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Abstract

Protein structure tokenization converts 3D structures into discrete or vectorized1

representations, enabling the integration of structural and sequence data. Despite2

many recent works on structure tokenization, the properties of the underlying3

discrete representations are not well understood. In this work, we first demonstrate4

that the successful utilization of structural tokens in a language model for structure5

prediction depends on using rich, pre-trained sequence embeddings to bridge the6

semantic gap between the sequence and structural “language”. The analysis of the7

structural vocabulary itself then reveals significant semantic redundancy, where8

multiple distinct tokens correspond to nearly identical local geometries, acting9

as “structural synonyms”. This redundancy, rather than being a flaw, can be ex-10

ploited with a simple “synonym swap” strategy to generate diverse conformational11

ensembles by perturbing a predicted structure with its structural synonyms. This12

computationally lightweight method accurately recapitulates protein flexibility,13

performing competitively with state-of-the-art models. Our study provides fun-14

damental insights into the nature of discrete protein structure representations and15

introduces a powerful, near-instantaneous method for modeling protein dynamics.16

Source code is available here.17

1 Introduction18

The convergence of deep learning and vast protein databases has given rise to powerful protein models19

that can decipher the intricate rules governing protein sequence, structure, and function [29, 25, 30].20

Trained on billions of protein sequences, protein language models (PLMs) such as ESM demonstrate21

remarkable transfer learning capabilities across downstream tasks [16]. The rapid development22

of protein structure prediction models, such as AlphaFold, solves the long-standing challenge of23

predicting static 3D protein structures with remarkable accuracy [12].24

While these breakthroughs are powerful, they largely treat sequence and structure as separate domains.25

In many applications, especially in protein design tasks like binder design [28] and functional site26

scaffolding [26], it requires joint understanding and generation of both modalities. This highlights27

the need for multi-modal models that jointly process protein one-dimensional sequences and three-28

dimensional structures [27]. A fundamental obstacle in developing such models is how to combine29

complex, continuous structural data with discrete amino acid tokens in a unified representation30

suitable for deep learning. To overcome this issue, recent approaches have converged on the concept31

of protein structure tokenization, discretizing the continuous 3D space into a finite vocabulary32

using techniques like the Vector Quantized Variational Autoencoder (VQ-VAE) [8, 23, 6]. This33

approach enables modeling the sequence of amino acids and protein structure in a unified language34

model [27].35

Despite the promise of this paradigm, several fundamental questions remain unanswered. First, what36

is the most effective way to integrate the distinct modalities of protein sequence and discrete structure37
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within a single generative framework? While a simple multilayer perceptron (MLP) adaptor is an38

intuitive starting point, it may not adequately bridge the gap between these different informational39

streams. Second, the intrinsic properties of the learned structural vocabularies are largely unexplored.40

Are these tokens distinct and orthogonal, or have the models learned a robust and potentially redundant41

set of representations? Understanding the “grammar” and “synonymy” of this structural language is42

crucial for interpreting and improving these models.43

In this work, we investigate these questions by analyzing the properties of the VQ-VAE structural44

tokens and their application in structure prediction with a GPT-based generative model. We first45

demonstrate that the method of integrating sequence and structure information is critical, with pre-46

trained ESM3 sequence embeddings outperforming original ProGen2 sequence embeddings for47

accurate structure prediction. We then provide direct evidence of semantic redundancy within the48

structural codebook, showing that distinct tokens often decode to nearly identical structures. The49

semantic redundancy of the codebook, which is a “flaw” for next-token prediction, actually can be50

employed to explore the flexibility of protein structures. This naturally leads us to study a compelling51

question: can the discrete representations learned by the VQ-VAE be leveraged for tasks beyond static52

prediction, offering a new avenue to model protein dynamics? By creating a “synonym dictionary”53

based on this redundancy, we introduce a novel “synonym swap” strategy. Our results show that54

this method can generate conformational ensembles whose statistical properties, measured by Root55

Mean Square Fluctuation (RMSF), are highly correlated with those from traditional MD simulations.56

This study, therefore, not only sheds light on the nature of discrete structural representations but57

also establishes a computationally efficient method for generating realistic protein conformational58

ensembles, opening new possibilities for the study of protein dynamics.59

2 Preliminaries60
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Figure 1: The VQ-VAE (left) discretizes continuous protein structures into a finite set of “Structure
Tokens”. These tokens are then used in an autoregressive language model (right) that predicts a
sequence of structural tokens conditioned on the amino acid sequence.

2.1 Discrete representation of protein structures61

The discretization of continuous 3D protein structures into a finite set of tokens has emerged as a62

powerful strategy for applying natural language processing techniques to protein science. Traditional63

methods usually rely on the domain knowledge about protein structures and discretize protein64

structures with hard-coded rules [2, 5]. Recently, a particularly effective approach for this task has65

been the Vector Quantized Variational Autoencoder (VQ-VAE), which learns a “vocabulary” of66

discrete tokens representing local structural motifs [22]. Recent works use the machine-learned67

vocabulary to show that complex protein folds could be successfully represented as sequences of68

these learned tokens [32, 8].69

As shown in, the process of VQ-VAE for protein structure consists of three key components.70

• Encoder: A neural network that takes as input the atomic coordinates of the protein and71

compresses this geometric information into a continuous latent vector.72

• Codebook: The continuous vector from the encoder is mapped to the nearest vector in a73

learned codebook via a nearest-neighbor lookup. The index of this codebook vector becomes74

the discrete structural token.75

• Decoder: A second neural network that takes a sequence of discrete tokens, retrieves76

their corresponding vectors from the codebook, and uses this sequence of embeddings to77

reconstruct the protein structure.78
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These structural vocabularies can serve as a fundamental component of a unified generative model,79

including multimodal diffusion language models, masked language models, and autoregressive GPT80

models [27, 8, 6], enabling sophisticated protein design and analysis. There are also efforts focused81

on systematically benchmarking different tokenization schemes and developing improved recipes to82

guide future research [31].83

2.2 Autoregressive sequence-structure language modeling84

With a protein structure tokenizer, we can represent both the protein sequence and its corresponding85

structure as discrete tokens. A unified generative model can then be developed. This paradigm86

enables the joint modeling of these two disparate modalities, facilitating tasks such as protein folding87

and de novo protein design.88

In the context of protein structure prediction, the goal is to model the conditional probability of the89

structural token sequence (Sstruct) given the amino acid sequence (Sseq), denoted as P (Sstruct|Sseq).90

An autoregressive model, such as GPT [21], can be used to model P (Sstruct|Sseq) by factorizing the91

probability sequentially:92

P (Sstruct|Sseq) =

L∏
t=1

P (st|Sseq, s<t), (1)

where st is the structural token at position t, and s<t represents all the preceding structural tokens.93

At each step of the generation process, the model takes the full amino acid sequence and the sequence94

of structural tokens predicted so far as input. It then outputs a probability distribution over the95

entire structural token vocabulary for the next position, t. A token is sampled from this distribution,96

appended to the sequence of predictions, and the process is repeated until the full structure is generated.97

This generative framework enables the direct prediction of a protein’s 3D structure from its primary98

sequence, forming the basis of the predictive model used in this study.99

3 The gap between the structure and sequence semantics100

3.1 A study of structure tokenization with a GPT-like model for protein structure prediction101

Model architecture. Given the discrete tokenization of the protein structures, it is a natural choice102

for jointly modeling the protein structure and sequence with a causal language model. Following Liu103

et al. [17], the network architecture is shown in Figure 1. We choose ProGen2-medium (764M) [20]104

as the protein language model.105

For the input structure tokens, we use a simple linear layer to align the structure token embeddings106

with the PLM embedding space. Specifically, the input structure tokens are first passed through an107

embedding layer to get a continuous presentation Z. A trainable projection matrix Wstruct is then108

applied to convert Z to the same dimensionality as the PLM embedding space. As the model needs109

to predict the structure tokens, a simple linear layer with weight Whead is added to the PLM as a110

new prediction head.111

We use two settings for the sequence token embedding. The first is to use the original nn.embedding112

layer of ProGen2. Considering the gap between the sequence and structure modalities, the second113

setting is using the pre-trained ESM3 sequence embedding followed by a simple linear aligner with a114

weight matrix Wseq .115

Two-stage training. To align the structure token embeddings with the PLM embedding, we first116

keep the PLM weights frozen and train the projection matrix Wstruct (and Wseq and in the second117

setting) and the structure head matrix Whead by maximizing the likelihood of Eq. 1. After embedding118

alignment, we perform a full fine-tuning to update both the weights of ProGen2 and the linear layers119

trained in the first stage.120

Training data. For the first-stage training, we utilize the AFDB SwissProt data [25]. For the second121

stage fine-tuning, we use both AFDB structures and the single-chain structures from PDB. Since the122

ProGen2 model has a maximal sequence length of 1024, we crop the sequences to a maximal length123

of 512 to model the sequence and structure tokens together.124
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Table 1: The performance of structure prediction. StructGPT: ProGen2 model with the original
ProGen2 sequence embedding; StructGPT w. ESM3_emb: ProGen2 model with the ESM3 sequence
embedding. The results of ESM3 are from Zhang et al. [32]

TMScore RMSD (Å)
Model CAMEO CASP14 CASP15 CAMEO CASP14 CASP15

StructGPT 0.523 0.329 0.383 11.87 17.19 18.99
StructGPT w. ESM3_emb 0.784 0.580 0.639 5.43 10.24 11.74
ESM3 0.781 0.575 0.625 5.74 10.29 14.69

Structure prediction performance. After training, we generate the structure tokens conditioned on125

the sequence tokens using top-p sampling [9] with p = 0.9 and temperature T = 0.7. The generated126

structure tokens are then decoded to obtain the protein structure prediction. The performance is tested127

on three datasets, including CAMEO, CASP14, and CASP15 [7, 14, 15]. Our experiments reveal a128

stark difference in performance between the two sequence embeddings (Table 1). The model trained129

using the original ProGen2 sequence embedding fails to produce globally coherent structures. The130

model trained using the ESM3 embeddings demonstrates strong predictive performance, comparable131

to ESM3 [8], as measured by the TM-score [33] and the root-mean-square deviation (RMSD) [13].132

By looking into the training curve (Figure 2), we find that with the original ProGen2 sequence133

embedding, while the cross-entropy of the CAMEO test set (i.e., the testing loss) continues to134

decrease, the structural accuracy of the generated proteins, as measured by TM-score, although135

still increasing very slowing, stays at a poor performance level with near 90,000 training steps. In136

contrast, the training curve with the ESM3 sequence embedding shows much faster convergence137

and a more stable performance plateau. Moreover, the two cases have similar cross-entropy losses.138

This observation leads us to hypothesize that the training objective itself might be complicated by139

the nature of the structural vocabulary. Specifically, the size of the ESM3 VQ-VAE codebook is140

relatively large (4096). If distinct tokens can represent structurally similar geometries, the model141

would be penalized during training for predicting a valid “structural synonym” that deviates from142

the one specific token in the reference structure. This suggests the existence of semantic redundancy143

within the VQ-VAE’s learned vocabulary.144

With ProGen2 sequence embedding                         With ESM3 sequence embedding

Figure 2: The training curve of the GPT model for protein structure prediction with different sequence
embeddings.

3.2 Semantic redundancy in the ESM3 structural codebook145

From the above result, we hypothesize that the ESM3 VQ-VAE codebook contains multiple tokens146

for similar geometric motifs. We thus turn to directly analyzing the properties of the structural147

vocabulary to test this hypothesis. To quantify the similarity between different structural tokens, we148

perform a direct analysis of the learned codebook. The latent vectors, corresponding to the structure149

tokens, are extracted from the ESM3 structure VQ-VAE model.150

First, to visually inspect the relationships within the tokens, we use the t-SNE (t-Distributed Stochastic151

Neighbor Embedding) visualization [18], which projects the high-dimensional token embeddings into152

a 2D space. As shown in Figure 3, the t-SNE projection illustrates the existence of numerous dense153

clusters, indicating there are grouped tokens representing similar structural motifs in the embedding154

space.155

Second, to establish a quantitative measure of similarity, we calculate the pairwise Euclidean distance156

between all token latent vectors. From the clustered heatmap, it is easy to see that the ESM3 structure157
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Figure 3: t-SNE visualization and the distance matrix of the code vectors. The ESM3 codebook
shows distinct, well-defined clusters, while the t-SNE of the AIDO.st codebook [32] vectors are
uniformly distributed in the 2D space.

tokens have strong, well-separated clusters. In contrast, the AIDO.st VQ-VAE codebook [32], which158

has a smaller number of codes (m = 512), shows a more diffuse and less defined clustering pattern.159

Table 2: The average TM-score and
RMSD of the structures decoded
from the perturbed structure tokens.

TM-score RMSD (Å)

CAMEO 0.933 1.744
CASP14 0.938 1.969
CASP15 0.849 4.136

Based on this, we construct a “synonym dictionary” by defining160

any two tokens as synonyms if the Euclidean distance between161

their latent vectors is below a threshold. Specifically, given a162

codebook V = {vk}mk=1 of m different codes, the “synonym163

dictionary” of code vk is defined by Sk = {i}∥vi−vk∥2<τ ,164

where τ is a threshold hyperparameter that can balance struc-165

tural preservation and diversity. Based on visual inspection of166

the distance distribution, we currently set τ = 10. The dic-167

tionary Sk serves as the basis for our subsequent perturbation168

studies. Given a structure, we first encode it into a sequence of structure tokens. Each token is then169

replaced by a random token in its “synonym dictionary” and the perturbed structural sequence is170

decoded into 3D structures. The resulting 3D structures are very similar to the original structure.171

The RMSD between the perturbed and original structures is consistently low, often less than 2.0172

Å, confirming their structural equivalence. This indicates the semantic redundancy of the ESM3173

codebook, which explains why a GPT model is statistically uncertain about which specific token to174

predict next, yet still can point towards the correct local geometry.175

4 Exploiting redundancy to generate dynamic conformational ensembles176

Our finding in the previous section demonstrates that the structural vocabulary of ESM3 is not a177

minimal set of building blocks but a robust, flexible, and highly redundant language. The semantic178

redundancy of the codebook, which is a flaw for next-token prediction, is actually a feature that179

reflects the inherent flexibility of protein structures. Together with the structure decoder, the subtle180

structural variations in the “synonymous” tokens may reflect the natural, low-energy fluctuations a181

protein experiences in its native state. If this hypothesis is true, perturbing a ground truth structure182

by swapping its tokens with synonyms could provide a computationally inexpensive method to183

generate a realistic conformational ensemble, offering a rapid alternative to Molecular Dynamics184

(MD) simulations for studying protein flexibility [1].185

4.1 Method186

To test our hypothesis, we employ a simple “synonym swap” strategy. As shown in Figure 4, we first187

encode a given experimental structure of a target protein into a sequence of structure tokens. A new188

sequence of structure tokens is then generated by randomly replacing each token k from the original189

sequence with one of its synonyms, as defined in the synonym dictionary Sk. The perturbed token190

sequence is then decoded back into a 3D protein structure.191

To validate our approach, we use the 82 test proteins [10] from the ATLAS database [24]. Following192

the work in Jing et al. [10], we generate 250 perturbed structures for each target as the conformational193

ensembles.194
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Figure 4: Perturbation of the structure tokens for exploring the conformational ensemble space.

4.2 Experiment195

To rigorously evaluate the quality of our generated ensembles, we compare our “synonym swap”196

method to two state-of-the-art models, MDGen and AlphaFlow [10, 11], using the ground-truth197

trajectories from Molecular Dynamics (MD) simulations. To compare two ensembles, we use a suite198

of metrics designed to assess both protein flexibility and the conformational distribution. The results,199

summarized in Table 3, demonstrate that our computationally efficient method is highly competitive,200

particularly in capturing protein-specific flexibility.201

Table 3: The median of results on the 82 test targets
in ATLAS; the results of MDGen and AlphaFlow
from Jing et al. [10, 11]

Ours MDGen AlphaFlow

Pairwise RMSD r ↑ 0.38 0.48 0.48
Per target RMSF r ↑ 0.84 0.71 0.85

Global RMSF r ↑ 0.41 0.50 0.50
MD PCA W2 dist. ↓ 1.83 1.89 1.52
Joint PCA W2 dist. ↓ 2.54 - 2.25

A key measure of an ensemble’s utility is its abil-202

ity to reproduce the flexibility profile of individ-203

ual proteins. The root mean square fluctuation204

(RMSF) quantifies the fluctuation of individual205

residues. The median Pearson correlation (r)206

between the generated and MD RMSF for each207

protein is 0.84. This result is highly competi-208

tive with the top-performing method, AlphaFlow209

(0.85), and outperforms MDGen (0.71), confirm-210

ing that token perturbation effectively captures211

the unique dynamic fingerprint of individual proteins. Note that MDGen and AlphaFlow are both212

trained on the ATALS MD data, while our “synonym swap” method is totally training-free.213

To assess how well the ensembles capture the dominant modes of motion, we use the 2-Wasserstein214

distance (W2) between the generated and MD distributions after projecting them onto the principal215

components (PCs) of the positional distribution. A lower distance indicates a better match. Our216

method achieved an MD PCA W2 distance of 1.83, slightly better than MDGen (1.89) and competitive217

with AlphaFlow (1.52), indicating that the generated conformations occupy the same principal218

dynamic spaces as those explored by the MD simulation.219

Figure 5: Protein ensembles for 6uof_A generated by token
perturbation and MD, and the Cα RMSFs indexed by the
residue id (Pearson r = 0.81).

While our method can accurately cap-220

ture per-protein flexibility and confor-221

mational distribution, other metrics222

that assess the global properties of the223

conformational space show the limi-224

tation of our current simple approach.225

The correlation of the Pairwise RMSD226

matrices and the Global RMSF corre-227

lation is lower for our method com-228

pared to the other two benchmarked229

methods. This suggests that while230

individual flexibility profiles are ac-231

curate, capturing the absolute scale232

of motion across a diverse dataset is233

more challenging (Figure 5). “Syn-234

onym swapping” creates local pertur-235

bations and may not be sufficient to capture the large-scale, cooperative motions that dictate global236

structural changes. This provides a direction for future work, such as exploring perturbations of token237

sequences rather than individual tokens to model more complex dynamics or combining with other238

techniques like MSA subsampling [3].239
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5 Conclusion240

In this paper, we investigate the intrinsic properties of these discrete structural representations and241

explore how they can be leveraged for tasks beyond static prediction. We first establish that effective242

integration of modalities is critical, showing that a GPT model using pre-trained sequence embeddings243

significantly outperforms one using simple token concatenation. We then demonstrate that the244

structural codebook contains considerable semantic redundancy, where distinct tokens decode to245

nearly identical local structures. Finally, we harness this redundancy by developing a "synonym swap"246

strategy, showing it can generate conformational ensembles whose dynamic properties are highly247

correlated with those from computationally expensive Molecular Dynamics (MD) simulations [4, 19].248

Our findings provide a deeper understanding of discrete structural representations and offer a novel,249

efficient method for modeling protein dynamics.250

References251

[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf252

Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure253

prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.254

[2] Alexandre G de Brevern. New assessment of a structural alphabet. In silico biology, 5(3):255

283–289, 2005.256

[3] Diego Del Alamo, Davide Sala, Hassane S Mchaourab, and Jens Meiler. Sampling alternative257

conformational states of transporters and receptors with alphafold2. Elife, 11:e75751, 2022.258

[4] Ron O Dror, Robert M Dirks, JP Grossman, Huafeng Xu, and David E Shaw. Biomolecular259

simulation: a computational microscope for molecular biology. Annual review of biophysics, 41260

(1):429–452, 2012.261

[5] Janani Durairaj, Mehmet Akdel, Dick de Ridder, and Aalt DJ van Dijk. Geometricus repre-262

sents protein structures as shape-mers derived from moment invariants. Bioinformatics, 36263

(Supplement_2):i718–i725, 2020.264

[6] Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, and Stan Z Li. Foldtoken:265

Learning protein language via vector quantization and beyond. In Proceedings of the Thirty-266

Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative267

Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances in268

Artificial Intelligence, AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. doi: 10.1609/aaai.269

v39i1.31998.270

[7] Jürgen Haas, Alessandro Barbato, Dario Behringer, Gabriel Studer, Steven Roth, Martino271

Bertoni, Khaled Mostaguir, Rafal Gumienny, and Torsten Schwede. Continuous Automated272

Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in273

CASP12. Proteins: Structure, Function, and Bioinformatics, 86:387–398, 2018.274

[8] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin,275

Robert Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million276

years of evolution with a language model. Science, pp. eads0018, 2025.277

[9] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural278

text degeneration. arXiv preprint arXiv:1904.09751, 2019.279

[10] Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating280

protein ensembles. In International Conference on Machine Learning, pp. 22277–22303. PMLR,281

2024.282

[11] Bowen Jing, Hannes Stärk, Tommi Jaakkola, and Bonnie Berger. Generative modeling of283

molecular dynamics trajectories. arXiv preprint arXiv:2409.17808, 2024.284

[12] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-285

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.286

Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.287

7



[13] Wolfgang Kabsch. A discussion of the solution for the best rotation to relate two sets of vectors.288

Foundations of Crystallography, 34(5):827–828, 1978.289

[14] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult.290

Critical assessment of methods of protein structure prediction (CASP)—Round XIV. Proteins:291

Structure, Function, and Bioinformatics, 89(12):1607–1617, 2021.292

[15] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult.293

Critical assessment of methods of protein structure prediction (CASP)—Round XV. Proteins:294

Structure, Function, and Bioinformatics, 91(12):1539–1549, 2023.295

[16] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,296

Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level297

protein structure with a language model. Science, 379(6637):1123–1130, 2023.298

[17] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances299

in neural information processing systems, 36:34892–34916, 2023.300

[18] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine301

learning research, 9(Nov):2579–2605, 2008.302

[19] Mitchell D Miller and George N Phillips. Moving beyond static snapshots: Protein dynamics303

and the protein data bank. Journal of Biological Chemistry, 296, 2021.304

[20] Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2:305

exploring the boundaries of protein language models. Cell systems, 14(11):968–978, 2023.306

[21] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.307

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.308

[22] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in309

neural information processing systems, 30, 2017.310

[23] Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,311

Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein312

structure search with foldseek. Nature biotechnology, 42(2):243–246, 2024.313

[24] Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-314

lochkina. Atlas: protein flexibility description from atomistic molecular dynamics simulations.315

Nucleic acids research, 52(D1):D384–D392, 2024.316

[25] Mihaly Varadi, Damian Bertoni, Paulyna Magana, Urmila Paramval, Ivanna Pidruchna,317

Malarvizhi Radhakrishnan, Maxim Tsenkov, Sreenath Nair, Milot Mirdita, Jingi Yeo, et al.318

Alphafold protein structure database in 2024: providing structure coverage for over 214 million319

protein sequences. Nucleic acids research, 52(D1):D368–D375, 2024.320

[26] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M Castro,321

Robert Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, et al. Scaffolding protein322

functional sites using deep learning. Science, 377(6604):387–394, 2022.323

[27] Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu.324

Dplm-2: A multimodal diffusion protein language model. arXiv preprint arXiv:2410.13782,325

2024.326

[28] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E327

Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo328

design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.329

[29] Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of330

protein sequences and biomedical texts. In International Conference on Machine Learning, pp.331

38749–38767. PMLR, 2023.332

[30] Yang Xue, Zijing Liu, Xiaomin Fang, and Fan Wang. Multimodal pre-training model for333

sequence-based prediction of protein-protein interaction. In Machine Learning in Computational334

Biology, pp. 34–46. PMLR, 2022.335

8



[31] Xinyu Yuan, Zichen Wang, Marcus Collins, and Huzefa Rangwala. Protein structure tokeniza-336

tion: Benchmarking and new recipe. arXiv preprint arXiv:2503.00089, 2025.337

[32] Jiayou Zhang, Barthelemy Meynard-Piganeau, James Gong, Xingyi Cheng, Yingtao Luo, Hugo338

Ly, Le Song, and Eric Xing. Balancing locality and reconstruction in protein structure tokenizer.339

bioRxiv, pp. 2024–12, 2024.340

[33] Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein341

structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702–710,342

2004.343

9


	Introduction
	Preliminaries
	Discrete representation of protein structures
	Autoregressive sequence-structure language modeling

	The gap between the structure and sequence semantics
	A study of structure tokenization with a GPT-like model for protein structure prediction
	Semantic redundancy in the ESM3 structural codebook

	Exploiting redundancy to generate dynamic conformational ensembles
	Method
	Experiment

	Conclusion

