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Abstract
Slide-free microscopy (SFM) methods can serve
as a faster alternative to the standard histologi-
cal examination of tissue specimens. However,
SFM methods often provide images that differ
from the hematoxylin- and eosin-stained (H&E)
images commonly obtained in standard histology.
Unpaired image-to-image translation has been ex-
plored for transforming SFM images into H&E
images, a process known as virtual staining. Here,
we compare a standard CycleGAN approach to a
diffusion model-based approach for virtual stain-
ing of SFM images. We observe that the diffusion
model approach, which relies on the inherent se-
mantic preservation of the latent encodings, fails
to outperform the standard CycleGAN approach,
when tested on two different SFM datasets. This
indicates that the semantic preservation of diffu-
sion models is lacking for virtual staining tasks
and additional regularization is needed.

1. Introduction
In histopathology, a tissue specimen is obtained from a pa-
tient, processed, prepared as a tissue slide, and viewed under
a brightfield microscope (Bancroft & Gamble, 2008). These
slides are stained with histological dyes that label impor-
tant tissue structures: the extremely common hematoxylin
and eosin (H&E) stain combination labels the nuclei and
cytoplasm of cells. However, this typical workflow takes
several hours, which limits the application of histopathol-
ogy in more time-sensitive situations (like during a surgery)
(Liu et al., 2022). Slide-free microscopy (SFM) systems
have been developed to examine fresh tissue within a few
minutes, but provide colors and contrasts that differ from
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standard brightfield image, which hinders interpretation by
clinicians (Liu et al., 2022). This has motivated the use of
deep learning, specifically generative adversarial networks,
to transform SFM images into those that resemble H&E to
enable easier interpretation by clinicians (Bai et al., 2023).
This task is often referred to as virtual staining. However,
diffusion models have not been previously examined in the
context of virtual staining.

Here, diffusion models are applied for virtual staining of
SFM images and compared to CycleGANs. As demon-
strated in (Su et al., 2023), diffusion models inherently
provide latent encodings that can be exploited for unpaired
image-to-image translation. This approach is demonstrated
here, and shown to provide satisfactory virtually stained
SFM images, but are inferior to virtual staining with Cycle-
GANs. This comparison is demonstrated for virtual staining
of images taken with Microscopy with Ultraviolet Surface
Excitation (MUSE) (Fereidouni et al., 2017) and Fluores-
cence Imitating Brightfield Imaging (Borowsky et al., 2023).

2. Methods
We define two image domains, one for SFM images (X),
and one for H&E images (Y ). We attempt to determine the
transformation G : X → Y .

2.1. Diffusion models

Diffusion models, or score-based generative models, are
trained to reverse a diffusion process. It is also described
by the following forward and reverse stochastic differential
equations (Song et al., 2021):

dx = f(x, t)dt+ g(t)dw,
dx =

[
f − g2∇x log pt(x)

]
dt+ g(t)dw

where w is the Wiener process, while f(x, t) is termed the
drift coefficient and g(t) is the diffusion coefficient, both
of which is defined by the type of diffusion model used.
The ∇x log pt(x) ”score” term is approximated by a neural
network sθ(x, t). The score term is learned via the following
loss:
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Ldiffusion(θ) := Et,x0,ϵ

[∥∥ϵ− sθ
(√

αtx0 +
√
1− αtϵ, t

)∥∥
2

]
where ∥ · ∥2 is the L2 norm, t is the timestep, αt is some
predefined variance parameterized by the timestep, x0 is
an image from the training set, and ϵ ∼ N (0, I). Images
are sampled from the model through a discretization of the
reverse stochastic differential equation.

Song et al. introduced denoising diffusion implicit mod-
els (Song et al., 2021), a sampling procedure for diffusion
models that can be done very efficiently in a deterministic
manner. Essentially, the SDE can instead be expressed by a
deterministic ordinary differential equation (ODE) that has
the same marginal densities as the diffusion SDE.

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt

This ODE is termed the probability flow (PF) ODE. As it
is deterministic, the sampling of the PF ODE can be run in
reverse to provide uniquely identifiable latent encodings x0.
This process is sometimes referred to as DDIM inversion.

It has been observed that this latent encoding contains se-
mantic information that is preserved when using the same
latent encoding for sampling with two separate diffusion
models. Exploiting the preservation of semantic informa-
tion, Dual Diffusion Implicit Bridges (DDIBs) (Su et al.,
2023) simply perform DDIM inversion with a diffusion
model trained on datapoints from domain X , and DDIM
sampling with the obtained latent encoding x0, using the
diffusion model trained on domain Y . Here, a U-Net (Ron-
neberger et al., 2015) was trained with an ϵ-parameterization
objective (Ho et al., 2020) and a cosine noise schedule with
N=1000 timesteps. A single neural network was trained
on both X and Y images, with a specified condition c, re-
sulting in a conditional diffusion model sθ(x, t, c). The
conditioning is implemented via sinusoid embeddings that
are added to the timestep embedding. The neural network
was trained from scratch for 1000 epochs at a learning rate
of 1e-4 with a batch size of 4 using an AdamW optimizer.
During inference, the DDIM sampler was used with 150
timesteps.

2.2. CycleGANs

In the CycleGAN framework, we have two tasks. One task
is to learn a generator GX : X → Y that maps x ∈ X
to y ∈ Y . The auxiliary task is to learn a generator
GY : Y → X . Additionally, we have the adversarial dis-
criminators DX and DY . DX discriminates between the
fake outputs of GX and real images from domain Y . Con-
versely, DY discriminates between the fake outputs of GY

and real images from domain X .

CycleGAN exploits the cycle-consistency property that
GY (GX(x)) ≈ x and GX(GY (y)) ≈ y. This constraint
can be expressed as the following loss:

Lcycle (GX , GY ) =Ex∼pdata(x) [∥GY (GX(x))− x∥1]
+ Ey∼pdata(y) [∥GX (GY (y))− y∥1]

where ∥ · ∥1 is the L1 norm. Additionally, the GANs are
trained with the traditional adversarial losses (Zhu et al.,
2020). Finally, for regularization, we impose an “identity”
constraint:

Lidentity (GX , GY ) = Ey∼pdata(y) [∥GX(y)− y∥1]
+ Ex∼pdata(x) [∥GY (x)− x∥1]

The generator architecture is a ResNet-based fully convo-
lutional network described in (Zhu et al., 2020). A 70x70
PatchGAN (Isola et al., 2017) is used for the discriminator.
The same loss function and optimizer as described in the
original paper (Zhu et al., 2020) was used. The learning rate
was fixed at 2e-4 the first 100 epochs and linearly decayed
to zero in the next 100 epochs, like (Zhu et al., 2020).

2.3. Slide-free microscopy datasets

In this work, two slide-free microscopy datasets were uti-
lized:

1. Urothelial carcinoma (kidney) MUSE-to-H&E: The
H&E data came from a region in a single whole-slide
image of human kidney with urothelial cell carcinoma.
The MUSE data came from a single surface image
of similar tissue. We obtained 512x512 tiles from the
images, resulting in 344 H&E tiles and 136 MUSE tiles
for training, and 100 MUSE tiles for testing. The tiles
were randomly cropped into 256x256 images when
loaded into the model for training. During testing,
the full 512x512 tiles were provided as inputs to the
models. As observed in previous studies (Abraham
et al., 2020; Bai et al., 2023), color- and intensity-
inverted MUSE images greatly improves CycleGAN
results, so all tiles were inverted.

2. Benign breast FIBI-to-H&E: The H&E data came from
a region in a single whole-slide image of human benign
breast. The FIBI data came from a single surface image
of similar tissue. We obtained 512x512 tiles from the
images, resulting in 832 H&E tiles and 900 FIBI tiles
for training, and 567 FIBI tiles for testing.

2.4. Evaluation

A classifier (a ResNet18) was trained to quantitatively eval-
uate how “real” the outputs of the models look. We used
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accuracy from the classifier to quantitatively compare the
quality of the generative models. We trained a separate
critic on the predictions for each model to keep results in-
dependent. Each critic were trained for 20 epochs with a
0.001 learning rate (one-cycle learning rate schedule). Each
dataset consisted of “fake” H&E images generated from the
test set and real H&E images from the train set. It was a
balanced dataset with an 80/20 dataset split. The test set
accuracy after 20 epochs is reported.

In addition to reporting the classifier accuracies, we report
the Fréchet Inception Distance (FID) (Heusel et al., 2017).

2.5. Implementation details

Diffusion model code was implemented with PyTorch 1.12
(Paszke et al., 2019), and fastai (Howard & Gugger, 2020)
libraries. The CycleGANs were trained with the UPIT li-
brary (Abraham, 2023). FID evaluation was performed with
pytorch-fid (mseitzer, 2023). All experiments were run on
an NVIDIA A100 80GB.

3. Results
Figure 1 shows results on the test dataset applying either the
DDIB or CycleGAN approach for virtual staining of MUSE
images. While DDIB produces H&E-like images, it is ap-
parent that while some aspects of the original MUSE image
is preserved by DDIB (green arrow), many of the nuclei that
are present in the original MUSE image either are missing
or have an incorrect shape (red arrow). Additionally, many
nuclei and other details are hallucinated, and not originally
present in the MUSE Image. Figure 2 shows results on the
test dataset applying either DDIB or CycleGAN approach
for virtual staining of FIBI images. Here, it is apparent that
DDIB misses many of the features in the original image,
especially in the lower half of the image. In contrast, Cy-
cleGAN is able to preserve these features and appropriately
convert them to H&E-like contrasts. Overall, this seems to
indicate that while some semantic features are preserved
in the latent encodings, many finer-grained details are not
being preserved in the latent encoding or reconstructed by
the diffusion model.

To quantitatively evaluate the model, the external classifier
accuracy and Frechet Inception Distance (FID) is reported
in Table 1 for the MUSE-to-H&E dataset, and Table 2 for
the FIBI-to-H&E dataset. For both metrics, a lower score
indicates better model performance. Although a different
classifier with more layers is used, the accuracy is similar
to (Abraham et al., 2020) for urothelial carcinoma MUSE-
to-H&E, which reported 72%. As demonstrated in both
Table 1 and Table 2, the diffusion model approach fails to
outperform CycleGANs for virtual H&E staining.

MUSE (inverted) Diffusion model CycleGAN

Figure 1. Comparison of a CycleGAN and a diffusion model for
virtual staining of MUSE images (urothelial cell carcinoma). A red
arrow indicates error, a green arrow indicates correct conversion.

FIBI Diffusion model CycleGAN

Figure 2. Comparison of a CycleGAN and a diffusion model for
virtual staining of FIBI images (benign breast).

4. Discussion
In this study, virtual staining of SFM images with H&E us-
ing diffusion models was explored and compared to GANs.
It was demonstrated both qualitatively and quantitatively
that the performance of a diffusion model approach (DDIB)
was inferior to a standard GAN approach (CycleGAN). To
the author’s best knowledge, this serves as the first explo-
ration of diffusion models for virtual staining in the litera-
ture.

CycleGANs have been explored for a variety of virtual
staining use-cases (Abraham et al., 2020; Kang et al., 2022;
Combalia et al., 2019). Although CycleGANs are a fairly
basic approach without many additional constraints or spe-
cialized loss functions, studies have observed CycleGANs
outperform other, often more sophisticated GAN-based ap-
proaches for histopathology tasks (Zingman et al., 2023;
Altini et al., 2023; Salido et al., 2023). Here, we observe
a similar phenomenon even with a diffusion model-based
approach.

The results here suggest that the inherent latent encodings
provided by diffusion models and DDIM inversion does
not appropriately maintain the semantic information of the
original image. Future work will therefore further explore
the incorporation of semantic constraints, likely in a form
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Table 1. Urothelial carcinoma MUSE-to-H&E
Model External critic accuracy ↓ FID ↓
CycleGAN 75% 97.2

DDIB 100% 127.0

Table 2. Benign breast FIBI-to-H&E

Model External critic accuracy ↓ FID ↓
CycleGAN 77% 61.7

DDIB 100% 151.0

similar to classifier guidance (Dhariwal & Nichol, 2021).
Regularization using self-supervised vision transformer fea-
tures during the reverse diffusion process (Kwon & Ye,
2023) was attempted with no improvement in performance
(data not shown), but other constraints, especially those de-
signed specifically for histology images, may achieve more
success.

Note that even if diffusion models manage to outperform
existing GAN-based approaches, high latency may hinder
the practical applications of diffusion models for virtual
staining, where real-time feedback to clinicians is desired.
CycleGANs require four neural function evaluations (NFE)
per optimization step during training, but only one NFE for
inference. In contrast, diffusion models require only one
NFE per optimization step during training but numerous
NFEs (N=150 used here) for inference. With DDIB specifi-
cally, 150 timesteps are performed for DDIM inversion to
obtain the latent encoding, followed by an additional 150
timesteps for output image generation. For this reason, in-
ference takes about 100 seconds for DDIB compared to 1
second with a CycleGAN for a 512x512 tile on an NVIDIA
A100. Distillation approaches (Meng et al., 2022; Song
et al., 2023) may help improve inference times and enable
practical application of diffusion models for virtual staining.

A major challenge with training unpaired image-to-image
translation models is the lack of adequate quantitative met-
rics. Most approaches rely on crowdsourcing approaches
like Amazon Mechanical Turk to rate the quality of the
generated images. However, this is infeasible when attempt-
ing to generate difficult-to-interpret domain-specific images.
Some virtual staining tasks utilize paired data (Rivenson
et al., 2019a;b), allowing for direct comparison to ground
truth with metrics like PSNR and SSIM (Wang et al., 2004).
Unfortunately, SFM images pixel-paired to H&E images
are not available. The use of FID and an external classifier
provides some relevant feedback, but doesn’t fully capture
the presence of lack of semantic preservation. Manual in-
spection of generated samples compared to the input images

still remains one of the best forms of model evaluation.

While the results demonstrated here demonstrate that DDIB
fails to outperform CycleGANs, we believe alternative diffu-
sion model-based approaches may eventually surpass GANs.
Additionally, it may be possible that combining GANs and
diffusion models (i.e. incorporating some form of adver-
sarial training) may result in better results. Therefore, we
believe applying diffusion models to virtual staining is still
a fruitful direction and requires further research.
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