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Disentangling Likes and Dislikes in Personalized Generative
Explainable Recommendation

Anonymous Author(s)

Abstract
Recent research on explainable recommendation generally frames
the task as a standard text generation problem, and evaluates mod-
els simply based on the textual similarity between the predicted and
ground-truth explanations. However, this approach fails to consider
one crucial aspect of the systems: whether their outputs accurately
reflect the users’ (post-purchase) sentiments, i.e., whether and why
theywould like and/or dislike the recommended items. To shed light
on this issue, we introduce new datasets and evaluation methods
that focus on the users’ sentiments. Specifically, we construct the
datasets by explicitly extracting users’ positive and negative opin-
ions from their post-purchase reviews using an LLM, and propose
to evaluate systems based on whether the generated explanations
1) align well with the users’ sentiments, and 2) accurately identify
both positive and negative opinions of users on the target items. We
benchmark several recent models on our datasets and demonstrate
that achieving strong performance on existing metrics does not
ensure that the generated explanations align well with the users’
sentiments. Lastly, we find that existing models can provide more
sentiment-aware explanations when the users’ (predicted) ratings
for the target items are directly fed into the models as input. We
will release our code and datasets upon acceptance.

CCS Concepts
• Information systems→ Personalization.

Keywords
Explainable recommendation, Recommender systems, Large lan-
guage model, Transformer, Personalization, Sentiment analysis
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1 Introduction
Recently, there has been a growing interest in developing explain-
able recommendation systems, which not only recommend items
to target users, but also provide explanations as to why they would
like the recommended items [4, 5, 28, 41, 42, 60, 61]. To achieve
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this goal, most previous studies automatically extract users’ main
opinions about items from their post-purchase reviews, which they
treat as ground-truth explanations, and train a model that generates
the extracted texts given users and items as input [6, 19–22, 39, 53].
However, a majority of existing datasets are constructed using
rudimentary algorithms, and they often discard users’ important
opinions and sentiments [3]. For instance, in the example presented
in the first row of Table 1, only a positive opinion is extracted from
the original review, which also describes the negative aspects of
the item. Training models on such noisy data will result in poor
performance, motivating the need to create a more reliable dataset.

Additionally, another limitation of previous studies is that they
perform evaluation largely based on the string matching or textual
similarity (e.g., as measured BERTScore [56]) between the model’s
outputs and the sentences or features (keywords) extracted from the
reviews. However, this approach cannot take into account whether
the model accurately predicts the sentiments (positive or negative)
of the original reviews. That is, a model can achieve good scores as
long as it generates a lot of keywords even if they are mentioned
with the wrong sentiment. We argue that considering sentiments
is vital in evaluation, since users can mention mixed feelings about
one item in the review and hence predicting keywords alone does
not suffice to provide reliable and convincing explanations.

To address the aforementioned limitations, we introduce new
datasets that focus on whether and why users like and/or dislike the
recommended items. To construct such datasets, we utilize a large
language model (LLM) to: (1) summarize a user review; and (2)
extract a list of positive and negative opinions (features) separately
from the summary, i.e., what the user likes and dislikes about an
item. Table 1 shows two examples of the generated summaries and
extracted features — we treat the summaries as ground-truth expla-
nations, and use the features to perform fine-grained evaluation.
Specifically, we propose to evaluate models from two perspectives:
whether themodel’s output (1) aligns well with the user’s sentiment;
and (2) correctly identifies the positive and negative features.

We evaluate several recent models using our datasets and evalu-
ation methods, and find that strong models in existing metrics such
as BERTScore do not necessarily capture the users’ sentiments very
well. Additionally, we find that existing models can generate more
sentiment-aware explanations when we use the users’ (predicted)
ratings for the target items as additional input of the models.

In summary, our contributions are as follows:

• We introduce new datasets for explainable recommenda-
tions that focus on the users’ sentiments. Using an LLM, we
construct reliable datasets that explicitly present the users’
positive and negative opinions about items.

• Using our datasets, we propose to evaluate models based
on whether they accurately reflect the users’ sentiments.
We show that existing evaluation metrics are limited in
measuring the sentiment alignment.
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Table 1: Examples of user reviews and ground-truth explanations (extracted from the reviews) in an existing dataset and ours.

Original review data Existing explanation data OURS

text: I’m back, did I miss anything? Hewitt is
in college and trying to get on with her life
when her friend wins a trip for 4 to the Bo-
hamas. There, ... killer from part I and his son.
Gets off to a great start, but falls into the rut of
predictability with an overdone body count.

explanation: gets off to a great start,
feature: start,
opinion: great

explanation: User dislikes predictability and
excessive body count, but appreciates the
initial engaging start.,
positive features: [“engaging start”],
negative features: [“predictability”, “excessive
body count”]

text: would you like some serial for breakfast?
Great movie, really outrageous, really shock-
ing and Kathleen Turner gives a 5 star perfor-
mance... she is terrific... it is really hard not to like
this movie, unless u have a really bad sense of
humor. Absolutely perfect.... a really fun time...

explanation: unless u have a really bad sense
of humor,
feature: humor,
opinion: bad

explanation: User enjoys outrageous humor
and strong performances, particularly prais-
ing Kathleen Turner’s role in the movie.,
positive features: [“outrageous humor”, “strong
performances”, “Kathleen Turner’s role”],
negative features: []

• We find that the users’ predicted ratings about items help
models to generate more sentiment-aware explanations.

2 Related Work
Previous work on explainable recommendation extracts ground-
truth explanations from either item descriptions [10] or user re-
views [13, 15, 19, 20, 23, 45, 54], and we use the latter source to build
our datasets for personalized recommendation. However, one prob-
lem is that user reviews can contain a lot of irrelevant information
to the items or users’ preferences, and hence existing work aims to
mine the users’ main opinions from reviews in various ways. For
instance, Li et al. [20] extract sentences or phrases that appear fre-
quently in all reviews throughout a dataset, but this approach often
results in retrieving very short phrases that are too general to serve
as explanations, e.g., great movie. Li et al. [23] make use of “tips”
(i.e., short-text user reviews) as explanations, but they often lack
important information about items. The most widely used dataset
in existing research [6, 21, 22, 39, 53] is the one constructed by Li
et al. [19]. They first identify features (i.e. aspects of an item) and
users’ opinions about them using a sentiment analysis toolkit, and
then generate ground-truth explanations by retrieving a sentence
that contains at least one feature from each review. The second
column in Table 1 (under “Existing explanation data”) shows two
examples of the generated explanations, features, and opinions
mined from the original reviews shown in the first column. As can
be seen, the extracted explanations do not accurately reflect the
users’ opinions; E.g., in the first instance, only the positive opinion
is extracted from the review that represents mixed sentiments, and
in the second instance, bad is extracted as the only opinion despite
the very positive tone of the original review.

Concurrent to our work, recent studies use LLMs to construct
more reliable datasets for explainable recommendations. Ma et al.
[31] generate explanations by feeding user reviews to GPT-3.5 and
asking why the user would enjoy the target item. This simple ap-
proach, however, could ignore negative opinions when a review
contains mixed sentiments. Chen et al. [3] construct a dataset by
prompting LLMs to extract two aspects from reviews: (1) purchase
reasons (e.g., Birthday gift for a teenage daughter who likes AI fea-
tures); and (2) post-purchase experience (e.g., The daughter loves the
AI photo editor and found it a useful tool). Using this dataset, they

propose the tasks of predicting each aspect given item and user in-
formation as input. Compared to this work, we focus on extracting
positive and negative opinions separately from user reviews, and
propose to assess the model’s ability to generate explanations with
the correct sentiment.

3 Our Datasets
3.1 Dataset Construction
We construct new datasets for explainable recommendation from
existing user review datasets. Our datasets are built in two steps:
review summarization and positive/negative feature extraction.

In the review summarization step, we extract users’ main opin-
ions from reviews (and use them as ground-truth explanations) by
prompting an LLM to explain what the user likes or dislikes about
the target item, using the prompt shown in Table 2. For the LLM,
we use GPT-4o-mini [36]. To reduce the risk of hallucinations and
keep the explanations concise, we restrict the model’s output to 15
words or less, which roughly aligns with the average lengths of the
explanations in existing datasets.1

In the feature extraction step, we further prompt GPT-4o-mini
to extract users’ positive and/or negative opinions about items (de-
noted as features) from the explanations generated in the previous
step; Table 3 shows the prompt used in this step. This feature extrac-
tion task is known as aspect-based sentiment analysis [33, 38, 59]
in natural language processing, and recent studies demonstrate
that LLMs perform well on this task even in zero-shot or few-shot
settings [14, 17, 58]. Table 1 shows two examples of the generated
explanations and extracted features under the OURS column. Com-
pared to the existing dataset shown next to OURS, our dataset sum-
marizes the reviews more accurately and also extracts the features
along with the associated sentiments (either positive or negative).
This new format makes it possible to perform more fine-grained
evaluation based on whether a model generates explanations with
the correct sentiment, as we will explain in Section 4.

We construct our datasets from three existing user review datasets
in different domains, namely Amazon [34], Yelp [55], and Rate-
Beer [32]. Amazon contains user reviews for movies; Yelp for
restaurants; and RateBeer for alcoholic drinks. We discard very

1See Table 14 in Appendix for the details of existing datasets.
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Table 2: The prompt used for the review summarization task,
followed by an input and output example.

prompt: System: You are a smart recommender system.
Assistant: rating: <rating>/<max_rating>, review: <review_text>
User: Please explain within <n> words based on the rating and
review of what the user likes or dislikes about the item,

input: <rating>=5, <max_rating>=5, <review_text>=“I’m back,
did I miss anything? Hewitt is in college and trying to get on
with her life when her friend wins a trip for 4 to the Bohamas.
There, they and a bunch of innocent bystanders are killed one
by one by the killer from part I and his son. Gets off to a great
start, but falls into the rut of predictability with an overdone
body count.”, <n>=15

output: “User dislikes predictability and excessive body count,
but appreciates the initial engaging start.”

Table 3: The prompt used for the positive/negative features
extraction task, followed by an input and output example.

prompt: System: You are a helpful assistant.
Assistant: text: <text>
User: Please extract the features that the user likes or dislikes
about the item from the text. The features must be included
in the original text. Return the result in JSON format with the
following structure: ’likes’: [’feature_1,’ ’feature_2’], ’dislikes’:
[’feature_3’, ’feature_4’]. Do not include any other sentences.

input: <text>=“User dislikes predictability and excessive body
count, but appreciates the initial engaging start.”

output: {likes: [“engaging start”], dislikes: [“predictability”, “ex-
cessive body count”]}

Table 4: Statistics of three datasets used in our experiments.

Amazon [34] Yelp [55] RateBeer [32]

#users 7,445 11,780 2,743
#items 7,331 10,148 7,452
#interactions 438,604 504,184 512,370
#positive features 10,676 8,826 5,672
#negative features 10,999 9,252 3,284
#records / user 58.91 42.79 186.79
#records / item 59.82 49.68 68.75
#words / explanation 13.72 13.71 13.76
max rating 5 5 20

short reviews that contain less than 15 words. Following previous
work [18, 19], we also exclude the users/items which interact with
the other items/users less than 20 times in the entire dataset. Table 4
shows the statistics of our datasets generated from each source. We
use the latest and second latest interactions of each user as test and
validation data, respectively, and use the rest as training data.

3.2 Dataset Quality Evaluation
While LLMs generally perform well on summarization [1, 7, 49,
57] and feature extraction [14, 17, 58], there is always a risk of

Table 5: The human evaluation results on the dataset quality.

Stage Type Amazon Yelp RateBeer

1
Factual 0.95 1.00 0.96
Context-p 0.98 0.97 0.99
Context-n 0.99 0.99 0.96

2

Factual-p 1.00 1.00 1.00
Factual-n 0.99 1.00 0.99
Complete-p 0.99 1.00 1.00
Complete-n 1.00 1.00 1.00

Table 6: The results of the dataset quality evaluation using
GPT-4o. The numbers outside parentheses denote the scores esti-
mated by GPT-4o, whereas those in parentheses indicate the per-
centage of the instances for which GPT-4o and human annotators
make the same judgements.

Stage Type Amazon Yelp RateBeer

1
Factual 0.990 (0.95) 0.993 (0.98) 0.997 (0.95)
Context-p 0.996 (0.98) 0.997 (0.96) 0.997 (0.98)
Context-n 0.962 (0.97) 0.971 (0.95) 0.965 (0.97)

2

Factual-p 0.999 (1.00) 0.999 (1.00) 0.996 (1.00)
Factual-n 0.998 (0.99) 0.998 (1.00) 0.998 (0.99)
Complete-p 0.997 (0.99) 0.997 (1.00) 0.998 (1.00)
Complete-n 0.998 (1.00) 0.996 (1.00) 0.998 (1.00)

hallucinations [11, 16, 25, 46]. An ideal solution to this problem is
to verify the datasets by hiring human annotators, which however
comes with a considerable annotation cost. Therefore, inspired
by Chen et al. [3], we verify the dataset quality by utilizing GPT-
4o [35] as an automated evaluator. To ensure its reliability, we also
ask human annotators to assess a small portion of the datasets and
measure the agreement between the humans and GPT-4o.

We evaluate the LLM’s outputs generated at the “review sum-
marization” and “positive/negative feature extraction” steps, re-
spectively. We verify the summarizations (which we use as the
ground-truth explanations) based on the following metrics:

• Factual hallucination (denoted as Factual): the percentage
of the instances that do not contain any information that is
not described or implied in the original reviews.

• Contextual hallucination for positive/negative features (de-
noted as context-p/n): the percentage of the instances where
the positive/negative features are mentioned with the cor-
rect (not the opposite) sentiment.

For instance, given the user review: I was fascinated by the
romantic scenes, a summary should be labeled as factual hallucina-
tion if it says the user enjoys the thriller aspects; and as contextual
hallucination if it says the user hates the romantic scenes.

Then, we also verify the extracted positive and negative features
based on the following metrics:

• Factual hallucination for positive/negative features (de-
noted as factual-p/n): the percentage of the instances that
do not include any positive/negative features that are not
present in the explanations.
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Figure 1: An overview of how we calculate the sentiment-
matching score and the content similarity of positive and
negative features.

• Completeness of positive/negative features (denoted as
complete-p/n): the percentage of the instances that contain
all positive/negative features mentioned in the explana-
tions.

For instance, given the explanation: the user enjoyed the thriller
aspect and great action, the model should flag factual hallucination
if the extracted positive features contain romantic aspect; and a lack
of completeness if they include thriller aspect only.

We sample 100,000 instances from each dataset generated in
Section 3.1, and prompt GPT-4o to calculate the metrics described
above (the exact prompts are provided in Tables 15 and 16 in Ap-
pendix). We also sample 100 instances among them for each dataset
and ask five human annotators to perform the same evaluation (one
annotator per review). We first present the results of the human
evaluation in Table 5. The scores are very high across all metrics
and datasets, indicating the high quality of our datasets. Next, Ta-
ble 6 shows the results of the auto-evaluation using GPT-4o, where
the numbers in brackets denote the percentage of the instances for
which GPT-4o and the human annotators make the same judge-
ments. The agreement scores are very high overall, verifying the
effectiveness of GPT-4o as an automated evaluator. The table also
shows that all datasets contain very few hallucinations, with the
positive and negative features extracted correctly from the sum-
maries. These results ensure the reliability and accuracy of our
datasets.

4 Evaluation Methods
In previous work, models are evaluated based on standard textual
similarity metrics, such as BLEU [37], ROUGE [26], and BERTScore
[56]. Several studies [18, 19, 21, 22, 39] also look at whether the
model’s output contains a single-word feature included in the
ground-truth explanation (e.g., great and humor in the existing
data in Table 1). However, these evaluation metrics cannot consider
whether the model predicts the correct sentiments of the original
review. For example, if the ground-truth explanation is the user
loves the movie’s storyline but is dissatisfied with the visual quality,

(a) Amazon (b) Yelp

Figure 2: Rating-sentiment distributions on the entire Ama-
zon and Yelp datasets.

and the generated explanation is the user loves the visual quality
but is dissatisfied with the movie’s storyline, previous metrics assign
unreasonably high scores to the generated explanation due to the
significant overlap of words and phrases between the two texts,
including the key features visual quality andmovie’s storyline. How-
ever, the generated explanation does not accurately describe what
the user would like and dislike about the movie, and providing such
erroneous explanations for users will lead to losing their trust in
the system.

To address this problem, we propose two evaluation metrics that
focus onwhether the generated explanations: (1) are consistent with
the users’ (post-purchase) sentiments; and (2) accurately identify
the positive/negative features, respectively. We name the former
measure as a sentiment-matching score (denoted as sentiment),
and the latter as a content similarity of the positive/negative
features (denoted as content-p/n). Figure 1 illustrates an overview
of how we calculate these scores.

The sentiment-matching score measures the agreement of the
sentiments between the generated and ground-truth explanations.
We first input each explanation into GPT-4o-mini and extract both
positive and negative features included in it. To this end, we use
the same prompt as we used for the feature extraction step in Sec-
tion 3.1, which we showed to be effective and accurate in Section 3.2.
Next, we label the explanation as “0” if only negative features are
extracted; “1” if both positive and negative features are extracted;
and “2” if only positive features are extracted. Lastly, we measure
the sentiment-matching score as the percentage of the instances
for which the generated and ground-truth explanations have the
same labels. Figure 2 illustrates the distributions of the sentiment
labels assigned to the ground-truth explanations on Amazon and
Yelp. On both datasets, the number of positive/negative labels in-
creases/decreases as the users’ ratings get higher, suggesting that
GPT-4o-mini recognizes the sentiments very well.

The second metric Content-p/n measures the textual similarities
of the positive/negative features between the generated and ground-
truth explanations. As a similarity measure, we use BERTScore,
which calculates the similarity between a pair of texts using a
pre-trained language model.2 When there are multiple positive (or
negative) features, we concatenate themwith and before calculating
the similarity. Note that when both ground-truth and generated
texts have no positive (or negative) features, we set Content-p (or
Content-n) to 1.0, and when the ground-truth has positive/negative

2We use roberta-large [29] following the default configuration.
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Figure 3: An overview of PETER-c/d-emb. Here, 𝑢 and 𝑖 denote
the user and item indices, resp.; 𝑟𝑢,𝑖 is the predicted rating of the 𝑢-
th user for the 𝑖-th item; ẽ and e denote separate input embeddings;
�̂� 𝑗 is the 𝑗-th predicted word;𝑁 is the total number of the generated
words; and <B>/<E> denote the beginning/end of the sentence.

features but the generated one doesn’t (and vice versa), we set the
score to 0.0.

5 Evaluation Experiment
Using our proposed datasets, we benchmark recent models for
explainable recommendation.We evaluate them using our proposed
evaluation methods proposed in Section 4, as well as with several
establish metrics such as BLEU and ROUGE.

5.1 Models
Weevaluate variousmodels listed in Table 7, which include CER [39],
ERRA [6], PETER [21], and PEPLER/PEPLER-D [22]. All models
are based on transformers [50] with or without pre-training on
monolingual data, and are trained to generate explanations given
user and item IDs as input.3 Additionally, the models except for
PEPLER-D also perform multi-task learning by predicting the users’
ratings about the target items, which is found effective in enhancing
the generation performance. Among these models, CER is trained
with an auxiliary loss that minimizes the difference between the
ratings predicted from the user and item IDs, and those from the
hidden states of the explanation. The authors show that including
this loss enhances the sentiment coherence between the predicted
rating and explanation; e.g., the coherence is high if the model
predicts a very high rating and generates a positive explanation
such as the movie is great.

While the method used in CER is sensible, we hypothesize that
directly feeding the predicted rating into the model as input would
make it generate more coherent explanations with the rating, since
this way the model can predict every word in the explanation
conditioned directly on the rating information via self-attention. In
3The implementation details are in Appendix A.5.

Table 7: Comparison of models used in our experiments.
“Output” means the model predicts users’ ratings as a subtask, and
“Input” means the model takes predicted ratings as input.

Method Pretrained Rating
Output Input

CER [39] ✗ ✓ ✗

ERRA [6] ✗ ✓ ✗

PETER [21] ✗ ✓ ✗

PEPLER [22] ✓ ✓ ✗

PEPLER-D [22] ✓ ✗ ✗

PETER-c/d-emb ✗ ✗ ✓

PEPLER-c/d-emb ✓ ✗ ✓

fact, this approach was also adopted by earlier models [18, 24] based
on Gated Recurrent Unit (GRU) [9]. To verify our hypothesis, we
propose to slightly modify PETER and PEPLER and let them directly
take the predicted ratings as input. Figure 3 shows an overview
of the modified version of PETER.4 We remove the multi-tasking
component for rating prediction and instead input the embedding
of the rating 𝑒𝑟𝑢,𝑖 (with the rating 𝑟𝑢,𝑖 predicted by a pre-trained
external model) in addition to the user and item embeddings 𝑒𝑢
and 𝑒𝑖 . The rating embedding 𝑒𝑟𝑢,𝑖 is obtained in two ways: (1)
multiplying 𝑟𝑢,𝑖 by a trainable vector; or (2) rounding 𝑟𝑢,𝑖 into the
nearest integer and look up the corresponding trainable vector. We
refer to the former approach as “(PETER/PEPLER)-c-emb” and the
latter as “(PETER/PEPLER)-d-emb”, respectively.5

To predict users’ ratings, we train a simplemulti-layer perceptron
(MLP)model that predicts ratings given user and item IDs, following
the network used for multi-tasking in PEPLER. Note that our rating
prediction model is pre-trained independently from explainable
recommendation models (i.e., PETER and PEPLER). Although the
performance on rating prediction is not the main subject of this
study, we expect that the higher the accuracy is, the better the
explainable recommendation models would perform. Therefore, in
our experiments, we also evaluate how much improvements we can
get when we use the users’ ground-truth ratings as input, which
we report as “(PETER/PEPLER)-c/d-emb+”.

5.2 Evaluation Metrics
We evaluate models using our evaluation metrics proposed in Sec-
tion 4 (i.e., the sentiment-matching score and content similarity
of positive/negative features). We also report the scores in several
established metrics used in previous work [6, 18, 19, 21, 22, 39].
They are categorized into two groups, referred to as the text quality
metric and explainability metric, respectively. The former evaluates
the quality of the generated explanations, while the latter focuses
on the quality of the predicted features in the explanations.

For the text quality metrics, we use BLEU [37], ROUGE [26],
Unique Sentence Ratio (USR) [19], and BERTScore (BERT) [56].
BLEU and ROUGE measure the 𝑛-gram overlaps between the gen-
erated and ground-truth explanations, with BLEU focusing on pre-
cision and ROUGE on recall. We calculate BLEU with 𝑛 ∈ {1, 4}
4PEPLER has the same structure except it doesn’t have the context prediction part.
5Earlier works [18, 24] have taken the latter approach by converting decimal ratings
into either two or six discrete values and training embeddings for each.
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Table 8: Results based on our proposed evaluation metrics. The best scores among all models are boldfaced.

Amazon Yelp RateBeer
Method sentiment ↑ content-p ↑ content-n ↑ sentiment ↑ content-p ↑ content-n ↑ sentiment ↑ content-p ↑ content-n ↑

CER 0.5364 0.7131 0.6122 0.5265 0.7603 0.5519 0.6266 0.7925 0.6592
ERRA 0.5327 0.7243 0.6005 0.5275 0.7665 0.5435 0.6481 0.8082 0.6611
PEPLER-D 0.2842 0.4576 0.4935 0.3111 0.5252 0.4559 0.4633 0.5760 0.5991

PETER 0.5445 0.7130 0.6198 0.5238 0.7620 0.5483 0.6277 0.7902 0.6592
PETER-c-emb 0.5636 0.7348 0.6145 0.5471 0.7675 0.5622 0.6591 0.8280 0.6540
PETER-d-emb 0.5695 0.7234 0.6251 0.5744 0.8099 0.5692 0.6445 0.8007 0.6629

PEPLER 0.5691 0.7532 0.6228 0.5462 0.8027 0.5470 0.6445 0.8061 0.6558
PEPLER-c-emb 0.5935 0.7682 0.6337 0.5624 0.8080 0.5562 0.6449 0.8075 0.6553
PEPLER-d-emb 0.5995 0.7717 0.6363 0.5539 0.8011 0.5536 0.6697 0.8163 0.6679

Table 9: Results on Amazon based on evaluation metrics used in previous work. The best scores among all models are boldfaced.

Text Quality Explainability
Positive Negative

Method B1 ↑ B4 ↑ R1 ↑ R2 ↑ USR ↑ BERT ↑ FMR ↑ FCR ↑ DIV ↓ FMR ↑ FCR ↑ DIV ↓
CER 0.3729 0.0860 0.3934 0.1423 0.8964 0.8884 0.1886 0.2490 2.005 0.0939 0.2159 1.943
ERRA 0.3656 0.0793 0.3860 0.1354 0.5767 0.8892 0.1649 0.0960 2.568 0.0854 0.0876 2.420
PEPLER-D 0.0605 0.0024 0.1090 0.0086 0.6879 0.8434 0.0100 0.1816 0.128 0.0127 0.1785 0.088

PETER 0.3717 0.0859 0.3921 0.1422 0.8883 0.8883 0.1813 0.2387 1.994 0.0900 0.2078 1.919
PETER-c-emb 0.3730 0.0848 0.3927 0.1389 0.9176 0.8879 0.1918 0.2502 2.001 0.0911 0.2134 1.893
PETER-d-emb 0.3752 0.0867 0.3950 0.1424 0.9233 0.8895 0.1833 0.2457 2.055 0.0961 0.2167 1.980

PEPLER 0.3619 0.0797 0.3848 0.1350 0.9398 0.8882 0.1700 0.2495 2.066 0.0849 0.2320 1.995
PEPLER-c-emb 0.3689 0.0808 0.3882 0.1349 0.9474 0.8897 0.1718 0.2415 2.084 0.0848 0.2247 1.991
PEPLER-d-emb 0.3684 0.0777 0.3884 0.1337 0.9566 0.8894 0.1727 0.2510 2.125 0.0887 0.2308 2.072

(B1 and B4) and ROUGE with 𝑛 ∈ {1, 2} (R1 and R2), following
previous work [6, 21, 22]. USR calculates the number of unique
sentences generated by the model, divided by the total number of
the generated sentences; the higher this score is, the more diverse
the explanations are.

For the explainability metrics, we use Feature Matching Ratio
(FMR), Feature Coverage Ratio (FCR), and Feature Diversity
(DIV). FMR measures the percentage of the explanations that in-
clude the ground-truth feature; and FCR and DIV measure the
diversity of the generated features across all instances. These met-
rics are proposed by Li et al. [19] for evaluation on previous datasets
where each ground-truth explanation contains only one single-word
feature. To meet this requirement, in our experiments we randomly
select one word from positive and/or negative features (which can
contain a list of words or phrases) for each instance, and calculate
the scores for each sentiment separately.6

6 Results and Analysis
6.1 Quantitative Results
Table 8 shows the results for each dataset based on our proposed
evaluation metrics. It demonstrates that the models with our pro-
posed modification (i.e., *-c/d-emb) outperform the original models
and achieve the best scores on all datasets. These results verify
our hypothesis that incorporating the users’ predicted ratings as
input is more effective than predicting the ratings as a subtask. We
also find that the models that treat the ratings as discrete variables
6The details of each metric are shown in Appendix A.4.

Table 10: Results on rating prediction. The best scores among
all models are boldfaced.

Amazon Yelp RateBeer
Method MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

PETER 0.76 1.07 0.77 1.04 1.48 2.07
PEPLER 0.79 1.06 0.80 1.05 1.50 2.06

PETER-c/d-emb 0.78 1.06 0.77 1.03 1.46 2.01PEPLER-c/d-emb

(i.e., *-d-emb) generally perform better than those that treat them
as continuous ones (i.e., *-c-emb). This is likely because there is a
non-linear relationship between the users’ sentiments and ratings
about items, as we showed in Figure 2 in Section 4. When we look at
the results on each dataset, PEPLER-d-emb achieves the best scores
on Amazon and RateBeer but underperforms PETER-d-emb on Yelp.
This demonstrates that the effectiveness of pre-training varies de-
pending on the dataset (note that PEPLER fine-tunes GPT-2 but
PETER is trained from scratch).

Table 9 presents the results on Amazon in existing metrics; we
observe similar trends on Yelp and RateBeer and hence present the
results in Table 17 and 18 in Appendix due to the limited space.
The table shows that while PETER-d-emb performs the best on the
text quality metrics, the improvements from PETER are marginal.
Besides, on the explainability metrics, our modification does not
enhance the performance of the original models very much. These
results suggest that the existing metrics cannot properly evaluate
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Table 11: The performance gains/losses in our evaluation metrics when we use the ground-truth ratings as input (shown with
“+”). The best scores of all models are underlined, and the gains/losses are marked in ↑green and ↓red, respectively.

Amazon Yelp RateBeer
Method sentiment ↑ content-p ↑ content-n ↑ sentiment ↑ content-p ↑ content-n ↑ sentiment ↑ content-p ↑ content-n ↑

PETER-d-emb 0.5695 0.7234 0.6251 0.5744 0.8099 0.5692 0.6445 0.8007 0.6629
PETER-d-emb+ 0.6259 ↑9.9% 0.7575 ↑4.7% 0.6816 ↑9.0% 0.6609 ↑15.0% 0.8304 ↑2.5% 0.6514 ↑14.4% 0.6616 ↑2.6% 0.7970 ↓0.4% 0.6971 ↑5.1%
PEPLER-d-emb 0.5995 0.7717 0.6363 0.5539 0.8011 0.5536 0.6697 0.8163 0.6679
PEPLER-d-emb+ 0.6503 ↑8.4% 0.7790 ↑0.9% 0.7006 ↑10.1% 0.6488 ↑17.1% 0.7783 ↓2.8% 0.6267 ↑13.2% 0.6653 ↓0.6% 0.8044 ↓1.4% 0.6876 ↑2.9%

Table 12: The performance gains/losses in existing metrics on Amazon when we use the ground-truth ratings as input (shown
with “+”). The best scores of all models are underlined, and the gains/losses are marked in ↑green and ↓red, respectively.

Text Quality Explainability
Positive Negative

Method B1 ↑ B4 ↑ R1 ↑ R2 ↑ USR ↑ BERT ↑ FMR ↑ FCR ↑ DIV ↓ FMR ↑ FCR ↑ DIV ↓
PETER-d-emb 0.3752 0.0867 0.3950 0.1424 0.9233 0.8895 0.1833 0.2457 2.055 0.0961 0.2167 1.980

PETER-d-emb+ 0.3906 0.0988 0.4111 0.1641 0.9255 0.8916 0.1946 0.2606 1.982 0.1029 0.2285 1.924
↑4.1% ↑13.9% ↑15.2% ↑0.2% ↑0.2% ↑0.2% ↑6.1% ↑6.0% ↑3.5% ↑7.0% ↑5.4% ↑2.8%

PEPLER-d-emb 0.3684 0.0777 0.3884 0.1337 0.9566 0.8894 0.1727 0.2510 2.125 0.0887 0.2308 2.072

PEPLER-d-emb+ 0.3762 0.0912 0.3985 0.1545 0.9668 0.8903 0.1687 0.2782 1.958 0.0918 0.2585 1.989
↑2.1% ↑17.3% ↑2.6% ↑15.5% ↑1.0% ↑0.0% ↓2.3% ↑10.8% ↑7.8% ↑3.4% ↑12.0% ↑4.0%

(a) RateBeer / Train (b) RateBeer / Test

Figure 4: Rating-sentiment distributions on the train and test
sets of RateBeer.

the alignment of the sentiments between the generated and ground-
truth explanations; this does not come as a surprise given that the
scores are based on the naive string matching or textual similarity.7
On the other hand, our evaluation methods (and datasets) explicitly
focus on users’ sentiments, and we argue that reflecting them in the
explanations is crucial to build reliable recommendation systems.
Lastly, another interesting observation from Table 9 is that PETER
performs better than ERRA and PEPLER overall, and that contra-
dicts the previous findings that the latter models perform better on
previous datasets [6, 22]. This suggests that optimal models differ
depending on the nature of the dataset.

6.2 Performance on Rating Prediction
As we mentioned in Section 5.1, we propose to pre-train a rating
prediction model and use its predictions as additional input of PE-
TER and PEPLER. On the other hand, the original models of PETER
and PEPLER predict ratings as a subtask. Intuitively, training a

7In particular, BERTScore assigns high scores to all models likely because our ground-
truth explanations follow a similar format (e.g., user likes ... but dislikes ...), and the
models can easily predict the high-frequency words; see Table 13 for some examples.

model specifically for rating prediction would lead to better per-
formance on this task, and that could be part of the reasons why
our proposed method works well. To investigate this, we compare
the rating prediction performance among these models, and the
results are presented in Table 10. We compare the performance in
two metrics:mean absolute error (MAE) and root mean square
error (RMSE), both of which measure the distance between the
predicted and ground-truth ratings. The table shows that in fact
all models perform very similarly, demonstrating that our method
benefits from using the ratings as input, rather than from training
a separate model for rating prediction.

Next, we also analyse howmuch improvements we can get when
we use the ground-truth ratings as input instead of the predicted
ones, and Table 11 shows the results in our proposed metrics (the
models that use the ground-truth data are shown with “+”). We
can see that using the ground-truth ratings substantially improves
performance on Amazon and Yelp for both PETER and PEPLER,
indicating that the accuracy of rating prediction has a significant
impact on generation performance. In contrast, we observe small
or no improvements on RateBeer, and we attribute this to the fact
that there is a discrepancy in the sentiment distributions between
the train and test sets. Figure 4 compares the distributions of the
sentiment labels assigned by GPT-4o-mini during our evaluation
process described in Section 4. It shows that, on the training data,
the percentage of negative labels decreases as the rating increases
from 1 to 6, whereas the number remains nearly the same on the
test set. On Amazon and Yelp, in contrast, we observe consistent
patterns between the training and test sets, which we show in
Figure 7 in Appendix.

Additionally, we also report the scores in the existing metrics
on Amazon with or without the ground-truth ratings in Table 12.
It demonstrates that using the ground-truth ratings as input also
improves performance on all established metrics except FMR for
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Figure 5: Simulation results on how the performance of PEPLER-d-emb+ changes when the ground-truth ratings used as input
are distorted by Gaussian noise with different standard deviations.

Table 13: Two examples of the ground-truth and generated explanations on Amazon and Yelp. The words included in the ground-
truth positive and negative features are colored in red and blue, respectively.

Ground-truth (Amazon) user enjoys action and character development but finds the plot convoluted with multiple villains.

CER user dislikes the films lack of depth and character development despite appreciating garfields performance.
ERRA user appreciates the engaging story and strong performances but dislikes the lack of action.
PETER user dislikes the weak villain and character development but appreciates garfields portrayal.
PETER-d-emb user appreciates character development and emotional depth but dislikes the villains portrayal and villains.
PEPLER user dislikes the weak plot and character development despite appreciating the casts performances.
PEPLER-d-emb user dislikes the villains and pacing but appreciates the romance and character development.

Ground-truth (Yelp) user liked the seafood quality and service; disliked the wait time and pricing.

CER user loves the delicious food friendly service and vibrant atmosphere no dislikes mentioned.
ERRA user loves the food quality and service but dislikes the loud atmosphere and noise level.
PETER user loves the delicious food friendly staff and vibrant atmosphere no dislikes mentioned.
PETER-d-emb user loves the delicious food and friendly service but dislikes the long wait time.
PEPLER user loves the delicious food friendly service and vibrant atmosphere dislikes nothing mentioned.
PEPLER-d-emb user loves the delicious food and drinks but dislikes the long wait for service.

PEPLER-d-emb, highlighting the relevance of the rating prediction
task to explainable recommendation models.

Lastly, to further analyse the influence of the rating prediction
accuracy, we add a Gaussian noise to the ground-truth ratings with
different standard deviations and see how it affects the performance
of PEPLER-d-emb+. Figure 5 shows the results, illustrating that the
performance degrades sharply as the noise gets larger, especially
on Amazon and Yelp. On the other hand, the impact is smaller
on RateBeer, which is again likely due to the differences of the
sentiment distributions between the train and test sets.

6.3 Case Studies
In Table 13, we present two examples of the ground-truth and gen-
erated explanations by CER, ERRA, PETER, PETER-d-emb, PEPLER
and PEPLER-d-emb, respectively. In the first instance, PETER cor-
rectly identifies two features character development and villains, but
wrongly predicts them both as negative features despite character
development being mentioned positively in the ground-truth expla-
nation. On the other hand, both PETER-d-emb and PEPLER-d-emb
successfully generate these features with the correct sentiments. In
the second example, only PETER-d-emb identifies the positive and

negative features (service and wait time, resp.) with the correct sen-
timents. These examples highlight the importance of considering
the users’ sentiments when we evaluate the quality of explanations.
Our proposed datasets and metrics shed light on this problem, and
open up a new research direction for explainable recommendation
systems.

7 Conclusion
This paper introduced new datasets for explainable recommenda-
tions that focus on the users’ sentiments. Using an LLM, we built
reliable datasets in a new format that separately presents the users’
positive and negative opinions about items. Based on our datasets,
we introduced evaluation methods that focus on how well a model
captures the users’ sentiments. We benchmark various models on
our datasets and find that existing evaluation metrics are limited
in measuring the sentiment alignment between the generated and
ground-truth explanations. Lastly, we found that we can make ex-
isting models more sensitive to the sentiments by feeding the users’
predicted ratings about the target items as additional input of the
models, and also showed that the rating prediction accuracy has a
large impact on the quality of the generated explanations.
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Table 14: Statistics of the three existing datasets used in pre-
vious work [20].

Amazon Yelp Tripadvisor [48]

#users 7,506 27,147 9,765
#items 7,360 20,266 6,280
#interactions 441,783 1,293,247 320,023
#features 5,399 7,340 5,069
#records / user 58.86 47.64 32.77
#records / item 60.02 63.81 50.96
#words / explanation 14.14 12.32 13.01
max rating 5 5 5

A Appendix
A.1 Statistics of Existing Datasets
Table 14 shows the statistics of existing datasets [19] that are widely
used in previous work on explainable recommendation [6, 21, 22,
39, 53]. Based on the average lengths of the explanations on these
datasets, we restricted the output length of GPT-4o-mini to 15 or
less words when summarizing user reviews.

A.2 Dataset Quality Evaluation
Tables 15–16 show the prompts with input and output examples
used for the dataset quality evaluation in Section 3.2. We use GPT-
4o as an auto-evaluator of the outputs of GPT-4o-mini at the review
summarization and positive/negative feature extraction steps, respec-
tively. We design these prompts and the evaluation processes based
on the methods proposed by Chen et al. [3].

A.3 Generated Data Analysis
Figure 6 shows the users’ rating distributions on Amazon, Yelp, and
RateBeer. On Amazon and Yelp, users tend to assign high scores,
while on RateBeer a majority of users give ratings between 10 and
20 and the distribution peaks at 15.

Figure 7 shows the rating-sentiment distributions on the train
and test datasets of Amazon and Yelp. The distributions are similar
between the train and test sets on these datasets, unlike on RateBeer
(as we showed in Figure 4 in Section 6.2).

A.4 Details of Existing Evaluation Metrics
USR calculates the number of the unique sentences generated by a
model, divided by the total number of the sentences, as follows:

𝑈𝑆𝑅 =
|E |
𝑁𝐷𝑡

, (1)

where E denotes the set of unique sentences generated by a model,
and 𝑁𝐷𝑡

is the total number of the instances on test data.
FMR calculates the percentage of the explanations that include

the ground-truth feature, as follows:

𝐹𝑀𝑅 =
1

𝑁𝐷𝑡

∑︁
𝑢,𝑖

𝛿 (𝑓𝑢,𝑖 ∈ 𝐸𝑢,𝑖 ), (2)

where 𝑓𝑢,𝑖 denotes the ground-truth feature; 𝐸𝑢,𝑖 denotes the gen-
erated explanation for the pair of the user 𝑢 and item 𝑖; and 𝛿 (𝑥) is
an indicator function which returns 1 if 𝑥 is true and 0 otherwise.

10

https://www.tripadvisor.com/
https://www.yelp.com/dataset


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 15: The prompt used for the auto-evaluation of the review summarization process, followed an input and output example.

prompt: As a customer engagement team leader at Amazon, your task involves evaluating a summary written by a specialist about why a
certain purchase was made. You will analyze the summary based on the provided customer review and rating, using these criteria:

1. hallucination: Answer “Hallucination” if the summary includes any unrelated features not mentioned by the customer review; otherwise,
“Factual”.
2. hallucination_reason: Provide a concise explanation for your assessment of the summary’s hallucination.
3. context_positive: Answer “Hallucination” or “Correct”. “Hallucination” if the summary includes any feature mentioned as a negative
feature in the customer review as positive; otherwise, “Correct”.
4. context_positive_reason: Provide a concise explanation for your assessment of the summary’s hallucination.
5. context_negative: Answer “Hallucination” or “Correct”. “Hallucination” if the summary includes any feature mentioned as a positive
feature in the customer review as negative; otherwise, “Correct”.
6. context_negative_reason: Provide a concise explanation for your assessment of the summary’s hallucination.

Please respond using a valid json format, for example: {
“hallucination”: “Factual”,
“hallucination_reason”: “...”,
“context_positive”: “Correct”,
“context_positive_reason”: “...”,
“context_negative”: “Correct”,
“context_negative_reason”: “...”,
}

Now, please evaluate the following summary based on the above criteria:
Customer review: <review_text>.
Rating: <rating> / <max_rating>.
Specialist’s summary of the review: <explanation_text>.

Assessment:

input: <review_text>=“A must if you’re in Nashville! Hot chicken is iconic to the city. The food is tasty, quick, and relatively cheap
(I spent about $10 and felt full). The parking is not that great, but overall the restaurant itself is great.”, <rating>=5, <max_rating>=5,
<explanation_text>=“User loves the tasty hot chicken, quick service, and affordability; dislikes limited parking.”.

output: {
“hallucination”: “Factual”,
“hallucination_reason”: “The summary accurately reflects the features mentioned in the customer review without adding unrelated
features.”,
“context_positive”: “Correct”,
“context_positive_reason”: “The summary correctly identifies the positive aspects of the review, such as tasty food, quick service, and
affordability.”,
“context_negative”: “Correct”,
“context_negative_reason”: “The summary correctly identifies the negative aspect of the review, which is the limited parking.”,
}

FCR and DIV measure the diversity of the generated features
across all instances. FCR is calculated as follows:

𝐹𝐶𝑅 =
|F𝑔 |
|F | , (3)

where F is the set of unique features in the ground-truth explana-
tions, and F𝑔 denotes the set of the unique features included across
all the generated explanations.

DIV calculates the diversity of features between the generated
explanations. Specifically, this metric calculates the intersection
of features between any pairs of two generated explanations, as

follows:

𝐷𝐼𝑉 =
2

𝑁𝐷𝑡
(𝑁𝐷𝑡

− 1)
∑︁

𝑢,𝑢′,𝑖,𝑖′
|F̂𝑢,𝑖 ∩ F̂𝑢′,𝑖′ |, (4)

where F̂𝑢,𝑖 denotes the feature set included in the generated expla-
nation for the pair of the user 𝑢 and item 𝑖 , and F̂𝑢′,𝑖′ for the pair
of the user 𝑢′ and item 𝑖′, respectively.

A.5 Implementation Details
In PETER, CER, and ERRA, we employ Stochastic Gradient Descent
(SGD) [40] as the optimizer, with a batch size of 128 and an initial
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Table 16: The prompt used for the auto-evaluation of the feature extraction process, followed an input and output example.

prompt: As a customer engagement team leader at Amazon, your task involves evaluating the positive and negative feature lists extracted
from the explanation text about a user’s experience after purchasing a product. You will check the positive and negative feature lists
based on the provided explanation text, using these criteria:

1. hallucination_positive: Answer “Hallucination” if the positive feature list includes any unrelated features not mentioned by the
explanation text; otherwise, “Factual”.
2. hallucination_positive_reason: Provide a concise explanation for your assessment of the hallucination in the positive feature list.
3. completness_positive: “Yes” or “No”. “Yes” if the positive feature list successfully includes all the positive features mentioned in the
explanation text; otherwise, “No”.
4. completness_positive_reason: Provide a concise explanation for your assessment of the positive feature list’s completeness.
5. hallucination_negative: Answer “Hallucination” if the negative feature list includes any unrelated features not mentioned by the
explanation text; otherwise, “Factual”.
6. hallucination_negative_reason: Provide a concise explanation for your assessment of the hallucination in the negative feature list.
7. completness_negative: “Yes” or “No”. “Yes” if the negative feature list successfully includes all the negative features mentioned in the
explanation text; otherwise, “No”.
8. completness_negative_reason: Provide a concise explanation for your assessment of the negative feature list’s completeness.

Please respond using a valid json format, for example: {
“hallucination_positive”: “Factual”,
“hallucination_positive_reason”: “...”,
“completness_positive”: “Yes”,
“completness_positive_reason”: “...”,
“hallucination_negative”: “Factual”,
“hallucination_negative_reason”: “...”,
“completness_negative”: “Yes”,
“completness_negative_reason”: “...”,
}

Now, please evaluate the following positive and negative feature lists based on the above criteria:
Positive feature list: <features_positive>.
Negative feature list: <features_negative>.
Explanation text: <explanation_text>.

Assessment:

input: <features_positive>=[“tasty hot chicken”, “quick service”, “affordability”], <features_negative>=[“limited parking”], <explana-
tion_text>=“User dislikes predictability and excessive body count, but appreciates the initial engaging start.”

output: {
“hallucination_positive”: “Factual”,
“hallucination_positive_reason”: “All positive features listed (’tasty hot chicken’, ’quick service’, ’affordability’) are mentioned in the
explanation text.”,
“completness_positive”: “Yes”,
“completness_positive_reason”: “The positive feature list includes all the positive features mentioned in the explanation text.”,
“hallucination_negative”: “Factual”,
“hallucination_negative_reason”: “The negative feature ’limited parking’ is mentioned in the explanation text.”,
“completness_negative”: “Yes”,
completness_negative_reason”: “The negative feature list includes all the negative features mentioned in the explanation text.”,
}

learning rate of 1.0. During the training process, the learning rate
is reduced by a factor of 0.25 if the validation loss does not improve,
and the gradient clipping is applied with a maximum norm of 1.0
to stabilize the training process. The model architecture includes a
multi-head attention (MHA) mechanism with two attention heads,

each with 2048 units, and a dropout rate of 0.2 to prevent overfitting.
In PETER and CER, we set the dimensionality of the embedding
representation to 512; the number of MHA layers to 2; the weights
for explanation generation regularization 𝜆𝑒 and context regular-
ization 𝜆𝑐 to 1.0; and the rating regularization 𝜆𝑟 to 0.1. In ERRA,
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Figure 6: Rating distribution.
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Figure 7: Rating-sentiment distribution on the train and test
sets of Amazon and Yelp.

we set the dimensionality of the embedding representation to 384
and the number of MHA layers set to 6. We set the weight for the
explanation regularization 𝜆𝑒 to 1.0, context regularization 𝜆𝑐 to
0.8, and the rating regularization 𝜆𝑟 to 0.2. For CER, we exclude the
ground-truth features of the target items from the model’s input,
as we do not assume that they are available during inference on
the test set in our experiments.

In PEPLER and PEPLER-D, we use the pre-trained GPT-2 model
as the foundation model of our architecture. The explanation gen-
eration regularization term 𝜆𝑒 is set to 1.0 during training. Dur-
ing the training process, Adam [12] with decoupled weight de-
cay [30] is used, with a batch size of 128, and the training process
is stopped if the validation loss does not improve for five consec-
utive epochs. The optimizer uses a learning rate of 0.001/0.0001
for PEPLER/PEPLER-D and a weight decay of 0.01. In PEPLER, for
the rating prediction network, we employ a multi-layer perceptron
(MLP) with two hidden layers, each consisting of 400 units, and the
rating regularization 𝜆𝑟 is set to 0.01. For PEPLER-D, the number
of retrieved feature words (which are used as the model’s input) is
set to 3.

For PETER-c/d-emb and PEPLER-c/d-emb, the experimental se-
tups for training the generation models are the same as the ones

used for PETER and PEPLER, respectively. To train a rating pre-
diction model used by PETER-c/d-emb and PEPLER-c/d-emb, we
employ SGD as the optimizer. The training is conducted with a
batch size of 512, a learning rate of 1 × 10−5, and a weight decay
of 0.01. The model architecture consists of a two-layer MLP, each
containing 400 units, with the dimensionality of the embedding
representation set to 512.

A.6 Results on Yelp and RateBeer in Existing
Metrics

Tables 17–18 show the results in the standard metrics on Yelp and
RateBeer datasets. These tables show that our modification does not
lead to better performance in those metrics. These results suggest
that the existing metrics cannot properly evaluate the alignment of
the sentiments between the generated and ground-truth explana-
tions.

A.7 Recommendation Performance
Tables 19–20 show the results in the existing metrics on Yelp and
RateBeer with or without using the ground-truth ratings. The tables
demonstrate that using the ground-truth ratings as input improves
performance on both datasets.

A.8 Future Work
Future endeavors would involve improving the accuracy of rating
prediction using more advanced models or additional information
(e.g., item descriptions in text), as we showed that it has a large
impact on the performance in both our proposed and existing evalu-
ation metrics. It would also be intriguing to explore the application
of LLMs to explainable recommendation systems in zero-shot or
few-shot setups, as done by recent work [3, 27, 28, 52]. Another
direction is to improve performance when the distributions are
somewhat different between the train and test sets.

Following the trend of using LLMs for automated evaluation [2,
8, 43, 44, 47, 51] and inspired by the methods proposed by Chen
et al. [3], we used GPT-4o to validate the quality of our datasets.
However, since our methods could not detect all hallucinations
included in our datasets, improving this process is a key to creating
more reliable datasets.
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Table 17: Results on Yelp based on evaluation metrics used in previous work. The best scores among all models are boldfaced.

Text Quality Explainability
Positive Negative

Method B1 ↑ B4 ↑ R1 ↑ R2 ↑ USR ↑ BERT ↑ FMR ↑ FCR ↑ DIV ↓ FMR ↑ FCR ↑ DIV ↓
CER 0.3879 0.0781 0.4046 0.1324 0.7343 0.8882 0.2312 0.2194 2.421 0.1229 0.2002 1.393
ERRA 0.3951 0.0780 0.4105 0.1327 0.3187 0.8897 0.2374 0.0900 3.169 0.1272 0.0851 2.141
PEPLER-D 0.0646 0.0013 0.1065 0.0040 0.6920 0.8370 0.0161 0.3088 0.168 0.0128 0.3182 0.163

PETER 0.3884 0.0793 0.4045 0.1326 0.7489 0.8882 0.2343 0.2216 2.441 0.1202 0.2020 1.372
PETER-c-emb 0.3895 0.0762 0.4074 0.1310 0.7383 0.8889 0.2332 0.2117 2.330 0.1212 0.1923 1.354
PETER-d-emb 0.3861 0.0716 0.4049 0.1268 0.7187 0.8882 0.2300 0.1991 2.232 0.1223 0.1813 1.372

PEPLER 0.3829 0.0732 0.3998 0.1277 0.8512 0.8875 0.2315 0.2517 2.425 0.1182 0.2360 1.372
PEPLER-c-emb 0.3769 0.0656 0.3957 0.1192 0.8801 0.8876 0.2080 0.2577 2.142 0.1172 0.2514 1.286
PEPLER-d-emb 0.3768 0.0696 0.3934 0.1233 0.9277 0.8859 0.2199 0.2719 2.227 0.1081 0.2590 1.166

Table 18: Results on RateBeer based on evaluation metrics used in previous work. The best scores among all models are boldfaced.

Text Quality Explainability
Positive Negative

Method B1 ↑ B4 ↑ R1 ↑ R2 ↑ USR ↑ BERT ↑ FMR ↑ FCR ↑ DIV ↓ FMR ↑ FCR ↑ DIV ↓
CER 0.4349 0.1201 0.4718 0.1876 0.7036 0.9071 0.2841 0.1124 1.585 0.1280 0.0696 1.271
ERRA 0.4332 0.1168 0.4689 0.1852 0.5300 0.9071 0.2739 0.0822 1.714 0.1315 0.0513 1.477
PEPLER-D 0.1338 0.0127 0.1902 0.0368 0.4167 0.8582 0.0584 0.1413 0.348 0.0509 0.0883 0.659

PETER 0.4338 0.1191 0.4701 0.1856 0.7200 0.9067 0.2826 0.1109 1.552 0.1260 0.0701 1.258
PETER-c-emb 0.4374 0.1209 0.4722 0.1892 0.8519 0.9070 0.2851 0.1435 1.576 0.1290 0.0904 1.150
PETER-d-emb 0.4364 0.1214 0.4728 0.1885 0.8239 0.9073 0.2778 0.1294 1.448 0.1322 0.0818 1.195

PEPLER 0.4353 0.1177 0.4709 0.1864 0.8512 0.9067 0.2762 0.1493 1.657 0.1410 0.0950 1.198
PEPLER-c-emb 0.4356 0.1134 0.4722 0.1842 0.8873 0.9063 0.2822 0.1419 1.614 0.1248 0.0913 1.201
PEPLER-d-emb 0.4324 0.1158 0.4678 0.1821 0.9004 0.9069 0.2675 0.1593 1.311 0.1262 0.1036 1.205

Table 19: The performance gains/losses in existing metrics on Yelp when we use the ground-truth ratings as input (shown with
“+”). The best scores of all models are underlined, and the gains/losses are marked in ↑green and ↓red, respectively.

Text Quality Explainability
Positive Negative

Method B1 ↑ B4 ↑ R1 ↑ R2 ↑ USR ↑ BERT ↑ FMR ↑ FCR ↑ DIV ↓ FMR ↑ FCR ↑ DIV ↓
PETER-d-emb 0.3861 0.0716 0.4049 0.1268 0.7187 0.8882 0.2300 0.1991 2.232 0.1223 0.1813 1.372

PETER-d-emb+ 0.4083 0.0938 0.4261 0.1622 0.7534 0.8914 0.2410 0.2249 2.309 0.1389 0.2052 1.403
↑5.7% ↑31.0% ↑5.2% ↑27.9% ↑4.8% ↑0.3% ↑4.7% ↑12.9% ↓3.4% ↑13.5% ↑13.1% ↓2.2%

PEPLER-d-emb 0.3768 0.0696 0.3934 0.1233 0.9277 0.8859 0.2199 0.2719 2.227 0.1081 0.2590 1.166

PEPLER-d-emb+ 0.4006 0.0884 0.4175 0.1552 0.8269 0.8904 0.2225 0.2599 2.314 0.1334 0.2461 1.439
↑6.3% ↑27.0% ↑6.1% ↑25.8% ↓10.8% ↑0.5% ↑1.1% ↓4.4% ↓3.9% ↑23.4% ↓4.9% ↓23.4%

Table 20: The performance gains/losses in existing metrics on RateBeer when we use the ground-truth ratings as input (shown
with “+”). The best scores of all models are underlined, and the gains/losses are marked in ↑green and ↓red, respectively.

Text Quality Explainability
Positive Negative

Method B1 ↑ B4 ↑ R1 ↑ R2 ↑ USR ↑ BERT ↑ FMR ↑ FCR ↑ DIV ↓ FMR ↑ FCR ↑ DIV ↓
PETER-d-emb 0.4364 0.1214 0.4728 0.1885 0.8239 0.9073 0.2778 0.1294 1.448 0.1322 0.0818 1.195

PETER-d-emb+ 0.4415 0.1243 0.4762 0.1945 0.8421 0.9073 0.2859 0.1380 1.369 0.1400 0.0886 1.130
↑1.1% ↑2.3% ↑0.7% ↑3.1% ↑2.2% ↑0.0% ↑2.9% ↑6.6% ↑5.4% ↑5.9% ↑8.3% ↑5.4%

PEPLER-d-emb 0.4324 0.1158 0.4678 0.1821 0.9004 0.9069 0.2675 0.1593 1.311 0.1262 0.1036 1.205

PEPLER-d-emb+ 0.4461 0.1231 0.4815 0.1981 0.9230 0.9075 0.2611 0.1639 1.287 0.1325 0.1098 1.076
↑3.1% ↑6.3% ↑2.9% ↑8.7% ↑2.5% ↑0.0% ↓2.3% ↑2.8% ↑1.8% ↑4.9% ↑5.9% ↑10.7%
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