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ABSTRACT

Accurate prediction of drug-drug interactions (DDIs) is crucial for therapeutic
safety yet poses a substantial challenge due to complex pharmacodynamics. Tra-
ditional DDI prediction methods often falter for three reasons. First, they sim-
plify dependency structures among entities (e.g., drugs, targets, enzymes, and
transporters) in bipartite networks, falling short in modeling drug-centered high-
order information. Second, the over-smoothing effects constrain the depth of the
adopted neural networks, thereby limiting their learning capacity. Third, they ei-
ther partially consider drug-centered relationships or do not unify multiple drug-
centered relationships into an end-to-end learning model. In response, this paper
proposes Deeper Hybrid End-to-end Neural Network (DHENN), which integrates
a Multimodal Knowledge Graph (MKG) with a Prediction-Enhanced Cascading
Network (PECN) in an end-to-end learning manner. Specifically, MKG captures
higher-order information across drug-centered entities, offering a holistic view of
DDIs. PECN mitigates over-smoothing associated with feature extraction by in-
corporating shallow embeddings into deeper layers, preserving node-level diver-
sity. The end-to-end learning manner guarantees that the representation learning
and predictive modeling of MKG and PECN are formulated into a unified learning
objective. Extensive experiments substantiate that DHENN outperforms thirteen
competitors on two real-world DDI datasets.

INTRODUCTION

Drug-Drug Interactions (DDIs) arise from complex pharmacodynamics, where one drug may alter
in-vivo behaviors (e.g., serum concentration) of its partners when taken together (Zitnik et al., 2018).
Unknown DDIs among multiple administrated drugs in clinical settings can result in accidental
adverse reactions, some of which are literally deadly (Leape et al., 1995). Accurate prediction of
unknown DDIs events are gaining prominence for clinical safety, given the rising costs of vitro
experiments and concerns for animal welfare. Predictive modeling for DDI prediction can be traced
back to seminal work by (Prichard & Shipman Jr, 1990) and has since spurred an flurry of studies,
e.g., (Huang et al., 2020; Ryu et al., 2018; Cui et al., 2020; Lin et al., 2020; Xiong et al., 2023).

Topological structures provide a natural depiction of DDI events through a DDI network, where
each link connecting nodes (drugs) represents their interactions. Predicting DDIs in these networks
involves determining the existence (binary) or category (multi-class) of these links (Abbas et al.,
2021). Efforts to enrich DDI studies have focused on incorporating multifaceted topological infor-
mation to enhance network content. For example, nodal contents are enriched by learning vector
representations from molecular structures (Feng & Zhang, 2022; Yu et al., 2022), clinic side-effect
reports (Iyer et al., 2014), and drug-food constituencies (Ryu et al., 2018). To respect biological
dynamics between drug and protein (e.g., target, enzyme, transporter) (Cui et al., 2020), recent re-
search leverages various bipartite graphs to describe the drug-protein interactions and use graph
neural networks (GNNs) for feature fusion (Deng et al., 2020; Lin et al., 2022a;b; Tang et al., 2024).

Despite advancements, most DDI prediction studies boil down to inherent the link prediction
paradigm, which may lead to inferior modeling precision because of three challenges. First, the
current DDI networks are tailored to model first-order, bipartite relationships, such as <drug,
transporter> and <drug, enzyme>. Thus, they struggle to delineate high-order information linked
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by drugs, such as < drug, transporter, drug, enzyme, drug, molecular structures>. Such high-order
pathways convey pharmacological details of how drugs are absorbed, distributed, metabolized, and
excreted, thereby establishing a more holistic view of DDI events.

Second, the current backbone neural networks for DDI prediction are mostly shallow. This is be-
cause of over-smoothing (Chen et al., 2020; Liu et al., 2020), where all drug embeddings tend to be
indistinguishable after multiple layers of representation. Shallow networks in general cannot afford
enough learning capacity to capture complex drug-centered high-order information.

Third, there are rare existing DDI models that comprehensively consider drug-centered multiple
relationships. Besides, the rare ones do not unify multiple drug-centered relationships into an end-
to-end learning model. Such a learning way decouples the stages of representation and prediction,
leading to suboptimal solutions that overlook the potential for ground-truth DDIs to refine embed-
ding generation. into training the DDI prediction model. As a result, they obtain sub-optimal embed-
dings of by overlooking the fact that ground-truth DDIs can in turn refine the process of embedding
generation. Specifically, they mainly learn drug embeddings from multiple drug-centered relation-
ships at first and then feed the well-learned embeddings into a DDI predictor for training. As a
result, they obtain sub-optimal embeddings by overlooking the fact that ground-truth DDIs can in
turn refine the embedding process.

Motivated by the status quo, this study proposes a novel Deeper Hybrid End-to-end Neural Network
(DHENN) model. Our DHENN is designed based on three key ideas. First, to capture higher-order
information, we construct a Multimodal Knowledge Graph (MKG) that connects various types of
entities related to DDI events (e.g., drugs, targets, enzymes, transporters, molecular substructures)
in one topology. Second, to enlarge learning capacity, we design a Prediction-Enhanced Cascading
Network (PECN) to dynamically combine shallow node embeddings into the subsequent represen-
tation layers. Third, DHENN couples its representation learning and predictive modeling stages in
an end-to-end way, where the feature extractions and fusions from raw entity modalities to ground-
truth DDIs are formulated into a unified learning objective. As such, DHENN can stack deep hidden
layers to learn higher-order and deeper latent features, as well as guarantee the feature extractions
and fusions to be optimal.

This paper has the following specific contributions:

• We propose a highly accurate DHENN model for predicting DDI events, which exploit the
high-order information between various types of entities related to various DDI events in
one topology of MKG.

• This is the first study to design a deep PECN to learn deeper latent features from MKG of
DDI events in an end-to-end fashion.

• Extensive experiments on real drug datasets are conducted to evaluate our DHENN model.
The results demonstrate that DHENN exhibits high accuracy and significantly outperforms
nine state-of-the-art and four traditional models in predicting DDI events.

RELATED WORK

This section notes the recent advances in DDI predictive modeling using graphs. A more compre-
hensive literature survey including non-graph DDI models is deferred to the APPENDIX due to
page limits.
Single graph-based DDI prediction. These methods rely on a homogeneous DDI network only,
casting DDI prediction as a link prediction task. They can be categorized in three groups. Namely,
1) matrix factorization that aims to complete the DDI adjacency matrix (Shi et al., 2019), 2) random
walk that generates node embeddings from sequences to calculate their similarities (Ribeiro et al.,
2017), and 3) hard-encoded graph feature extraction that predefines topological patterns such as
centrality or connectivity for node embeddings (Tang et al., 2015; Wang et al., 2016).
Dual graph-based DDI prediction. These methods integrate two graphs of DDI and molecular
interactions, predicting DDI events and molecular properties at once (Wang et al., 2022; Li et al.,
2022). In particular, MRGNN (Xu et al., 2019) employs multiple graph convolution layers to extract
node features from diverse neighboring nodes within a structured entity graph. MFFGNN (He et al.,
2022) integrates the topological structure within molecular graphs with the interaction relationship
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between drugs, along with the local chemical context encoded in SMILES sequences. EPGCN-
DS (Sun et al., 2020) adopts a framework based on graph convolutional networks for type-specific
DDI identification from molecular structures. In addition, Molormer (Zhang et al., 2022) leverages
the 2D structures of drugs as input and uses a lightweight attention mechanism to encode the spatial
information of the molecular graph.
Knowledge graph-based DDI prediction. Knowledge graphs (KGs) enable a more holistic view
of DDI modeling by integrating multiple types of biological entities and relations, including drugs,
targets, enzymes, and transporters. KGNN (Lin et al., 2020) integrates graph convolutional networks
with neighborhood sampling, effectively extracting valuable neighborhood relations. AAEs (Dai
et al., 2020) uses KG embedding through adversarial autoencoders, along with Wasserstein distances
and GumbelSoftmax relaxation, to enhance the learning process. SumGNN (Yu et al., 2021) pro-
poses a graph summarization module designed for subgraphs, allowing the extraction of meaningful
pathways that can be easily managed and analyzed. In a similar vein, LaGAT (Hong et al., 2022)
leverages a link-aware graph attention method that generates multiple attention pathways for drug
entities based on the diverse links between drug pairs. DDKG (Su et al., 2022) furthers these efforts
by learning drug embeddings from their attributes within KGs and incorporating neighboring node
embeddings and triple facts simultaneously. EmerGNN (Zhang & Yao, 2023) predicts interactions
for emerging drugs by leveraging the rich information in biomedical networks. MKG-FENN (Wu
et al., 2024) adopts a comprehensive and end-to-end framework to achieve optimal feature extraction
and fusion. KnowDDI (Wang & Yang, 2024) enhances drug representations by adaptively leverag-
ing rich neighborhood information from large biomedical knowledge graphs.
Hybrid graph and feature extraction modeling. There are studies combining graphs with nodal
feature extraction in various DDI models, which often lead to better prediction performances over
individual models (Chen et al., 2021). For example, MDNN (Lyu et al., 2021) combines a drug
knowledge graph pathway with a heterogeneous features pathway, and MIRACLE (Wang et al.,
2021) uses contrastive learning that treats a DDI network as a multiview graph with each node
representing an individual drug molecular instance. Deepika & Geetha (2018) employs a semi-
supervised learning framework that incorporates network representation learning and meta-learning
techniques. GoGNN (Wang et al., 2020) uses a dual-attention mechanism to extract hierarchical
features from structured entity graphs and DDI networks. MUFFIN (Chen et al., 2021) is a multi-
scale feature fusion model that combines drug structure and a biomedical KG for improving drug
node embedding. MRCGNN (Xiong et al., 2023) integrates the features of DDI events and drug
molecular graphs by GNNs.

Novelty. We note three unique differences between previous methods and our proposal. First,
the graph-based methods commonly separate the drug-centered binary relations and thus ignore
high-order information that may be linked through intermediate entities, e.g., a drug-enzyme-drug
pathway. Second, these methods are limited by the over-smoothing effect in shallow neural net-
works. Third, these methods either partially consider drug-centered relationships or do not unify
drug-centered multiple relationships into an end-to-end learning model. In contrast, our DHENN
model enjoys three merits: 1) exploiting the high-order information from various drugs, chemical
entities, and molecular structures by unifying them into one MKG topology, 2) designing a deeper
PECN to mitigate the over-smoothing associated with the nodal feature extraction on MKG, and 3)
guaranteeing the feature extractions and fusions to be optimal by an end-to-end learning way.

PRELIMINARIES

DDI Matrix. The DDI matrix serves as a representation of drug-drug interaction occurrences and
is denoted as Y ∈ (0, yij)

Nd×Nd , where Nd represents the number of drugs included. Each element
Y ∈ (0, yij) in the matrix indicates the presence or absence of a drug interaction event between
drug di and drug dj . If yij = 0, it signifies the absence of an interaction event between the two
drugs, while any other value indicates the presence of an interaction event. By utilizing the label
matrix, researchers can characterize different types of drug-drug interactions. The label set L =
{y1, y2, · · · , yNl

} represents the possible labels, with Nl denoting the number of event types. Each
element yij ∈ L in the DDI matrix represents a specific label, providing information about the
nature of the interaction between drug di and drug dj .

Drug Knowledge Graph. The drug knowledge graph, denoted as G = (D,R, T ), is a specialized
knowledge graph designed for predicting drug-drug interaction events. It consists of three compo-
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nents: D, representing a subset of drug entities; R, representing the set of relations between drugs
and tail entities; and T , representing a subset of tail entities related to drugs (e.g., targets). The
drug knowledge graph is defined as a collection of tuples (d, rdt, t), where each tuple represents a
connection between a drug entity d, a relation rdt, and a tail entity t. These connections exist if and
only if the drug entity is in the set D, the relation is in the set R, and the tail entity is in the set T .
By analyzing the drug knowledge graph, valuable insights can be gained regarding the relationships
between drugs and their associated tail entities, providing valuable information for predicting DDIs.

DDI Events Prediction. Our primary objective is to predict specific drug interaction events be-
tween drug di and drug dj using both the DDI events matrix Y and the drug knowledge graph G.
To accomplish this task, we employ a prediction function denoted as ŷij = Γ (di, dj | Θ,Y,G).
This function combines model parameters Γ with the information from Y and G to provide reliable
predictions of the occurrence of interaction events between drug di and drug dj . By considering
multiple factors and leveraging the available data, our approach aims to enhance the accuracy and
effectiveness of DDI events prediction.

PROPOSED METHOD

Overview. The overall structure of our proposed DHENN model is illustrated in Figure 1.
DHENN is primarily divided into two parts. In the upper part, a graph neural network (GNN)
is to extract higher-order and semantic features from a constructed multimodal knowledge graph
(MKG). In the lower part, a prediction-enhanced cascading network (PECN) is designed to inte-
grate the extracted features and predict the types of DDIs. By combining these two parts, DHENN
can effectively analyze and predict DDIs based on the learned features and relationships.

Figure 1: The overall structure of the proposed DHENN model.

FEATURE EXTRACTION AND FUSION IN MKG

MKG CONSTRUCTION.

As depicted in Figure 1, our MKG (i.e., drug knowledge graph) is a complex network that provides
a clear description of the intricate semantic relationships between drugs and molecular structures,
chemical entities, substructures, and other drugs. The drug knowledge graph can be described in
the form of tuples as <drugs, relationships, entities>. To better understand how drugs are related to
entities, we provide a detailed explanation of the relationships between drugs and various types of
entities.
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Drugs-chemical Entities. We gather drug-related information, including transporters and targets,
to serve as the entities. We assign the corresponding relationship based on the general function
of the entity. For example, let’s take the drug Lovastatin. If there is a transporter named Serum
albumin, and its general function is Toxic substance binding, we would create the following triplet:
<Lovastatin, Toxic substance binding, Serum albumin>.

Drug-substructures. The SMILES attribute of drugs is treated as entities, and the relationship
between drugs and entities is represented by ”including”. For example, if the drug Lovastatin has a
SMILES attribute ”986”, the corresponding triplet would be <Lovastatin, including, 986>.

Drugs-drugs. The DDI events matrix is renowned for its extensive scale and rich information.
Within this dataset, we can gather information about the other drugs that each drug can interact with.
We treat these drugs as entities, and the specific interaction events as the corresponding relationships.
For example, Abemaciclib interacting with Bosutinib leads to an increase in serum concentrations.
Therefore, the corresponding triplet would be <Abemaciclib, increase in serum concentrations,
Bosutinib>.

Molecular structures. This portion of the data is based on the Molecular ACCess System (MACCS)
bonds, along with 13 MACCS bonds and 7 other molecular features. These MACCS bonds
and molecular features are considered as entities of the drug, where the values indicating their
occurrence frequencies are denoted as relationships. For example, Glucosamine has three oc-
currences of the molecular substructure ”NumSaturatedRings,” represented as <Glucosamine, 3,
NumSaturatedRings>.

It is worth noting that the Unified Medical Language System (UMLS) and the DrugBank ID are
utilized as a unified identifier system to construct our MKG.

MKG LEARNING VIA GRAPH NEURAL NETWORK.

The objective of employing the GNN layer is to capture the topological structure and semantic
relationships inherent in drugs. In this paper, the drug knowledge graph is converted into a matrix
representation. The initial representation matrix of the drug knowledge graph, denoted as EG can be
expressed in the following format:

EG = [e
(0)
d1

, · · · , e(0)Nd︸ ︷︷ ︸
drug-embedding

, e(0)r1 , · · · , e(0)Nr︸ ︷︷ ︸
relation-embedding

, e
(0)
t1 , · · · , e(0)Nk︸ ︷︷ ︸
tail-embedding

],
(1)

where EG represents the initial representation matrix of the knowledge graph. The variables Nd, Nr,
and Nk indicate the number of drugs, relationships, and tail entities, respectively. The embeddings
ed

(0) ∈ Rd , er
(0) ∈ Rd and et

(0) ∈ Rd represent the initial embeddings for drugs,
relationships, and tail entities, respectively. These embeddings are vectors in the d-dimensional
space, where d is the embedding dimension of the drug knowledge graph.

To capture the neighborhood information of each drug di, a fixed-size sample of neighbors is uni-
formly selected instead of considering all tail entities. These sampled neighbors are denoted as
Ns (di), representing the fixed-size neighborhoods associated with drug di. The sampled neighbors
can be described using the following formula:

Ns (di) =

{
Rand

(
e
(0)
tn

, replace = False
)
, NS >= TS

Rand
(
e
(0)
tn

, replace = True
)
, NS < TS

(2)

When the overall neighbors of a drug is greater than or equal to a fixed sampling neighbors, the
Rand function will non-repetitively select a fixed neighbors. TS represents the size of the overall
neighborhood, while NS represents the size of the adopted neighborhood. However, when the
overall neighbors is smaller than the fixed sampling neighbors, we will allow it to repetitively select
a fixed neighborhood.

For the drug di in the drug knowledge graph G, we represent it using triples (di, rin, tn), where
tn represents the neighborhood of drug di, and rin represents the semantic relationship within that
neighborhood. In order to incorporate the semantic information of relationships into the learning of
drug representations, we calculate the semantic feature score between drug di and its corresponding
neighborhood tail entity tn using the following formula:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

π
(l)
(di,rin)

= sum
[(

e
(l−1)
di

⊙ e(l−1)
rin

)
W

(p)
l + b

(p)
l

]
(3)

In the formula, e(l−1)
rin represents the embedding of the relationship between drug di and tail entity

tn in the (l − 1)
th layer of the GNN. e(l−1)

di
represents the embedding of drug di in the (l − 1)

th

layer of the GNN. W (p)
l denotes the trainable weight matrix, b(p)l represents the bias vector, and p

signifies the number of fully connected layers. The symbol ⊙ denotes element-wise multiplication.

Next, we perform aggregation on the embeddings of the neighborhood Ns (di) by combining them
with the corresponding semantic feature scores. The aggregation function is defined as:

e
(l)
Ns(di)

=
∑

ln∈Ns(di)

π
(l)
(di,rin)

e
(l−1)
tn (4)

In the formula, e(l−1)
tn denotes the neighborhood embedding associated with drug di within the

(l − 1)
th layer of the GNN. On the other hand, π(l)

(di,rin)
signifies the semantic feature score corre-

sponding to drug di and its relationship within the (l)
th layer.

The next step involves the aggregation process. To amalgamate the drug di embedding alongside its
associated neighborhood representation into a vector, we employ the fusion equation:

Edi = e
(l)
di

= σ
((

e
(l−1)
di

⊕ e
(l)
Ns(di)

)
W2 + b2

)
(5)

Finally, in order to maximize the information from the drug, we use the above calculation method to
obtain the representations of different categories of entities for drugs. Then we concatenate the drug
representations of different categories of entities together to obtain the final drug representation.This
allows us to capture a comprehensive view of the drug by incorporating various relevant features.The
fusion of the representations of different aspects of the drug can be described using the following
formula:

Êdi
= E1

di
⊕ E2

di
⊕ · · · ⊕ En

di
(6)

In the formula, we use Êdi to represent the final representation of drug di, and E1
di

, E2
di

and En
di

represent the first,second and nth category of drug representations, respectively.

Likewise, we can utilize the same approach to compute the representation of drug dj by leveraging
its respective knowledge graphs. By employing the formula and generating the drug representation,
we can effectively capture the pertinent information and features associated with drug dj within the
MKG.

PREDICTION-ENHANCED CASCADING NETWORK

To enhance learning of complex DDI patterns, PECN in DHENN dynamically merges shallow em-
beddings into deeper layers. PECN uses a cascaded structure, where each layer takes predicted
output from the previous layer as input, with each layer being an MLP architecture.

In the first layer, we concatenate the drug representations of di and dj from MKG as the input.
Both di and dj have a dimension of d, so when concatenated, they form a 2 ∗ d-dimensional vector.
The output is a c-dimensional vector representing the predicted category of the DDI events. The
prediction formula for the first layer can be expressed as:

ŷ1(i, j) = σ
((

Êdi ⊕ Êdj

)
W

(q)
3 + b

(q)
3

)
(7)

In the subsequent layers of PECN (N layers), the inputs are formed by concatenating the drug rep-
resentations of di and dj along with the output from the previous layers. The dimensionality of the
input in this layer is 2 ∗ d+ c ∗ (N − 1), where N represents the layer number, which is greater than
1. The formula for the prediction in these layers can be expressed as:

ŷN (i, j) =σ
((

Êdi
⊕ Êdj

⊕ ŷ1(i, j)⊕ · · ·

⊕ŷN−1(i, j))W
(q)
N+2 + b

(q)
N+2

) (8)
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To ensure the objective of the loss function aligns effectively with the learning parameters, we em-
ploy a hybrid loss function that directly influences the parameter learning of the corresponding MLP
layer. This approach allows DHENN to optimize the learning process by incorporating the relevant
information from the loss function into the MLP layer’s parameter updates. The loss function of the
model can be represented using the following formula:

Loss = α1CrossEntropyLoss (ŷ1(i, j), y) + · · ·
+αnCrossEntropyLoss (ŷn(i, j), y)

(9)

In this cascaded loss function, each sub-loss function corresponding to each MLP is cross-entropy,
where α1 and αn represent the weights of the first and N-th cross-entropy, respectively. To optimize,
we integrate a batch normalization layer to accelerate convergence. Moreover, a dropout layer and
ℓ2 regularization are used to alleviate overfitting.

ILLUSTRATIVE EXAMPLE OF OUR DHENN

Figure 2: Illustration of our DHENN computational flow.

This subsection uses an illustrative ex-
ample to explain the model methodol-
ogy, as shown in Figure 2. Suppos-
ing there is a dataset with 572 drugs,
4 different types of entities, and 65
types of DDI events. The first is to
construct an MKG that can be repre-
sented by a tuple: <drugs, chemical
entities, substructures, drugs, molecular
structures>. A fixed-size neighborhood
of entities is selected for each category
of tail entities, which is illustrated in
Figure 2(a). Then, high-order topolog-
ical information and semantic relation-
ships between drugs and tail entities are
extracted through GNN layers, as shown in Figure 2(b). If the representation dimension of the drug
di is 128. Then, by concatenating the representations of the four different types of tail entities, we
obtain a final representation of the drug di with a length of 512 dimensions. Therefore, a 572 ∗ 512-
dimensional matrix is obtained.

Next, such a matrix is input into the PECN for predicting DDI events as shown in Figure 2(c).
By concatenating the drugs di and dj to obtain a 1024-dimensional vector as the input of the first
MLP classifier. This results in a 65-dimensional output vector, which corresponds to the number
of predicted types of DDI events. In the subsequent MLP classifiers, we take the input vector and
output vector of the previous MLP classifier as the input vector of the current classifier. Therefore,
in the N -th layer MLP classifier, the input vector dimension is 1024+ 65 ∗ (n− 1) dimensions, and
the output is 65 dimensions. If there is a 7-layer MLP classifier, resulting in a 1414-dimensional
vector as the input to the final layer of the classifier to obtain the final output of 65-dimensional
prediction vectors.

ALGORITHM DESIGN
Due to the page limitation, the algorithm pseudocode and the complexity analysis of DHENN are
moved into the Appendix.

EXPERIMENTS

In the subsequent experiments, three research questions (RQs) are investigated as follows:
• RQ.1. Can the proposed DHENN model outperform state-of-the-art models in predicting

DDI events between known and/or new drugs?
• RQ.2. How do the three key ideas (i.e., MKG, FENN, and end-to-end learning manner) of

the proposed DHENN model impact its performance (i.e., ablation study)?
• RQ.3. How do the hyper-parameters of the proposed DHENN model impact its perfor-

mance?
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GENERAL SETTINGS

Datasets. The first dataset (Dataset1) was collected by DDIMDL1 from DrugBank, and it consists
of 572 drugs, 74,528 triple relationships, and is associated with 65 DDI events. Each drug has
four entity types: drugs-chemical entities, drug-substructures, drug-drugs, and molecular structures.
The second dataset (Dataset2) also originates from DrugBank2. It comprises 846 drugs, 92,105
triple relationships, and is associated with 73 DDI events. Each drug has three entity types: drugs-
chemical entities, drug-substructures, and drugs-drugs.

Evaluation Metrics. To evaluate the proposed DHENN model, a set of multi-class classification
evaluation metrics is adopted. These metrics include accuracy (ACC), area under the precision-recall
curve (AUPR), area under the ROC curve (AUC), F1 score, precision (Pre), and recall.

Baselines. We compare DHENN with nine state-of-the-art related models: MKG-FENN (Wu
et al., 2024), EmerGNN (Zhang & Yao, 2023), KnowDDI (Wang & Yang, 2024), MDDI-SCL (Lin
et al., 2022a), MDF-SA-DDI (Lin et al., 2022b), DDIMDL (Deng et al., 2020), MDNN (Lyu et al.,
2021), Lee et al.’s methods (Lee et al., 2019), and DeepDDI (Ryu et al., 2018). Furthermore, we
also consider several traditional methods, including DNN, RF, KNN, and LR (Deng et al., 2020).
Please refer to the Appendix to see more details

Hyper-Parameter. Most of the hyper-parameters were set the same for the two datasets. We
simultaneously set 100 epochs of iteration, a learning rate of 0.01, a neighborhood size of 10, and an
embedding size of 128. Additionally, the parameters were set to l = 1, p = 2, and q = 3, where l is
the number of hidden layers in the GNN. Our empirical study suggested using 1 layer, which aligns
with the recent concern of over-smoothing in GNN (Lyu et al., 2021). For different datasets, we
have set different batch sizes (Dataset 1=1024 and Dataset 2=2048) and regularization controlling
weight (Dataset 1=1e-08 and Dataset 2=1e-10).

PERFORMANCE COMPARISON WITH BASELINES (RQ.1)

Three tasks of predicting DDI events are tested: between known drugs (Task 1), between known
drugs and new drugs (Task 2), and predicting DDI events among new drugs (Task 3).

Dataset Metric MKG-
FENN

Know-
DDI

Emer-
GNN MDDI-SCL MDF-SA

-DDI DDIMDL MDNN Lee et al.’
methods DeepDDI DNN RF KNN LR DHENN

Dataset 1

ACC 0.9409 0.9022 0.9343 0.9378 0.9301 0.8852 0.9175 0.9094 0.8371 0.8797 0.7775 0.7214 0.7920 0.9458
AUPR 0.9786 0.9436 0.9771 0.9782 0.9737 0.9208 0.9668 0.9562 0.8899 0.9134 0.8349 0.7716 0.8400 0.9750
AUC 0.9989 0.9852 0.9989 0.9983 0.9989 0.9976 0.9984 0.9961 0.9961 0.9963 0.9956 0.9813 0.9960 0.9988

F1 0.8958 0.8653 0.8069 0.8755 0.8878 0.7585 0.8301 0.8391 0.6848 0.7223 0.5936 0.4831 0.5948 0.9032
Pre 0.9132 0.8429 0.8400 0.8804 0.9085 0.8471 0.8622 0.8509 0.7275 0.8047 0.7893 0.7174 0.7437 0.9317
Rec 0.8876 0.8322 0.7926 0.8767 0.8760 0.7182 0.8202 0.8339 0.6611 0.7027 0.5161 0.4081 0.5236 0.8933

Dataset 2

ACC 0.9516 0.9034 0.9401 0.9514 0.9423 0.9434 0.9462 0.9368 0.8906 0.9342 0.8396 0.8230 0.8537 0.9560
AUPR 0.9867 0.9124 0.9824 0.9864 0.9738 0.9749 0.9842 0.9651 0.9484 0.9802 0.9077 0.8848 0.9129 0.9849
AUC 0.9994 0.9522 0.9995 0.9991 0.9984 0.9992 0.9992 0.9992 0.9973 0.9991 0.9980 0.9920 0.9981 0.9994

F1 0.9181 0.9262 0.8633 0.9147 0.8619 0.8863 0.9123 0.8951 0.8146 0.8441 0.6339 0.7088 0.6499 0.9263
Pre 0.9307 0.8892 0.8902 0.9254 0.8975 0.9464 0.9443 0.9030 0.8554 0.9308 0.7962 0.8419 0.7787 0.9506
Rec 0.9100 0.8498 0.8520 0.9096 0.8456 0.8502 0.8903 0.8913 0.7945 0.8620 0.5631 0.6491 0.5954 0.9235

Statistic
Win/Tie/Loss 8/1/3 12/0/0 9/0/3 10/0/2 11/0/1 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 146/1/9

p-value 0.0068 0.0002 0.0032 0.0046 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 -
F-rank 2.21 8.75 5.92 3.96 6.00 7.00 5.17 6.63 11.04 8.38 12.75 13.42 12.00 1.79

Table 1: The comparison between DHENN and its competitors in task 1, including the Win/Tie/Loss
counts, Wilcoxon signed-ranks test, and Friedman test.

COMPARISON BASED ON KNOWN DRUGS

Task 1 plays a crucial role in DDI events prediction. Task 1 adopts five-fold cross-validation to divide
the datasets into five subsets, with four subsets used for training and one subset for testing, repeat-
edly. Table 1 presents the comparison results. To gain a deeper understanding of these results, we
conducted comprehensive statistical analyses, including win/tie/loss analysis, the Wilcoxon signed-
ranks test, and the Friedman test (Demsar, 2006). These analyses provide valuable insights into the
performance of DHENN compared to the baselines.

1https://github.com/YifanDengWHU/DDIMDL
2https://go.drugbank.com/
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Dataset Metric MKG-
FENN

Know-
DDI

Emer-
GNN MDDI-SCLMDF-SA

-DDI DDIMDL MDNN Lee et al.’
methods DeepDDI DNN RF KNN LR DHENN

Dataset 1

ACC 0.6805 0.6352 0.6673 0.6767 0.6633 0.6415 0.6495 0.6405 0.5774 0.6239 0.5575 0.5084 0.4670 0.6910
AUPR 0.7049 0.6558 0.6778 0.6947 0.6776 0.6558 0.6661 0.6244 0.5594 0.6361 0.5644 0.4955 0.4499 0.7101
AUC 0.9673 0.9437 0.9447 0.9634 0.9497 0.9799 0.9516 0.9247 0.9575 0.9796 0.9669 0.8504 0.9639 0.9725

F1 0.5394 0.5558 0.5269 0.5304 0.5584 0.4460 0.4471 0.5039 0.3416 0.2997 0.1679 0.2058 0.1739 0.5351
Pre 0.6063 0.5533 0.6255 0.6254 0.6547 0.5607 0.5582 0.5388 0.3630 0.4237 0.4722 0.3146 0.2484 0.6413
Rec 0.5106 0.4351 0.4880 0.4814 0.5078 0.4319 0.4611 0.4891 0.3890 0.2840 0.1313 0.1673 0.1470 0.5173

Dataset 2

ACC 0.7100 0.6732 0.6367 0.6866 0.6664 0.7267 0.7255 0.6083 0.6336 0.6838 0.5356 0.5892 0.5610 0.7361
AUPR 0.7498 0.6890 0.6983 0.7059 0.6776 0.7526 0.7428 0.6121 0.6283 0.7077 0.5987 0.6115 0.5664 0.7674
AUC 0.9783 0.9627 0.9729 0.9663 0.9637 0.9871 0.9661 0.9701 0.9350 0.9690 0.9771 0.8879 0.9752 0.9809

F1 0.5873 0.5811 0.4442 0.5821 0.5861 0.5794 0.6186 0.4478 0.4905 0.5637 0.2736 0.3128 0.3200 0.5881
Pre 0.6809 0.6807 0.5177 0.6672 0.7041 0.7578 0.7115 0.4394 0.5455 0.6920 0.5865 0.4358 0.4551 0.7308
Rec 0.5394 0.5211 0.4673 0.5408 0.5248 0.5044 0.5721 0.4715 0.4666 0.5011 0.2043 0.2658 0.2707 0.5456

Statistic
Win/Tie/Loss11/0/1 11/0/1 12/0/0 12/0/0 10/0/2 9/0/3 10/0/2 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 147/0/9

p-value 0.0012 0.0012 0.0002 0.0002 0.0105 0.0081 0.0212 0.0002 0.0002 0.0005 0.0002 0.0002 0.0002 -
F-rank 3.25 3.25 4.92 4.92 5 4.17 4.83 7.83 8.83 6.75 9.58 10.92 10.17 1.75

Table 2: The comparison results between DHENN and its competitors in task 2, where partial drugs
are unknown in DDIs graphs during training.

Dataset Metric MKG-
FENN

Know-
DDI

Emer-
GNN MDDI-SCL MDF-SA

-DDI DDIMDL MDNN Lee et al.’
methods DeepDDI DNN RF KNN LR DHENN

Dataset 1

ACC 0.4552 0.4498 0.4783 0.4589 0.4338 0.4075 0.4575 0.4097 0.3602 0.4087 0.3329 0.3057 0.3126 0.4824
AUPR 0.4162 0.3986 0.4411 0.3938 0.3873 0.3635 0.4215 0.3184 0.2781 0.3776 0.2640 0.2223 0.2532 0.4513
AUC 0.9149 0.9078 0.9201 0.9053 0.8630 0.9512 0.8753 0.8302 0.9059 0.9550 0.9143 0.7332 0.9342 0.9305

F1 0.2186 0.2270 0.2127 0.1919 0.2329 0.1590 0.1697 0.2022 0.1373 0.1152 0.0173 0.0468 0.0539 0.2252
Pre 0.2754 0.2765 0.2873 0.2585 0.2715 0.2408 0.2184 0.2216 0.1586 0.1836 0.0214 0.0565 0.0633 0.3263
Rec 0.2131 0.2275 0.2609 0.1678 0.2226 0.1452 0.1709 0.2027 0.1450 0.1093 0.0220 0.0463 0.0539 0.2121

Dataset 2

ACC 0.5141 0.4952 0.4378 0.4781 0.4605 0.5002 0.4997 0.3459 0.3968 0.4359 0.2742 0.3460 0.3581 0.5803
AUPR 0.4993 0.4774 0.4653 0.4441 0.4109 0.4800 0.4444 0.2760 0.3146 0.3822 0.2451 0.2932 0.3035 0.5666
AUC 0.9456 0.9342 0.9442 0.9272 0.8822 0.9701 0.8933 0.9041 0.8400 0.8963 0.9314 0.7548 0.9463 0.9567

F1 0.2745 0.2841 0.3680 0.2644 0.2612 0.1916 0.2947 0.1472 0.1916 0.1882 0.0092 0.0960 0.1168 0.3065
Pre 0.3196 0.3108 0.3625 0.3039 0.2848 0.3568 0.3395 0.1386 0.2129 0.2586 0.0475 0.1161 0.1720 0.3693
Rec 0.2630 0.2876 0.4064 0.2469 0.2571 0.1526 0.2814 0.1688 0.1831 0.1639 0.0154 0.0873 0.0974 0.2962

Statistic
Win/Tie/Loss11/0/1 10/0/2 9/0/3 12/0/0 10/0/2 10/0/2 12/0/0 12/0/0 12/0/0 11/0/1 12/0/0 12/0/0 11/0/1 144/0/12

p-value 0.0005 0.0017 0.2058 0.0002 0.0012 0.0024 0.0002 0.0002 0.0002 0.0005 0.0002 0.0002 0.0005 -
F-rank 4.17 4.50 3.25 6.75 6.92 6.29 6.17 9.83 10.13 8.92 12.50 13.17 10.42 2

Table 3: The comparison results between DHENN and its competitors in task 3, where all the drugs
are unknown in DDIs graphs during training

Table 1 clearly shows that the proposed DHENN model outperforms the other baseline models on
all two datasets. Looking at the total number of wins, ties, and losses, DHENN achieved 125 wins,
1 tie and 6 losses. In addition, the calculated p-values for comparisons across all datasets are less
than 0.05, indicating that the statistical significance level of the performance improvement of the
proposed DHENN model is 0.05. Moreover, DHENN consistently achieves the lowest F-rank value
on the datasets, where a lower F-rank value indicates better model performance in comparison.

COMPARISON BASED ON NEW DRUGS

ACC F1 Pre Rec F-rank

P1 0.9372 0.8660 0.9109 0.8418 4
P1+P2 0.9431 0.8856 0.9276 0.8667 2.75

P1+P2+P3 0.9454 0.8985 0.9254 0.8883 2.25
P1+P2+P3+P4 0.9458 0.9032 0.9317 0.8933 1*

P1 0.9516 0.9156 0.9386 0.9126 3
P1+P2 0.9546 0.9227 0.9416 0.9133 2

P1+P2+P3 0.9560 0.9263 0.9506 0.9235 1*

* P1, P2, P3, and P4 represent chemical entities, sub-
structures, drugs, and molecular structures in MKG, re-
spectively.

Table 4: The effects of incorporating different
drug tail entity types of MKGs in boosting the
DHENN model. Two datasets are tested: Dataset
1 (up) and Dataset 2 (down).

Tasks 2 and 3 divide the drug types into five
parts, with one part containing new drugs. Sub-
sequently, we further partitioned the data of the
new drugs in the DDI dataset to create a sep-
arate test set. Table 2 and Table 3 provide a
performance comparison between DHENN and
the baselines for tasks 2 and tasks 3.

Based on the experimental results for task 2
and task 3, it can be observed that the proposed
DHENN model outperforms the other compar-
ison models in most cases, achieving the lowest
F-rank value. Specifically, on Task 2, DHENN
achieved 124 wins and 8 losses; while on Task
3, it achieved 125 wins and 7 losses. More-
over, in both Task 2 and Task 3, the p-values of
the DHENN model were below 0.05. These re-
sults highlight the superior performance of the
DHENN model compared to the other models.
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ABLATION STUDY (RQ.2)

Ablation experiments were conducted on the two datasets to validate the three key ideas of the
proposed DHENN model. The results and findings are presented as follows.

Effect of the MKG. To verify the impact of constructing an MKG on model performance, this study
constructed the knowledge graphs by sequentially incorporating different drug tail entity types. Ta-
ble 5 shows that as different drug tail entities were added, the model’s performance was continuously
improved. These results verify that the constructed MKG is positive to the proposed DHENN model.
More results are deferred to Appendix.

Figure 3: The impact of increasing the number of GNN
layer, MLP layer, and PECN layer on two datasets: left
(Dataset 1) and right (Dataset 2).

Effect of the PECN. To validate the
effect of DHENN’s deep structure, we
made comparisons by increasing the
number of hidden layers in the PECN, as
well as increasing the number of GNN
layers and MLP layers. The compar-
ison results shown in Figure 3 indi-
cate that as the number of hidden lay-
ers in DHENN’s PECN increases, its
performance consistently improves un-
til it reaches a plateau. In contrast, in-
creasing the number of GNN layers or
MLP layers leads to a decrease in per-
formance as the number of hidden layers increases. The results of tasks 2 and 3 are deferred to
Appendix. These results validate that the deep structure of DHENN can enhance its performance.

Figure 4: The impact of non-end-to-end architecture
and end-to-end architecture on the performance of the
DHENN model for Dataset 1 (left) and Dataset 2 (right).

Effect of the End-to-end Structure.
The proposed DHENN model was mod-
ified to a non-end-to-end form to val-
idate the last idea. Figure 4 shows
the comparison between non-end-to-end
and end-to-end DHENNs. It can be ob-
served that the end-to-end DHENN ob-
viously outperforms the non-end-to-end
DHENN, which demonstrates that the
end-to-end learning can ensure the opti-
mal extractions and fusions of latent fea-
tures from MKG.

HYPER-PARAMETER SENSITIVITY ANALYSIS (RQ.3)

This section identifies four crucial hyper-parameters: the dimension of drug embeddings in the drug
knowledge graph (d), the size of the sampling neighborhood (NS), the regularization controlling
weight (RCW), and the coefficient of the cascaded loss (CCL) function in Eq.(9). To investigate the
impact of these hyper-parameters, one is investigated while keeping the other fixed. The scenarios
of decreasing, increasing, and staying CCL are evaluated, and found that the best performance was
achieved when CCL is increasing. Please refer to the Appendix to see more details.

CONCLUSION
This paper proposes a novel DHENN model for accurate DDI prediction. Our model captures both
binary and high-order entity relationships by constructing a multimodal knowledge graph (MKG).
To enlarge the learning capacity for learning MKG representations with graph neural networks,
a prediction-enhanced cascading network (PECN) is designed to dynamically incorporate shallow
embeddings into deeper layers, which preserve node (drug)-level diversity extracted from the MKG
construction. The MKG and PECN components are unified into an end-to-end learning framework,
enabling the extraction and fusion of latent features from MKG to be optimized jointly for optimal
solutions. Extensive experiments have been conducted on two real-world DDI datasets. The results
demonstrate that DHENN outperforms the state-of-the-art rival models by allowing for a holistic
knowledge graph embedding with deep graph representation learning in DDI prediction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Khushnood Abbas, Alireza Abbasi, Shi Dong, Ling Niu, Laihang Yu, Bolun Chen, Shi-Min Cai, and
Qambar Hasan. Application of network link prediction in drug discovery. BMC bioinformatics,
22:1–21, 2021.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020.

Yujie Chen, Tengfei Ma, Xixi Yang, Jianmin Wang, Bosheng Song, and Xiangxiang Zeng. Muffin:
multi-scale feature fusion for drug–drug interaction prediction. Bioinformatics, 37(17):2651–
2658, 2021.

Xu Chu, Yang Lin, Yasha Wang, Leye Wang, Jiangtao Wang, and Jingyue Gao. Mlrda: A multi-task
semi-supervised learning framework for drug-drug interaction prediction. In Proceedings of the
28th International Joint Conference on Artificial Intelligence, pp. 4518–4524, 2019.

Limeng Cui, Haeseung Seo, Maryam Tabar, Fenglong Ma, Suhang Wang, and Dongwon Lee. De-
terrent: Knowledge guided graph attention network for detecting healthcare misinformation. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 492–502, 2020.

Yuanfei Dai, Chenhao Guo, Wenzhong Guo, and Carsten Eickhoff. Drug-drug interaction predic-
tion with wasserstein adversarial autoencoder-based knowledge graph embeddings. Briefings in
Bioinformatics,Briefings in Bioinformatics, Apr 2020.

SS Deepika and TV Geetha. A meta-learning framework using representation learning to predict
drug-drug interaction. Journal of biomedical informatics, 84:136–147, 2018.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.,
7:1–30, 2006. URL http://jmlr.org/papers/v7/demsar06a.html.

Yifan Deng, Xinran Xu, Yang Qiu, Jingbo Xia, Wen Zhang, and Shichao Liu. A multimodal deep
learning framework for predicting drug–drug interaction events. Bioinformatics, 36(15):4316–
4322, 2020.

Yue-Hua Feng and Shao-Wu Zhang. Prediction of drug-drug interaction using an attention-based
graph neural network on drug molecular graphs. Molecules, 27(9):3004, 2022.

Changxiang He, Yuru Liu, Hao Li, Hui Zhang, Yaping Mao, Xiaofei Qin, Lele Liu, and Xuedian
Zhang. Multi-type feature fusion based on graph neural network for drug-drug interaction predic-
tion. BMC bioinformatics, 23(1):224, 2022.

Yue Hong, Pengyu Luo, Shuting Jin, and Xiangrong Liu. Lagat: link-aware graph attention network
for drug–drug interaction prediction. Bioinformatics, 38(24):5406–5412, 2022.

Kexin Huang, Cao Xiao, Trong Hoang, Lucas Glass, and Jimeng Sun. Caster: Predicting drug
interactions with chemical substructure representation. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 702–709, 2020.

Srinivasan V Iyer, Rave Harpaz, Paea LePendu, Anna Bauer-Mehren, and Nigam H Shah. Min-
ing clinical text for signals of adverse drug-drug interactions. Journal of the American Medical
Informatics Association, 21(2):353–362, 2014.

Eunyoung Kim and Hojung Nam. Deside-ddi: interpretable prediction of drug-drug interactions
using drug-induced gene expressions. Journal of cheminformatics, 14(1):1–12, 2022.

Lucian L Leape, David W Bates, David J Cullen, Jeffrey Cooper, Harold J Demonaco, Theresa
Gallivan, Robert Hallisey, Jeanette Ives, Nan Laird, Glenn Laffel, et al. Systems analysis of
adverse drug events. Jama, 274(1):35–43, 1995.

Geonhee Lee, Chihyun Park, and Jaegyoon Ahn. Novel deep learning model for more accurate
prediction of drug-drug interaction effects. BMC bioinformatics, 20:1–8, 2019.

11

http://jmlr.org/papers/v7/demsar06a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuquan Li, Chang-Yu Hsieh, Ruiqiang Lu, Xiaoqing Gong, Xiaorui Wang, Pengyong Li, Shuo Liu,
Yanan Tian, Dejun Jiang, Jiaxian Yan, et al. An adaptive graph learning method for automated
molecular interactions and properties predictions. Nature Machine Intelligence, 4(7):645–651,
2022.

Shenggeng Lin, Weizhi Chen, Gengwang Chen, Songchi Zhou, Dong-Qing Wei, and Yi Xiong.
Mddi-scl: predicting multi-type drug-drug interactions via supervised contrastive learning. Jour-
nal of Cheminformatics, 14(1):1–12, 2022a.

Shenggeng Lin, Yanjing Wang, Lingfeng Zhang, Yanyi Chu, Yatong Liu, Yitian Fang, Mingming
Jiang, Qiankun Wang, Bowen Zhao, Yi Xiong, et al. Mdf-sa-ddi: predicting drug–drug inter-
action events based on multi-source drug fusion, multi-source feature fusion and transformer
self-attention mechanism. Briefings in Bioinformatics, 23(1):bbab421, 2022b.

Xuan Lin, Zhe Quan, Zhi-Jie Wang, Tengfei Ma, and Xiangxiang Zeng. Kgnn: Knowledge graph
neural network for drug-drug interaction prediction. In IJCAI, volume 380, pp. 2739–2745, 2020.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020.

Tengfei Lyu, Jianliang Gao, Ling Tian, Zhao Li, Peng Zhang, and Ji Zhang. Mdnn: A multimodal
deep neural network for predicting drug-drug interaction events. In IJCAI, pp. 3536–3542, 2021.

Mark N Prichard and Charles Shipman Jr. A three-dimensional model to analyze drug-drug interac-
tions. Antiviral research, 14(4-5):181–205, 1990.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 385–394, 2017.

Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning improves prediction of drug–drug
and drug–food interactions. Proceedings of the national academy of sciences, 115(18):E4304–
E4311, 2018.

Jian-Yu Shi, Kui-Tao Mao, Hui Yu, and Siu-Ming Yiu. Detecting drug communities and predicting
comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factoriza-
tion. Journal of cheminformatics, 11(1):1–16, 2019.

Xiaorui Su, Lun Hu, Zhuhong You, Pengwei Hu, and Bowei Zhao. Attention-based knowledge
graph representation learning for predicting drug-drug interactions. Briefings in bioinformatics,
23(3):bbac140, 2022.

Mengying Sun, Fei Wang, Olivier Elemento, and Jiayu Zhou. Structure-based drug-drug inter-
action detection via expressive graph convolutional networks and deep sets (student abstract).
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13927–13928, Jun 2020. doi:
10.1609/aaai.v34i10.7236. URL http://dx.doi.org/10.1609/aaai.v34i10.7236.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Zhenchao Tang, Guanxing Chen, Hualin Yang, Weihe Zhong, and Calvin Yu-Chian Chen. Dsil-
ddi: A domain-invariant substructure interaction learning for generalizable drug–drug interaction
prediction. IEEE Transactions on Neural Networks and Learning Systems, 35(8):10552–10560,
2024. doi: 10.1109/TNNLS.2023.3242656.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

12

http://dx.doi.org/10.1609/aaai.v34i10.7236


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, and Xuemin Lin. Gognn: Graph of graphs neural
network for predicting structured entity interactions. In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, Jul 2020. doi: 10.24963/ijcai.2020/183. URL
http://dx.doi.org/10.24963/ijcai.2020/183.

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowledge graph convolutional
networks for recommender systems. In The world wide web conference, pp. 3307–3313, 2019.

Yaqing Wang and and Yao Quanming Yang, Zaifei. Accurate and interpretable drug-drug in-
teraction prediction enabled by knowledge subgraph learning. Communications Medicine,
4(1), 2024. doi: 10.1038/s43856-024-00486-y. URL https://doi.org/10.1038/
s43856-024-00486-y.

Yingheng Wang, Yaosen Min, Xin Chen, and Ji Wu. Multi-view graph contrastive representation
learning for drug-drug interaction prediction. In Proceedings of the Web Conference 2021, Apr
2021. doi: 10.1145/3442381.3449786. URL http://dx.doi.org/10.1145/3442381.
3449786.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–
287, 2022.

Di Wu, Wu Sun, Yi He, Zhong Chen, and Xin Luo. Mkg-fenn: A multimodal knowledge graph fused
end-to-end neural network for accurate drug–drug interaction prediction. Proceedings of the AAAI
Conference on Artificial Intelligence, (9):10216–10224, Mar. 2024. doi: 10.1609/aaai.v38i9.
28887. URL https://ojs.aaai.org/index.php/AAAI/article/view/28887.

Zhankun Xiong, Shichao Liu, Feng Huang, Ziyan Wang, Xuan Liu, Zhongfei Zhang, and Wen
Zhang. Multi-relational contrastive learning graph neural network for drug-drug interaction event
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
5339–5347, 2023.

Nuo Xu, Pinghui Wang, Long Chen, Jing Tao, and Junzhou Zhao. Mr-gnn: Multi-resolution and dual
graph neural network for predicting structured entity interactions. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, Aug 2019. doi: 10.24963/ijcai.
2019/551. URL http://dx.doi.org/10.24963/ijcai.2019/551.

Hui Yu, ShiYu Zhao, and JianYu Shi. Stnn-ddi: a substructure-aware tensor neural network to
predict drug–drug interactions. Briefings in Bioinformatics, 23(4):bbac209, 2022.

Yue Yu, Kexin Huang, Chao Zhang, Lucas M Glass, Jimeng Sun, and Cao Xiao. Sumgnn: multi-
typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics,
37(18):2988–2995, 2021.

Xudong Zhang, Gan Wang, Xiangyu Meng, Shuang Wang, Ying Zhang, Alfonso Rodriguez-Paton,
Jianmin Wang, and Xun Wang. Molormer: a lightweight self-attention-based method focused on
spatial structure of molecular graph for drug–drug interactions prediction. Briefings in Bioinfor-
matics, 23(5):bbac296, 2022.

Yongqi Zhang and and Yue Ling and Wu Xian and Zhang Ziheng and Lin Zhenxi and
Zheng Yefeng Yao, Quanming. Emerging drug interaction prediction enabled by a flow-based
graph neural network with biomedicalnetwork. Nature Computational Science, 3(12):1023–
1033, 2023. doi: 10.1038/s43588-023-00558-4. URL https://doi.org/10.1038/
s43588-023-00558-4.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

13

http://dx.doi.org/10.24963/ijcai.2020/183
https://doi.org/10.1038/s43856-024-00486-y
https://doi.org/10.1038/s43856-024-00486-y
http://dx.doi.org/10.1145/3442381.3449786
http://dx.doi.org/10.1145/3442381.3449786
https://ojs.aaai.org/index.php/AAAI/article/view/28887
http://dx.doi.org/10.24963/ijcai.2019/551
https://doi.org/10.1038/s43588-023-00558-4
https://doi.org/10.1038/s43588-023-00558-4


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

Outline of the Appendix. This Appendix serves as a supplementary file to the manuscript, pro-
viding additional insights and details. Section 1 is the explanation of adverse drug-drug interactions.
Section 2 is the detailed version of the related work presented in the main manuscript. Section 3
outlines the algorithm pseudocode with time complexity analysis underlying our proposed DHENN
approach, aimed at enhancing readability and reproducibility. Section 4 presents the mathematical
formulas of the evaluation metrics adopted in the paper. Section 5 delves into the specifics of the
baseline model. Finally, Section 6 complements the experiments conducted in the main manuscript.

EXPLANATION OF ADVERSE DRUG-DRUG INTERACTIONS

Unknown DDIs among multiple administrated drugs in clinical settings can result in accidental
toxicities and adverse reactions, some of which are, literally, deadly. Such an example is shown in
Figure 5. Taking Abemaciclib alongside Bosutinib can lead to an increase in serum concentrations
of Abemaciclib. Conversely, if Abemaciclib is taken at the same time as Clemastine, Abemaciclib’s
metabolism may be impaired,

RELATED WORK

DRUG FEATURE ANALYZED METHODS

Figure 5: Examples of adverse drug-drug interaction.

The analysis of drug features plays a
crucial role in predicting DDI events.
In various studies, researchers assumed
that similar drugs are likely to demon-
strate similar DDIs. Then, they pro-
posed approaches to acquire precise and
interpretable similarity measurements
by leveraging diverse types of drug fea-
tures for DDI prediction (Deng et al.,
2020). DeepDDI (Ryu et al., 2018) is
an advanced deep-learning method de-
signed specifically for predicting DDIs
by learning drug pairs and drug-food
constituent pairs. Lee et al. (Lee et al.,
2019) trained a deep feed-forward network to predict DDIs based on structural similarity profiles,
Gene Ontology term similarity profiles, and target gene similarity profiles of known drug pairs.
MDF-SA-DDI (Lin et al., 2022b) proposed a novel DDI events prediction model that combines
multi-source drug fusion and feature fusion, while also employing transformer self-attention for
offline drug feature learning. ML-RDA (Chu et al., 2019) is an advanced approach that effec-
tively utilizes multiple drug features by incorporating the innovative unsupervised disentangling
loss, CuXCov, aiming to capture diverse and informative drug characteristics. DeSIDE-DDI (Kim
& Nam, 2022) is a deep learning-based framework that interprets the underlying genes in DDIs
analysis, aiming to uncover the genetic factors contributing to DDIs to enhance the understanding
of drug interactions. A recent multi-type DDI prediction model, MDDI-SCL (Lin et al., 2022a),
was proposed by leveraging supervised contrastive learning and three-level loss functions to address
various types of DDI prediction tasks proficiently.

Discussion. However, these methods that analyze drug features tend to prioritize acquiring extensive
attributes and features of drugs, often overlooking high-order topological information and semantic
relationships among drugs, targets, enzymes, transporters, molecular structures, and more. In addi-
tion, they usually employ so-called deep learning frameworks that are actually shallow to learn the
underlying representations of drugs. Different from them, the proposed DHENN model is a deeper
hybrid end-to-end learning framework that can extract the deep high-order topological information
and semantic relationships associated with DDI events prediction.
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GRAPH LEARNING-BASED METHODS

Graph embedding-based. In the realm of DDI prediction, a wide array of graph embedding meth-
ods have been employed to extract effective network-based features. These methods can be cate-
gorized into three distinct groups. Firstly, some models employ matrix decomposition techniques,
utilizing the adjacency matrix as input to learn latent embeddings (Shi et al., 2019). Secondly,
another category focuses on generating node sequences through random walks and subsequently
learning node representations based on these sequences (Ribeiro et al., 2017). Lastly, diverse neural
architectures and graph data are utilized in the final category, enabling the capture of topological
connectivity patterns and leveraging the wealth of information present in drug networks (Tang et al.,
2015; Wang et al., 2016).

Knowledge graph-based. Knowledge graphs have a profound impact in various domains, such
as relation inference and recommendation systems (Wang et al., 2019). Notably, several notable
techniques have emerged in DDI prediction. KGNN (Lin et al., 2020) successfully integrated graph
convolutional networks with neighborhood sampling, effectively extracting valuable neighborhood
relations. The AAEs (Dai et al., 2020) framework is a knowledge graph embedding approach that
utilizes adversarial autoencoders, along with Wasserstein distances and GumbelSoftmax relaxation,
to enhance the learning process. SumGNN (Yu et al., 2021) introduced a graph summarization
module designed for subgraphs, allowing the extraction of meaningful pathways that can be easily
managed and analyzed. In a similar vein, LaGAT (Hong et al., 2022) proposed a link-aware graph at-
tention method that generates multiple attention pathways for drug entities based on the diverse links
between drug pairs. Expanding on these advancements, DDKG(Su et al., 2022) takes the concept
further by learning drug embeddings from their attributes within the knowledge graphs. Further-
more, DDKG incorporates neighboring node embeddings and triple facts simultaneously, leveraging
an attention mechanism to capture the intricate relationships within the graphs. EmerGNN (Zhang
& Yao, 2023) predicts interactions for emerging drugs by leveraging the rich information in biomed-
ical networks. MKG-FENN (Wu et al., 2024) adopts a comprehensive and end-to-end framework to
achieve optimal feature extraction and fusion. KnowDDI (Wang & Yang, 2024) enhances drug rep-
resentations by adaptively leveraging rich neighborhood information from large biomedical knowl-
edge graphs.

Molecular graph-based. This category of methods encompasses the prediction of molecular
properties (Wang et al., 2022) and molecular interactions (Li et al., 2022). The MRGNN (Xu et al.,
2019) introduced a novel approach that employs multiple graph convolution layers to extract node
features from diverse neighboring nodes within a structured entity graph. MFFGNN (He et al.,
2022) integrates the topological structure within molecular graphs with the interaction relationship
between drugs, along with the local chemical context encoded in SMILES sequences. By com-
bining these multiple sources of information, MFFGNN enhances the predictive performance for
various molecular tasks. EPGCN-DS (Sun et al., 2020) adopts a framework based on graph con-
volutional networks for type-specific DDI identification from molecular structures. Additionally,
Molormer (Zhang et al., 2022) leverages the two-dimensional structures of drugs as input and uti-
lizes a lightweight attention mechanism to encode the spatial information of the molecular graph.

Discussion. Note that although these graph learning-based methods have delved into the topological
structure and semantic relationships of DDI events, they commonly separately consider the drugs-
centered direct binary relationships while ignoring the high-order information linked by drugs. In
comparison, the proposed DHENN model comprehensively exploits the high-order information and
mechanisms from various drugs, chemical entities, and molecular structures in one topology of
MKG.

HYBRID MODELING METHODS

Hybrid modeling has proven to be more effective than individual models for drug-related tasks (Chen
et al., 2021). For example, the MDNN (Lyu et al., 2021) framework combines a drug knowledge
graph pathway with a heterogeneous features pathway to predict DDI events. MIRACLE (Wang
et al., 2021) is a novel unsupervised contrastive learning method that treats a DDI network as a multi-
view graph, with each node representing a drug molecular graph instance. Deepika & Geetha (2018)
employ a semi-supervised learning framework that incorporates network representation learning and
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meta-learning techniques. GoGNN (Wang et al., 2020) utilizes a dual-attention mechanism to ex-
tract hierarchical features from structured entity graphs and DDI networks, enabling comprehensive
information capture. Chen et al. (2021) introduced MUFFIN, a multi-scale feature fusion deep-
learning model that combines drug structure and a biomedical knowledge graph for improving drug
representation learning. MRCGNN (Xiong et al., 2023) integrates the features of DDI events and
drug molecular graphs by GNNs.

Discussion. However, these hybrid modeling methods are non-end-to-end learning frameworks and
may yield sub-optimal feature extractions and fusions for DDI events prediction. In comparison,
the proposed DHENN model designs an end-to-end learning framework. This framework ensures
that the feature extractions and fusions of DDI events are always comprehensive and optimal by
seamlessly integrating the extracted features throughout the learning process.

ALGORITHM DESIGN AND TIME COMPLEXITY ANALYSIS

By analyzing the proposed DHENN model, its algorithm is designed in Algorithm 1.

First, we construct the DDI matrix Y and the multi-modal knowledge graph G. Then we initialize the
multi-modal knowledge graph G. In steps 4-5, we randomly sample a fixed-size sample {Ns}Ll=1
from the drug knowledge graph, whereNl represents the neighborhood size at the l-th layer of GNN
and L represents the number of layers in the GNN. In steps 6-12, We employed GNN to compute the
higher-order structure and semantic relationships among drugs, and concatenated the representations
of drug pairs. In steps 14-19, We employ a cascaded deep structure to predict drug representations
to enhance predictive performance.

From the overall algorithmic perspective, DHENN is divided into two parts: GNN extracts drug
representations, and the cascaded deep structure predicts DDI events. The time complexity of the
GNN part is O(NDDI × D × Ns × L), where NDDI represents the number of DDIs, and D
represents the dimension of drug encodings. In the cascaded deep structure part, the corresponding
time complexity is O(NDDI ×N × (D + C)), where N represents the number of cascaded layers
and C represents the number of DDI prediction categories. Therefore, the overall time complexity
of the final model is O(NDDI × ((D ×Nl × L) + (N × (D + C)))).

Algorithm 1: DHENN Algorithm

input : DDI matrix Y ,multi-modal knowledge graph G.
output: Γ(di, dj|Y ,G)

1 Initialization G;
2 while not converge do
3 for (di, dj) in Y do
4 {Nl}Ll=1 ← Neighborhood Sampling(entity e);
5 e0 ← e, ∀e ∈ N0;
6 for l = 1, ..., L do
7 for e ∈ Nl do
8 e

(l)
Nl
←

∑
tn∈Nl(e)

π
(l)
(e,rin)

e
(l−1)
tn ;

9 end
10 end
11 Ej+1

di
← e

(l)
di
, Ej+1

dj
← e

(l)
dj

;

12 Êdi,j ← Êdj ⊕ Êdi;
13 yij ← 0;
14 for n = 1, ..., N do
15 Êdi,j ← Êdi,j ⊕ yij;

16 Calculate yij = f
(
Êdi,j

)
;

17 Update parameters Θ;
18 end
19 end
20 end
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EVALUATION METRIC

Regarding the evaluation metrics for model assessment, we utilize a diverse array of multi-class
classification evaluation metrics to ensure a comprehensive understanding of the model’s perfor-
mance. These metrics include accuracy (ACC), area under the precision-recall curve (AUPR), area
under the receiver operating characteristic curve (AUC), F1 score, precision, and recall (Deng et al.,
2020). The formulas for these metrics are as follows:

ACC =

n∑
i=1

TPi

n∑
i=1

TPi +
n∑

i=1

FNi

(10)

Precision =

(
n∑

i=1

TPi

TPi + FPi

)
/n (11)

F1 = 2 ∗ Pr ecision ∗ Recall

Pr ecision+Recall
(12)

TPi denotes the situation where both the actual disease and the predicted disease are the i-th type.
Conversely, FNi signifies a scenario where the actual disease is the i-th type, but the prediction
erroneously indicates a different disease. On the other hand, FPi occurs when the actual disease
differs from the i-th type, yet the prediction incorrectly identifies it as the i-th disease. Lastly,
TNi represents a correct prediction where the actual disease is not the i-th type, and the prediction
accurately reflects this. It is worth noting that n represents the types of events that will occur.

TPR = Recall =

(
n∑

i=1

TPi

TPi + FNi

)
/n (13)

FPR =

(
n∑

i=1

FPi

FPi + TNi

)
/n (14)

ACC F1 Pre Rec F-rank

P1 0.9372 0.8660 0.9109 0.8418 14.75
P2 0.9381 0.8796 0.9114 0.8705 12.00
P3 0.9373 0.8811 0.9111 0.8725 12.00
P4 0.9374 0.8780 0.9001 0.8642 14.00

P1+P2 0.9431 0.8856 0.9276 0.8667 7.25
P1+P3 0.9406 0.8901 0.9230 0.8777 7.50
P1+P4 0.9418 0.8931 0.9195 0.8805 6.63
P2+P3 0.9418 0.8857 0.9219 0.8713 8.63
P2+P4 0.9420 0.8882 0.9263 0.8730 6.63
P3+P4 0.9415 0.8823 0.9170 0.8681 10.88

P1+P2+P3 0.9454 0.8985 0.9254 0.8883 2.75
P1+P2+P4 0.9427 0.8937 0.9305 0.8868 3.50
P1+P3+P4 0.9429 0.8958 0.9170 0.8828 5.38
P2+P3+p4 0.9420 0.8910 0.9176 0.8753 7.13

P1+P2+P3+P4 0.9458 0.9032 0.9317 0.8933 1*

P1 0.9516 0.9156 0.9386 0.9126 5.50
P2 0.9494 0.9178 0.9370 0.9194 4.50
P3 0.9491 0.9102 0.9354 0.9109 7.00

P1+P2 0.9546 0.9227 0.9416 0.9133 3.25
P1+P3 0.9535 0.9176 0.9418 0.9150 3.75
P2+P3 0.9531 0.9217 0.9423 0.9177 3

P1+P2+P3 0.9560 0.9263 0.9506 0.9235 1*

* P1, P2, P3, and P4 represent chemical entities, sub-structures,
drugs, and molecular structures in MKG, respectively.

Table 5: The impact of combining different sections of
the MKG on the performance of the DHENN model for
two datasets: up (Dataset 1) and down (Dataset 2).

When plotting the False Positive Rate
(FPR) on the x-axis and the True Pos-
itive Rate (TPR) on the y-axis, the
AUC (Area Under the Curve) represents
the total area enclosed by the FPR-
TPR curve. Conversely, when using
Recall as the x-axis and Precision as
the y-axis, the AUPR (Area Under the
Precision-Recall Curve) denotes the
enclosed area beneath the Precision-
Recall curve.

BASELINE MODEL

Owing to the extensive nature of the
text, we shall focus on presenting an
overview of the baseline model in this
context. Specifically, we will introduce
nine cutting-edge models: MKG-FENN
(Wu et al., 2024), KnowDDI (Wang
& Yang, 2024), EmerGNN (Zhang &
Yao, 2023), MDDI-SCL (Lin et al.,
2022a), MDF-SA-DDI (Lin et al.,
2022b),MDNN (Lyu et al., 2021),
DDIMDL (Deng et al., 2020), Lee et
al.’s methods (Lee et al., 2019), and
DeepDDI (Ryu et al., 2018). Addition-
ally, we will also consider several tra-
ditional classification methods, namely
DNN, RF, KNN, and LR (Deng et al.,
2020), for comparison. A comprehen-
sive breakdown of the comparison models is detailed in Table 6.
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Model Description

MKG-FENN
(Wu et al.,

2024)

It is a knowledge graph-based method that adopts acomprehen-
sive and end-to-end framework to achieve optimal feature ex-
traction and fusion, AAAI 2024.

KnowDDI
(Wang & Yang,

2024)

It is a knowledge graph-based method that utilizes rich neigh-
borhood information from large biomedical knowledge graphs
to enhance drug representations, Communications Medicine
2024.

EmerGNN
(Zhang & Yao,

2023)

It is a knowledge graph-based method that predicts interac-
tions for emerging drugs by leveraging rich information from
biomedical networks, Nature Computational Science 2023.

MDDI-SCL
(Lin et al.,

2022a)

It is a method drug based on features analysis that leverages
supervised contrastive learning as its foundation, Journal of
Cheminformatics 2022.

MDF-SA-DDI
(Lin et al.,

2022b)

It is a method based on drug feature analysis that adopts multi-
source drug fusion, incorporating multi-source features and the
transformer self-attention mechanism, Briefings in Bioinformat-
ics 2022.

MDNN (Lyu
et al., 2021)

It is a hybrid method that combines a drug knowledge graph
pathway and a heterogeneous features pathway to predict drug-
drug interaction events, IJCAI 2021.

DDIMDL
(Deng et al.,

2020)

It is a method based on drug feature analysis that combines mul-
tiple drug profiles using deep learning techniques, Bioinformat-
ics 2020.

Lee et al.’s
methods (Lee
et al., 2019)

It is a method based on drug feature analysis that adopts a novel
deep learning model aimed at enhancing classification accuracy,
BMC Bioinform 2019.

DeepDDI (Ryu
et al., 2018)

It is a representative matrix factorization model that decom-
poses the user-item matrix data for use in recommender sys-
tems, Proc. Natl. Acad. Sci. U.S.A. 2018.

DNN (Deng
et al., 2020) It is a traditional classification method deep neural network.

RF (Deng
et al., 2020) It is a traditional classification method random forest.

KNN (Deng
et al., 2020) It is a traditional classification method k-nearest neighbour.

LR (Deng
et al., 2020) It is a traditional classification method logistic regression.

DHENN Our model is a multimodal, deep learning-based predictive sys-
tem with a cascade structure for accurate predictions.

Table 6: Descriptions of all the contrasting models.

ABLATION STUDY

Effect of the MKG. To evaluate the impact of constructing an MKG on model performance, this
study sequentially incorporated different drug tail entity types into the knowledge graph construc-
tion. As shown in Table 5, the model’s performance was continuously improved as different drug
tail entities were added to the MKG. These results verify that the constructed MKG is beneficial for
the proposed DHENN model.

Effect of the PECN. Table 7 shows the performance comparison between two versions of DHENN
with One Layer and Deeper Layers of PECN, respectively, on three tasks. The percentages of
performance improvement by deeper layers of PECN range from 0.56% to 18.03%. These results
validate that the deep structure of PECN can enhance the performance of DHENN.
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Dataset Version
of DHENN

Task 1 Task 2 Task 3

F1 Pre Rec ACC F1 Pre Rec ACC F1 Pre Rec ACC

Dataset 1

One layer

of PECN

0.8958 0.9225 0.8876 0.9409 0.5185 0.6128 0.4965 0.6803 0.2086 0.2764 0.2120 0.4668

Deeper layers

of PECN

0.9032 0.9327 0.8933 0.9462 0.5362 0.6413 0.5187 0.6910 0.2252 0.3263 0.2159 0.4847

Improvement
Percentage

0.83% 1.11% 0.64% 0.56% 3.41% 4.66% 4.46% 1.57% 7.95% 18.03% 1.83% 3.82%

Dataset 2

One layer

of PECN

0.9141 0.9323 0.9010 0.9516 0.5745 0.7026 0.5289 0.7246 0.2723 0.3482 0.2618 0.5578

Deeper layers

of PECN

0.9260 0.9556 0.9240 0.9562 0.5882 0.7308 0.5488 0.7373 0.3065 0.3674 0.2938 0.5802

Improvement
Percentage

1.30% 2.50% 2.55% 0.48% 2.38% 4.01% 3.77% 1.75% 12.57% 5.50% 12.21% 4.01%

Table 7: Performance comparison between two versions of DHENN with different layers of PECN.

HYPER-PARAMETER SENSITIVITY ANALYSIS

In this study, we have identified four pivotal parameters: the dimensionality of drug embeddings
within the drug knowledge graph (d), the extent of the sampling neighborhood (NS), the regular-
ization controlling weight (RCW), and the coefficient of the cascaded loss function (CCL). Hyper-
parameter sensitivity experiments are presented in Figure 6.

Figure 6: Sensitivity analysis of parameters in two datasets for exploring the impact of parameter
variations on results.

Effect of embedding dimension. The performance of the model can be affected by changing the
embedding dimensions, and we investigated the influence of varying the value of d on model per-
formance. Choosing an appropriate value for d enables the model to capture a sufficient amount of
drug and entity information, resulting in improved performance. From Figure 6, we can see that
Dataset 1 utilized an embedding dimension of d = 128, and Dataset 2 also employed d = 128.
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Effect of neighborhood size. We examined how the performance of the model is affected by varying
the size of the sampled neighborhood. Figure 6 demonstrates the optimal values of the neighborhood
sample (NS) for the two datasets. In Dataset 1, the optimal NS value is 10. Similarly, in Dataset
2, the optimal NS value is also 10. When the neighborhood size was too small, the model faced
difficulties in effectively organizing the information. On the other hand, when NS was too large,
the model became more susceptible to being influenced by noise.

Effect of regularization controlling weight. The impact RCW on the model’s performance is
substantial. After conducting several experiments, we have determined that fine-tuning the RCW
can significantly improve the model’s performance. Figure 6 reveals that Dataset 1 achieved the best
model performance with an optimal RCW value of 1e-8, and Dataset 2 had the optimal RCW value
of 1e-10.

Effect of coefficient of cascaded loss.Figure 6 discusses the impact of CCL on the model. By
studying the performance of the model with varying CCL values across two datasets, it can observe
that the model achieved the best results when the CCL was in an increasing state.
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