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Abstract

Protein structure tokenization converts 3D structures into discrete or vectorized
representations, enabling the integration of structural and sequence data. Despite
many recent works on structure tokenization, the properties of the underlying
discrete representations are not well understood. In this work, we first demonstrate
that the successful utilization of structural tokens in a language model for structure
prediction depends on using rich, pre-trained sequence embeddings to bridge the
semantic gap between the sequence and structural “language”. The analysis of the
structural vocabulary itself then reveals significant semantic redundancy, where
multiple distinct tokens correspond to nearly identical local geometries, acting
as “structural synonyms”. This redundancy, rather than being a flaw, can be ex-
ploited with a simple “synonym swap” strategy to generate diverse conformational
ensembles by perturbing a predicted structure with its structural synonyms. This
computationally lightweight method accurately recapitulates protein flexibility,
performing competitively with state-of-the-art models. Our study provides fun-
damental insights into the nature of discrete protein structure representations and
introduces a powerful, near-instantaneous method for modeling protein dynamics.
Source code is available here.

1 Introduction

The convergence of deep learning and vast protein databases has given rise to powerful protein models
that can decipher the intricate rules governing protein sequence, structure, and function [29, 25, 30].
Trained on billions of protein sequences, protein language models (PLMs) such as ESM demonstrate
remarkable transfer learning capabilities across downstream tasks [16]. The rapid development
of protein structure prediction models, such as AlphaFold, solves the long-standing challenge of
predicting static 3D protein structures with remarkable accuracy [12].

While these breakthroughs are powerful, they largely treat sequence and structure as separate domains.
In many applications, especially in protein design tasks like binder design [28] and functional site
scaffolding [26], it requires joint understanding and generation of both modalities. This highlights
the need for multi-modal models that jointly process protein one-dimensional sequences and three-
dimensional structures [27]. A fundamental obstacle in developing such models is how to combine
complex, continuous structural data with discrete amino acid tokens in a unified representation
suitable for deep learning. To overcome this issue, recent approaches have converged on the concept
of protein structure tokenization, discretizing the continuous 3D space into a finite vocabulary
using techniques like the Vector Quantized Variational Autoencoder (VQ-VAE) [8, 23, 6]. This
approach enables modeling the sequence of amino acids and protein structure in a unified language
model [27].

Despite the promise of this paradigm, several fundamental questions remain unanswered. First, what
is the most effective way to integrate the distinct modalities of protein sequence and discrete structure
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within a single generative framework? While a simple multilayer perceptron (MLP) adaptor is an
intuitive starting point, it may not adequately bridge the gap between these different informational
streams. Second, the intrinsic properties of the learned structural vocabularies are largely unexplored.
Are these tokens distinct and orthogonal, or have the models learned a robust and potentially redundant
set of representations? Understanding the “grammar” and “synonymy” of this structural language is
crucial for interpreting and improving these models.

In this work, we investigate these questions by analyzing the properties of the VQ-VAE structural
tokens and their application in structure prediction with a GPT-based generative model. We first
demonstrate that the method of integrating sequence and structure information is critical, with pre-
trained ESM3 sequence embeddings outperforming original ProGen2 sequence embeddings for
accurate structure prediction. We then provide direct evidence of semantic redundancy within the
structural codebook, showing that distinct tokens often decode to nearly identical structures. The
semantic redundancy of the codebook, which is a “flaw” for next-token prediction, actually can be
employed to explore the flexibility of protein structures. This naturally leads us to study a compelling
question: can the discrete representations learned by the VQ-VAE be leveraged for tasks beyond static
prediction, offering a new avenue to model protein dynamics? By creating a “synonym dictionary”
based on this redundancy, we introduce a novel “synonym swap” strategy. Our results show that
this method can generate conformational ensembles whose statistical properties, measured by Root
Mean Square Fluctuation (RMSF), are highly correlated with those from traditional MD simulations.
This study, therefore, not only sheds light on the nature of discrete structural representations but
also establishes a computationally efficient method for generating realistic protein conformational
ensembles, opening new possibilities for the study of protein dynamics.

2 Preliminaries
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Figure 1: The VQ-VAE (left) discretizes continuous protein structures into a finite set of “Structure
Tokens”. These tokens are then used in an autoregressive language model (right) that predicts a
sequence of structural tokens conditioned on the amino acid sequence.

2.1 Discrete representation of protein structures

The discretization of continuous 3D protein structures into a finite set of tokens has emerged as a
powerful strategy for applying natural language processing techniques to protein science. Traditional
methods usually rely on the domain knowledge about protein structures and discretize protein
structures with hard-coded rules [2, 5]. Recently, a particularly effective approach for this task has
been the Vector Quantized Variational Autoencoder (VQ-VAE), which learns a “vocabulary” of
discrete tokens representing local structural motifs [22]. Recent works use the machine-learned
vocabulary to show that complex protein folds could be successfully represented as sequences of
these learned tokens [32, 8].

As shown in, the process of VQ-VAE for protein structure consists of three key components.

* Encoder: A neural network that takes as input the atomic coordinates of the protein and
compresses this geometric information into a continuous latent vector.

* Codebook: The continuous vector from the encoder is mapped to the nearest vector in a
learned codebook via a nearest-neighbor lookup. The index of this codebook vector becomes
the discrete structural token.

* Decoder: A second neural network that takes a sequence of discrete tokens, retrieves
their corresponding vectors from the codebook, and uses this sequence of embeddings to
reconstruct the protein structure.
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These structural vocabularies can serve as a fundamental component of a unified generative model,
including multimodal diffusion language models, masked language models, and autoregressive GPT
models [27, 8, 6], enabling sophisticated protein design and analysis. There are also efforts focused
on systematically benchmarking different tokenization schemes and developing improved recipes to
guide future research [31].

2.2 Autoregressive sequence-structure language modeling

With a protein structure tokenizer, we can represent both the protein sequence and its corresponding
structure as discrete tokens. A unified generative model can then be developed. This paradigm
enables the joint modeling of these two disparate modalities, facilitating tasks such as protein folding
and de novo protein design.

In the context of protein structure prediction, the goal is to model the conditional probability of the
structural token sequence (Ssiryc¢) given the amino acid sequence (Sseq), denoted as P(Ssiruct|Sseq)-
An autoregressive model, such as GPT [21], can be used to model P(Ss;yct|Sseq) by factorizing the
probability sequentially:

P(Sstruct|sseq) = HP(5t|SseQ75<t)a (D
t=1

where s; is the structural token at position ¢, and s; represents all the preceding structural tokens.
At each step of the generation process, the model takes the full amino acid sequence and the sequence
of structural tokens predicted so far as input. It then outputs a probability distribution over the
entire structural token vocabulary for the next position, ¢. A token is sampled from this distribution,
appended to the sequence of predictions, and the process is repeated until the full structure is generated.
This generative framework enables the direct prediction of a protein’s 3D structure from its primary
sequence, forming the basis of the predictive model used in this study.

3 The gap between the structure and sequence semantics

3.1 A study of structure tokenization with a GPT-like model for protein structure prediction

Model architecture. Given the discrete tokenization of the protein structures, it is a natural choice
for jointly modeling the protein structure and sequence with a causal language model. Following Liu
et al. [17], the network architecture is shown in Figure 1. We choose ProGen2-medium (764M) [20]
as the protein language model.

For the input structure tokens, we use a simple linear layer to align the structure token embeddings
with the PLM embedding space. Specifically, the input structure tokens are first passed through an
embedding layer to get a continuous presentation Z. A trainable projection matrix W g¢.,¢ i then
applied to convert Z to the same dimensionality as the PLM embedding space. As the model needs
to predict the structure tokens, a simple linear layer with weight Wy, is added to the PLM as a
new prediction head.

We use two settings for the sequence token embedding. The first is to use the original nn. embedding
layer of ProGen2. Considering the gap between the sequence and structure modalities, the second
setting is using the pre-trained ESM3 sequence embedding followed by a simple linear aligner with a
weight matrix W,,.

Two-stage training. To align the structure token embeddings with the PLM embedding, we first
keep the PLM weights frozen and train the projection matrix W gty.yct (and W4 and in the second
setting) and the structure head matrix Wy, .4 by maximizing the likelihood of Eq. 1. After embedding
alignment, we perform a full fine-tuning to update both the weights of ProGen2 and the linear layers
trained in the first stage.

Training data. For the first-stage training, we utilize the AFDB SwissProt data [25]. For the second
stage fine-tuning, we use both AFDB structures and the single-chain structures from PDB. Since the
ProGen2 model has a maximal sequence length of 1024, we crop the sequences to a maximal length
of 512 to model the sequence and structure tokens together.
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Table 1: The performance of structure prediction. StructGPT: ProGen2 model with the original
ProGen2 sequence embedding; StructGPT w. ESM3_emb: ProGen2 model with the ESM3 sequence
embedding. The results of ESM3 are from Zhang et al. [32]

| TMScore | RMSD (A)
Model | CAMEO CASP14 CASP15 | CAMEO CASP14 CASPI5
StructGPT 0.523 0.329 0.383 11.87 17.19 18.99
StructGPT w. ESM3_emb | 0.784 0.580 0.639 5.43 10.24 11.74
ESM3 0.781 0.575 0.625 5.74 10.29 14.69

Structure prediction performance. After training, we generate the structure tokens conditioned on
the sequence tokens using top-p sampling [9] with p = 0.9 and temperature T = 0.7. The generated
structure tokens are then decoded to obtain the protein structure prediction. The performance is tested
on three datasets, including CAMEO, CASP14, and CASP15 [7, 14, 15]. Our experiments reveal a
stark difference in performance between the two sequence embeddings (Table 1). The model trained
using the original ProGen2 sequence embedding fails to produce globally coherent structures. The
model trained using the ESM3 embeddings demonstrates strong predictive performance, comparable
to ESM3 [8], as measured by the TM-score [33] and the root-mean-square deviation (RMSD) [13].

By looking into the training curve (Figure 2), we find that with the original ProGen2 sequence
embedding, while the cross-entropy of the CAMEO test set (i.e., the testing loss) continues to
decrease, the structural accuracy of the generated proteins, as measured by TM-score, although
still increasing very slowing, stays at a poor performance level with near 90,000 training steps. In
contrast, the training curve with the ESM3 sequence embedding shows much faster convergence
and a more stable performance plateau. Moreover, the two cases have similar cross-entropy losses.
This observation leads us to hypothesize that the training objective itself might be complicated by
the nature of the structural vocabulary. Specifically, the size of the ESM3 VQ-VAE codebook is
relatively large (4096). If distinct tokens can represent structurally similar geometries, the model
would be penalized during training for predicting a valid “structural synonym” that deviates from
the one specific token in the reference structure. This suggests the existence of semantic redundancy
within the VQ-VAE’s learned vocabulary.

With ProGen2 sequence embedding With ESM3 sequence embedding
8 8
27 271
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< <
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Figure 2: The training curve of the GPT model for protein structure prediction with different sequence
embeddings.

3.2 Semantic redundancy in the ESM3 structural codebook

From the above result, we hypothesize that the ESM3 VQ-VAE codebook contains multiple tokens
for similar geometric motifs. We thus turn to directly analyzing the properties of the structural
vocabulary to test this hypothesis. To quantify the similarity between different structural tokens, we
perform a direct analysis of the learned codebook. The latent vectors, corresponding to the structure
tokens, are extracted from the ESM3 structure VQ-VAE model.

First, to visually inspect the relationships within the tokens, we use the t-SNE (t-Distributed Stochastic
Neighbor Embedding) visualization [18], which projects the high-dimensional token embeddings into
a 2D space. As shown in Figure 3, the t-SNE projection illustrates the existence of numerous dense
clusters, indicating there are grouped tokens representing similar structural motifs in the embedding
space.

Second, to establish a quantitative measure of similarity, we calculate the pairwise Euclidean distance
between all token latent vectors. From the clustered heatmap, it is easy to see that the ESM3 structure
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Figure 3: t-SNE visualization and the distance matrix of the code vectors. The ESM3 codebook
shows distinct, well-defined clusters, while the t-SNE of the AIDO.st codebook [32] vectors are
uniformly distributed in the 2D space.

tokens have strong, well-separated clusters. In contrast, the AIDO.st VQ-VAE codebook [32], which
has a smaller number of codes (m = 512), shows a more diffuse and less defined clustering pattern.

Based on this, we construct a “synonym dictionary” by defining
any two tokens as synonyms if the Euclidean distance between
their latent vectors is below a threshold. Specifically, given a
codebook V = {v;}7*, of m different codes, the “synonym

Table 2: The average TM-score and
RMSD of the structures decoded
from the perturbed structure tokens.

dictionary” of code vy, is defined by Sk = {i}|jv;—vy|s<rs | TM-score | RMSD (A)
where T is a threshold hyperparameter that can balance struc-  CAMEO 0.933 1.744
tural preservation and diversity. Based on visual inspection of =~ CASP14 | 0.938 1.969
the distance distribution, we currently set 7 = 10. The dic-  CASPI5 0.849 4.136

tionary Sy, serves as the basis for our subsequent perturbation

studies. Given a structure, we first encode it into a sequence of structure tokens. Each token is then
replaced by a random token in its “synonym dictionary” and the perturbed structural sequence is
decoded into 3D structures. The resulting 3D structures are very similar to the original structure.
The RMSD between the perturbed and original structures is consistently low, often less than 2.0
A, confirming their structural equivalence. This indicates the semantic redundancy of the ESM3
codebook, which explains why a GPT model is statistically uncertain about which specific token to
predict next, yet still can point towards the correct local geometry.

4 Exploiting redundancy to generate dynamic conformational ensembles

Our finding in the previous section demonstrates that the structural vocabulary of ESM3 is not a
minimal set of building blocks but a robust, flexible, and highly redundant language. The semantic
redundancy of the codebook, which is a flaw for next-token prediction, is actually a feature that
reflects the inherent flexibility of protein structures. Together with the structure decoder, the subtle
structural variations in the “synonymous” tokens may reflect the natural, low-energy fluctuations a
protein experiences in its native state. If this hypothesis is true, perturbing a ground truth structure
by swapping its tokens with synonyms could provide a computationally inexpensive method to
generate a realistic conformational ensemble, offering a rapid alternative to Molecular Dynamics
(MD) simulations for studying protein flexibility [1].

4.1 Method

To test our hypothesis, we employ a simple “synonym swap” strategy. As shown in Figure 4, we first
encode a given experimental structure of a target protein into a sequence of structure tokens. A new
sequence of structure tokens is then generated by randomly replacing each token & from the original
sequence with one of its synonyms, as defined in the synonym dictionary Si. The perturbed token
sequence is then decoded back into a 3D protein structure.

To validate our approach, we use the 82 test proteins [10] from the ATLAS database [24]. Following
the work in Jing et al. [10], we generate 250 perturbed structures for each target as the conformational
ensembles.
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Figure 4: Perturbation of the structure tokens for exploring the conformational ensemble space.
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4.2 Experiment

To rigorously evaluate the quality of our generated ensembles, we compare our “synonym swap”’
method to two state-of-the-art models, MDGen and AlphaFlow [10, 11], using the ground-truth
trajectories from Molecular Dynamics (MD) simulations. To compare two ensembles, we use a suite
of metrics designed to assess both protein flexibility and the conformational distribution. The results,
summarized in Table 3, demonstrate that our computationally efficient method is highly competitive,
particularly in capturing protein-specific flexibility.

A key measure of an ensemble’s utility is its abil- Table 3: The median of results on the 82 test targets
ity to reproduce the flexibility profile of individ- in ATLAS; the results of MDGen and AlphaFlow
ual proteins. The root mean square fluctuation from Jing et al. [10, 11]

(RMSF) quantifies the fluctuation of individual | Ous  MDGen AlphaFlow
residues. The median Pearson correlation (7)

between the generated and MD RMSF for each ll;:rlrt‘z r';zt];h;\[/[ss?z :TT 822 8;‘? 8;2
proteip is 0.84. This re§ult is highly competi- Global RMSE 7 T 0:41 0:50 0:50
tive with the top-performing method, AlphaFlow ~“MDPCAW, dist. | | 1.83 1.89 1.52
(0.85), and outperforms MDGen (0.71), confirm-  Joint PCA Wy dist. | | 2.54 - 2.25

ing that token perturbation effectively captures
the unique dynamic fingerprint of individual proteins. Note that MDGen and AlphaFlow are both
trained on the ATALS MD data, while our “synonym swap”” method is totally training-free.

To assess how well the ensembles capture the dominant modes of motion, we use the 2-Wasserstein
distance (JW,) between the generated and MD distributions after projecting them onto the principal
components (PCs) of the positional distribution. A lower distance indicates a better match. Our
method achieved an MD PCA W, distance of 1.83, slightly better than MDGen (1.89) and competitive
with AlphaFlow (1.52), indicating that the generated conformations occupy the same principal
dynamic spaces as those explored by the MD simulation.

While our method can accurately cap- Token perturb __
ture per-protein flexibility and confor- DY
mational distribution, other metrics \ 8
that assess the global properties of the
conformational space show the limi-
tation of our current simple approach.
The correlation of the Pairwise RMSD
matrices and the Global RMSF corre-
lation is lower for our method com-
pared to the other two benchmarked s .
methods. This suggests that while °°] M&D&QWM M e s S
individual flexibility profiles are ac- T w1 e o 3 e e e B

curate, capturing the absolute scale
of motion across a diverse dataset is Figure 5: Protein ensembles for 6uof _A generated by token

more challenging (Figure 5). “Syn- perturbation and MD, and the Coe RMSFs indexed by the
onym swapping” creates local pertur- residue id (Pearson r = 0.81).

bations and may not be sufficient to capture the large-scale, cooperative motions that dictate global
structural changes. This provides a direction for future work, such as exploring perturbations of token
sequences rather than individual tokens to model more complex dynamics or combining with other
techniques like MSA subsampling [3].
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5 Conclusion

In this paper, we investigate the intrinsic properties of these discrete structural representations and
explore how they can be leveraged for tasks beyond static prediction. We first establish that effective
integration of modalities is critical, showing that a GPT model using pre-trained sequence embeddings
significantly outperforms one using simple token concatenation. We then demonstrate that the
structural codebook contains considerable semantic redundancy, where distinct tokens decode to
nearly identical local structures. Finally, we harness this redundancy by developing a "synonym swap"
strategy, showing it can generate conformational ensembles whose dynamic properties are highly
correlated with those from computationally expensive Molecular Dynamics (MD) simulations [4, 19].
Our findings provide a deeper understanding of discrete structural representations and offer a novel,
efficient method for modeling protein dynamics.
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