hidden layers. The results show that
blindly increasing parameters cannot further improve shadow
removal performance. In addition, we conducted ablation
analysis on feature extraction and selection (w/o VGG and
w/o FS in Table IV). Notably, we used the original SE
module [51] for feature selection. It is feasible to explore more
complex attention modules for performance improvement, e.g.,
Expansion-Squeeze-Excitation attention [74]–[76], effective
SE module [77], and Multi-Axis attention [42].

Our SMC module was improved based on the Shuffle
module [55], [73]. There are two differences between SMC
and Shuffle module [55], [73]: 1) the Shuffle module [55],
[73] uses BatchNorm [58], while our SMC module uses
adaptive normalization [59]; 2) the convolution unit of Shuffle
module uses three cascaded convolutions (1× 1, 3× 3 depth-
wise [56], [57], and 1 × 1), while our SMC module adopts
two parallel convolutions (dilated and 3 × 3). For a fair
comparison, both ShuffleNet and our DMTN have 12 modules
in the coarse level and 2 modules in the refinement level.
Table V(a) shows that adaptive normalization [59] can improve
the performance of shadow removal. Table V(b) provides

4https://github.com/Lyken17/pytorch-OpCounter.
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TABLE VI
ANALYSIS OF THE RELATIONSHIP BETWEEN THE QUALITY OF SHADOW MATTES AND SHADOW REMOVAL PERFORMANCE ON THE ISTD DATASET [21].

IN THIS ABLATION EXPERIMENT, WE REMOVED THE ADVERSARIAL AND PERCEPTUAL LOSSES (I.E., W/O (Ladv ,Lperc)), AND USED ONLY THE `1
NORM. BY BLURRING THE GROUND TRUTH OF SHADOW MATTES, WE CAN CONTROL THE QUALITY OF THE PREDICTED SHADOW MATTES. WE
CALCULATE “RMSE-SHADOW MATTE” USING THE PREDICTED SHADOW MATTE AND THE UNBLURRED GROUND TRUTH OF SHADOW MATTE.

Loss (w/o (Ladv ,Lperc)) Shadow matte RMSE-Shadow RMSE-Non-Shadow RMSE-ALL RMSE-Shadow matte

Only shadow removal 0× 0 mean blur 8.35 6.31 6.63 -
Multi-task 0× 0 mean blur 8.24 5.91 6.28 20.11
Multi-task 3× 3 mean blur 8.72 5.73 6.20 20.44
Multi-task 5× 5 mean blur 8.09 5.85 6.20 20.56
Multi-task 7× 7 mean blur 8.17 5.88 6.24 20.81
Multi-task 11× 11 mean blur 8.35 6.02 6.39 21.13
Multi-task 13× 13 mean blur 8.26 6.05 6.40 21.22

TABLE VII
SMC MODULE ANALYSIS ON THE ISTD DATASET [21]. (A) CHANNEL

PARTITION ABLATION ANALYSIS IN THE SMC MODULE (B)
CONVOLUTION UNIT SELECTION IN THE SMC MODULE. AS SHOWN IN

FIG. 4, “CONV UNIT” DENOTES PARALLEL DILATED AND 3× 3
CONVOLUTION, “CONV 3× 3” DENOTES 3× 3 CONVOLUTION,

“IDENTITY” DENOTES IDENTITY MAP, “CONV-D” DENOTES DILATED
CONVOLUTION, AND ”/” DENOTES SPLITTING AND PROCESSING FEATURE
CHANNELS. ”MACS” IS MULTIPLY–ACCUMULATE OPERATION. RESOURCE

EFFICIENCY (PARAMS AND MACS) IS ANALYZED BY THOP.

(a) SMC Shadow Non-Shadow ALL ∆ Params (M) MACs (G)

Conv Unit(5/5) 7.46 5.47 5.79 - 25.60 132.60
Conv Unit(4/5) 7.46 5.50 5.81 -0.02 24.25 113.65
Conv Unit(3/4) 7.34 5.43 5.73 +0.08 23.98 109.89
Conv Unit(2/3) 7.73 5.62 5.95 -0.22 23.53 103.50
Conv Unit(3/5) 7.82 5.45 5.83 +0.12 23.21 98.98
Conv Unit(1/2) 7.22 5.50 5.77 +0.06 22.83 93.65
Conv Unit(2/5) 7.71 5.48 5.83 -0.06 22.49 88.86
Conv Unit(1/3) 7.67 5.53 5.86 -0.03 22.30 86.24
Conv Unit(1/4) 7.61 5.79 6.07 -0.21 22.14 83.89
Conv Unit(1/5) 8.73 5.70 6.18 -0.11 22.05 82.59

(b) SMC ShadowNon-ShadowALLParams (M)MACs (G)

Identity/Conv 3× 3 8.03 5.92 6.25 22.37 87.13
Identity/Conv-D 8.02 5.58 5.96 22.37 87.13
Identity/Conv Unit (Ours) 7.22 5.50 5.77 22.83 93.65
Conv 3× 3/Conv Unit 7.62 5.55 5.87 23.29 100.18
Conv 1× 1/Conv Unit 7.60 5.54 5.86 22.88 94.42
ALL channels 7.46 5.47 5.79 25.60 132.60

comparisons with ShuffleNet [55], [73] in terms of network
complexity and accuracy, which demonstrates the effectiveness
of our improved SMC module. In addition, we conducted
channel partition ablation experiments on the SMC module.
The results in Table VII(a) show that processing half of
the feature channels performs better, which is probably due
to sufficient feature mixing. We observed two interesting
points: 1) not all scores drop, and some even improve when
the number of convolved channels decreases (5/5� 1/2); 2)
the scores are getting worse (1/2� 1/5). This shows that it
is beneficial to pass some channels, but convolving a few
channels leads to significant performance degradation (e.g.,
Conv Unit 1/5). In Table VII(b), we selected a setting of
convolution unit that can balance performance and parameters.
Compared with full channel convolution (“ALL channels” in
Table VII(b)), our SMC module has fewer parameters and
computational costs without performance degradation.

We analyzed the relationship between the quality of shadow
mattes and shadow removal performance in Table VI. By

TABLE VIII
CONSTRAINED FEATURE DECOUPLING LAYER (SEE EQ. 4) ANALYSIS ON

THE ISTD DATASET [21]. ”W/O LINEAR” DENOTES THE FEATURE
DECOUPLING WITHOUT LINEAR TRANSFORMATION IN EQ. 9.

CFDL Shadow Non-Shadow ALL

Eq. 2 8.02 5.50 5.90
Eq. 2, Eq. 3 7.45 5.63 5.91
w/o b 7.46 5.40 5.73
w/o median 7.42 5.50 5.80
w/o adaptive median 8.11 5.27 5.72
ReLU→LeakyReLU 7.55 5.49 5.82
w/o normalize 7.74 5.59 5.93
w/o linear 7.62 5.52 5.85
Eq. 4, Eq. 9 (Ours) 7.22 5.50 5.77

TABLE IX
MULTI-TASK JOINT LOSS FUNCTIONS ANALYSIS ON THE ISTD

DATASET [21]. ”1× 1 CONV” DENOTES AGGREGATING n DIMENSIONAL
FEATURES INTO RGB IMAGES BY 1× 1 CONVOLUTION.

Loss CFDL Shadow Non-Shadow ALL

w/o (Ls,Lm) 1× 1 conv 7.74 5.68 6.00
w/o L`1 Eq. 4, Eq. 9 7.56 5.62 5.93
w/o Ladv Eq. 4, Eq. 9 8.10 5.52 5.93
w/o Lperc Eq. 4, Eq. 9 8.67 6.02 6.44
Ls,Lm,Lf (Ours) Eq. 4, Eq. 9 7.22 5.50 5.77

blurring the ground truth of shadow mattes, we can control
the quality of the predicted shadow mattes. We found that
supervised training with slightly blurred shadow mattes (e.g.,
5×5 mean blur) results in better RMSE (6.28 → 6.20), while
overly inaccurate shadow mattes degrade the shadow removal
performance (e.g., 13 × 13 mean blur). This may be due to
slight changes of ambient light during image capture, where
illumination noise is unavoidable (Le and Samaras [22] solved
this issue by correcting color inconsistency in ISTD [21]).
Therefore, there is a difference between shadow and shadow-
free images, and slightly blurred shadow mattes can suppress
noise interference.

In Table VIII, the RMSE in the shadow regions, with values
from 8.02 (Eq. 2) to 7.22, shows that feature decoupling can
facilitate shadow matte estimation and better restore illumina-
tion in shadow areas. Our CFDL reduces the RMSE in shadow
regions from 8.11 (w/o adaptive median) to 7.22, which shows
that the adaptive median can better balance the tasks of
shadow matte estimation and shadow image reconstruction.
The ablation results in Table IX verify the effectiveness of
our multi-task joint loss functions.
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TABLE X
AVERAGE INFERENCE TIME ON A NVIDIA GTX 3090 WITH THE RESOLUTION OF 512×512.

Method Param+M-Net [22] (+Mask) DHAN [24] FusionNet [28] (+Mask) CANet [30] Ours (DMTN) Ours (DMTN+Mask)

Inference Time 0.0521 0.1039 0.0902 0.1151 0.0844 0.0846

TABLE XI
RESOURCE EFFICIENCY AND PERFORMANCE ANALYSIS BY THOP. ALL

REPRESENTS THE WHOLE IMAGE. ”MACS”5 DENOTES
MULTIPLY–ACCUMULATE OPERATION.

Multi-branch (ISTD) Shadow Non-Shadow ALL Params (M) MACs (G)

DHAN [24] 8.14 6.04 6.37 21.75 131.47
FusionNet [28] (+Mask) 7.77 5.56 5.92 141.84 83.05
Ours (DMTN-32) 8.31 5.38 5.86 21.35 63.73
Ours (DMTN-64) 7.36 5.05 5.43 22.83 122.30
Ours (DMTN-64+Mask) 7.00 4.28 4.72 22.83 122.34

Multi-stage (SRD) Shadow Non-Shadow ALL Params (M) MACs (G)

CANet [30] 7.82 5.88 5.98 236.12 247.38
Ours (DMTN) 6.53 3.11 4.06 22.83 122.30
FusionNet [28] (+Mask) 8.56 5.75 6.51 141.84 83.05
Ours (DMTN+Mask) 5.92 3.03 3.82 22.83 122.34

Multi-stage (ISTD+) ShadowNon-ShadowALLParams (M)MACs (G)

Param+M-Net [22] (+Mask) 7.9 3.1 3.9 141.18 39.87
Ours (DMTN) 6.5 3.1 3.7 22.83 122.30
Ours (DMTN+Mask) 6.1 2.6 3.2 22.83 122.34

Table XI shows the comparison results of resource efficiency
and performance. DMTN with 32 hidden layers outperforms
the current state-of-the-art single-stage shadow removal net-
work, DHAN [24], with double 64 hidden layers (dual branch)
in the whole image. Compared with the multi-stage meth-
ods [22], [28], [30], [72], DMTN achieves higher performance
with fewer parameters.

V. DISCUSSION AND LIMITATIONS

A. Limitations

Our method sometimes fails to completely remove shadows,
as shown in Fig. 13. In the first row (on ISTD [21]), pixel
values of non-shadow areas are changed due to inaccurate
localization of shadow areas, which can be improved by
using shadow masks as additional inputs. The second row (on
SRD [20]) shows a case where the color in the shadow areas
is incorrectly restored. We speculate that this case may be due
to the long-tailed distribution of the dataset.

Table X shows that the inference time of our method is
competitive with the SOTA methods. The run speed of our
method is worse than that of Param+M-Net [22], which may be
due to the fact that the features in our network are convolved at
a higher resolution (Param+M-Net [22] uses 8 downsampling
layers, while our network uses only one downsampling layer
at the coarse level).

5When MACs evaluated by THOP, the default resolution is 224×224, but
this resulted in Param+M-Net [22] and FusionNet [28] not working. Therefore,
for all methods in Table XI, the MACs are calculated using images with the
resolution of 256×256.

Input OursGround Truth Ours(+mask)

Fig. 13. Failure cases of our method.

B. Shadow Mask and Shadow Matte

We analyzed the relationship, advantages and disadvantages
between the shadow mask and our matte. The input shadow
mask facilitates the estimation of the shadow matte (Fig. 13),
while our shadow matte is grayed and binarized to obtain the
shadow mask [21]. Shadow matte is better for the recovery of
shadow areas, while shadow mask is better for the fidelity of
non-shadow areas. Compared to the shadow mask, our shadow
matte can handle tiny shadows and penumbras, and avoid
manually adjusting the ground truth of shadow mask [21]. But,
our shadow matte causes noise interference in non-shadow
areas, which can be observed in our ablation experiments
(Table VI). Thus, shadow matte and shadow mask are a trade-
off for shadow removal.

Compared to the widely used shadow mask, both our
shadow matte and other mattes [20], [22], [25] can cope
with penumbras. However, our shadow matte can avoid re-
moving shadow in the log domain [14], [20] and estimating
illumination parameters for shadow removal by a multi-stage
network [22], [25]. In addition, our shadow matte is consistent
with the residual image, facilitating the integration of shadow
removal into the unified residual learning framework widely
used for other image restoration tasks [29], [34], [36]–[42].

C. Self-shadow Removal

Although the training set of the SRD dataset [20] does
not contain self-shadows and occluded objects, our results
in Fig. 14 show a possibility to remove all shadows (um-
bra, penumbra, and self-shadow). Constructing a cast shadow
removal dataset [20], [21] is simple, and shadow synthesis
techniques [24], [49] are readily available, which provides
technical support for generating a very large shadow removal
dataset. Our results illustrate the feasibility that a network
trained on a dataset containing only cast-shadow images can
be used for self-shadow removal. In fact, due to the difficulty
of constructing paired self-shadow removal datasets, our ex-
ploration points to a possible path for single-image shadow
removal to be grounded in practice.
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Input

DHAN

Ours

Fig. 14. Visual results of self-shadow removal. We collected a self-shadow removal dataset (SSRD) that contains 86 images without the ground truth of
shadow-free images due to the presence of self-shadows. DHAN [24] and DMTN are pretrained on SRD dataset [20].

VI. CONCLUSION

In this paper, we proposed a decoupled multi-task shadow
removal network to jointly learn three tasks in a single-
stage pipeline: shadow removal, shadow matte estimation,
and shadow image reconstruction. Our core design was an
improved semi-convolution module for feature transformation
and a constrained feature decoupling layer that decoupled the
learned features into these three task domains by reassigning
weights to feature channels, which is completely different from
current methods using multi-stage or multi-branch structures
for multi-task shadow removal. A theoretical analysis demon-
strated the effectiveness of our decoupling mechanism, and
comprehensive experiments illustrated the effectiveness and
superiority of our method. In fact, the shadow matte estimated
by our network was the residual image between the target and
the input image; estimating the residual image has been widely
used in the field of image restoration. Therefore, our method
can potentially be applied to other image restoration tasks, e.g.,
highlight removal, low-light image enhancement, desnowing,
and deraining.
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