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Abstract: In recent years, much progress has been made in learning robotic ma-1

nipulation policies that follow natural language instructions. Commonly, such2

methods learn from a corpora of robot-language data that was either collected3

with specific tasks in mind or expensively re-labelled by humans with rich lan-4

guage descriptions in hindsight. Recently, large-scale pretrained vision-language5

models like CLIP have been applied to robotics in the form of learning repre-6

sentations and planners. Can these pretrained models also be used to cheaply7

impart internet-scale knowledge onto offline datasets, providing access to skills8

that were not reflected in ground truth labels? To accomplish this, we introduce9

Data-driven Instruction Augmentation for Language-conditioned control (DIAL):10

we utilize semi-supervised language labels leveraging the semantic understanding11

of CLIP to propagate knowledge onto large datasets of unlabelled demonstration12

data and then train language-conditioned policies on the augmented datasets. This13

method enables cheaper acquisition of useful language descriptions compared to14

expensive human labels, allowing for more efficient label coverage of large-scale15

datasets. We apply DIAL to a challenging real-world robotic manipulation domain,16

enabling imitation learning policies to acquire new capabilities and generalize to17

60 novel instructions unseen in the original dataset.18

1 Introduction19

Recent advances in decision making have combined data-driven policies with language models20

to enable control policies that respond to natural language instructions, an important capability21

for practical adoption of general robots in the real world. A popular method used to accomplish22

such language-controlled policies is behavioral cloning (BC) [16, 23, 1], which commonly acquires23

language labels in two ways: i) using pre-defined tasks where the task descriptions are provided at the24

time of data collection or ii) using cheap unstructured data collect like play data [21, 22] paired with25

rich language labels provided by humans in hindsight. Both of these options have major drawbacks,26

as pre-defining task instructions prior to data collection may limit data diversity, while hindsight27

relabelling is expensive when applied at scale.28

On the other hand, large-scale pretrained language models (LLMs) and vision-language models29

(VLMs) have seen increased adoption due to their ability to leverage internet-scale data to augment30

or even replace traditionally engineered parts of robot control systems, such as representation for31

perception [27, 31], as task representation for language [16, 20], or as planners [1, 15]. We seek to32

apply pretrained VLMs to the datasets themselves: can we use VLMs for instruction augmentation,33

where we relabel existing offline trajectory datasets with additional language instructions?34

In this work, we provide an analysis of using instruction augmentation with VLMs to weakly relabel35

offline control datasets. We demonstrate this method on a challenging real-world robotic control36

domain, showing that instruction augmentation allows policies to acquire understanding of skills not37

contained in the original task labels, enabling generalization to 60 novel task instructions. We find38

that instruction augmentation with VLMs is especially important for generalizing to skills requiring39

understanding of spatial semantic concepts.40
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Our core contributions are as follows:41

• We introduce Data-driven Instruction Augmentation for Language-conditioned control42

(DIAL) by using CLIP to label offline demonstrations for policy learning43

• We study the sensitivity of policy performance to increasing instruction label noise44

• We show the benefits of combining instruction augmentation predictions with existing labels45

• We demonstrate the scalability of the method to a challenging real-world robotic task46

2 Related Work47

Language-instruction following in Robotics Language-instruction following agents have been48

extensively explored in the reinforcement learning setting [19]. Recent advances in deep learning49

with large amounts of data has led to works following natural language for robotic manipulations.50

Latent Motor Control (LMP) [21] learns hierarchical goal-conditioned policies. Subsequent Language51

from Play (LfP) [20] uses language goals provided by large dataset of hindsight human labels on52

robotic play data. Similarly, LAVA [22] uses crowd-sourced hindsight labels on diverse play data for53

table-top object rearrangements. In contrast, our method does not rely on crowd-sourced language54

labels at scale, but instead focuses on collecting just a modest amount of language labels and then55

using a learned model to provide weak hindsight labeling of the rest of the data.56

Learned Language-conditioned Reward Functions Prior works have investigated using demon-57

strations with language annotations to learn language-conditioned reward functions for utilization in58

downstream online [3, 14, 12] or offline RL [26, 8]. The complexity of the language instructions range59

from templated language in small-scale environments to crowd-sourced language annotations in real60

robotics or open-ended environments such as Minecraft. LOReL [26] learns a reward function from61

offline datasets of robot interactions with crowd sourced annotations using a convolutional neural62

network trained from scratch combined with a pretraind DistilBERT sentence embedding [30] using63

the binary cross entropy. MineCLIP [12] fine-tunes CLIP [29] encoders using a contrastive loss on a64

large offline dataset of Minecraft videos and optimizes a language-conditioned control policy through65

online RL. While their learned reward function can be used to train agents specifically on novel task66

instructions, it requires an expensive and sample-inefficient stage of online RL, which is not tractable67

in the real world. A frozen CLIP vision and text encoders has also been used as a baseline method68

for imitation learning [24] in the simulated robotic manipulation CALVIN benchmark [25]. Our69

approach fine-tunes CLIP on our real robot offline dataset and is used for instruction augmentation for70

a behavior cloning agent, instead of directly using the CLIP model as a reward model and optimizing71

an RL agent.72

Hindsight Relabeling for Goal-conditioned Reinforcement Learning The relabeling approach73

for goal-conditioned reinforcement learning [28] originates from Hindsight Experience Replay (HER)74

[2], which relabels the desired goals in a trajectory with achieved goals (hindsight goal) in the same75

trajectories to generate positive examples in a sparse reward setting. Relabeling approach has later76

been applied to environments where the goals are images [7], task IDs [18], and language instructions77

[17, 6, 9]. Early works with templated language goals rely on environment simulators to provide78

hindsight labels [17, 6], and more recently [9] uses a learned model. Our work further applies the79

relabeling strategy with a learned model that scales to real robot environments.80

Semi-supervised Imitation and Offline Reinforcement Learning Prior works in semi-81

supervised imitation learning focuses on labeling missing actions from demonstrations. The approach82

of using a small curated dataset to train a model to then label a larger dataset has been explored in83

Video PreTraining (VPT) [4]. While VPT uses the small curated dataset to train an inverse dynamics84

model (IDM) to label actions, we fine-tuned CLIP [29] on our small dataset with crowd-sourced85

natural language annotation in order to relabel the language instructions for a larger dataset of robot86

trajectories. While LOReL [26] also applies instruction relabeling to an instruction from another87

episode, the relabeling is used to create more negative examples for the reward model to train on. In88

contrast, our approach creates new positive instruction labels for a given trajectory by leveraging an89

already fine-tuned VLM, which is used to train a behaviour cloned policy.90
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Step 1: Learn Scoring Model
Collect natural language description 
for a small dataset and fine-tune a 
VLM (e.g. CLIP)

Step 2: Relabel 
Relabel the instructions in a larger 
dataset using the VLM

Step 3: Train
Train a language conditioned 
policy using behavior cloning 
with original and relabeled 
dataset
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Figure 1: DIAL consists of three steps: (1) Contrastive fine-tuning of a vision-language model (VLM)
such as CLIP [29] on small dataset of robot manipulation trajectories with crowd-sourced natural
language annotation, (2) using the fine-tuned VLM (in dashed outline) to score and rank the relevance
of crowd-sourced annotations against a larger dataset of trajectories to produce novel instruction
labels, and (3) training a language-conditioned policy using behavior cloning on the original and
relabeled dataset. See Section 3 for more details.

3 Method91

In this section, we describe DIAL consisting of three stages: (1) finetuning a VLM’s vision and92

language representation on a small offline dataset of trajectories with crowd sourced episode-level93

natural language description, (2) generating alternative instructions for a larger offline dataset of94

trajectories with the VLM, and (3) learning a language-conditioned policy via behavior-cloning on95

this augmented offline data.96

3.1 Finetuning Vision-Language Model Representations on Offline Dataset97

Given an offline dataset of N trajectories [τ1, . . . , τN ], τn = ([(sn0 , a
n
0 ), (s

n
1 , a

n
1 ), . . . , (s

n
T )]), we98

collect a corresponding natural language description ln for the n-th episode describing what the99

robot agent did in the episode via crowd-sourcing. When producing these descriptions, the crowd-100

sourced evaluators observe the first frame, s0, and last frame, sT , from the agent’s first-person101

view. We refer to these instructions as hindsight instructions. Together, we denote the first dataset102

DA = [(τ1, l1), . . . , (τN , lN )] as the paired trajectories and crowd-sourced labels. Our method then103

fine-tunes a vision and language model representation on DA.104

Motivated by promising results of CLIP in robotics in prior works [31, 24], our instantiation of DIAL105

uses CLIP [29] for both instruction augmentation and task representation; nonetheless, other VLMs or106

captioning models could also be used to propose instruction augmentations. Given a batch of B initial107

state s0, final state sT , and hindsight instruction l tuple, the model is trained to predict which of the108

B2 (initial-final state, hindsight instruction) pairs co-occurred. We use CLIP’s Transformer-based text109

encoder Tenc to embed the crowd-sourced instruction to a latent space znl = Tenc(l
n)/ ‖Tenc(ln)‖ ∈110

Rd and CLIP’s Vision Transformer-based (ViT) [11] image encoder Ienc to embed the initial and final111

state, and further concatenate these two embeddings and pass through fully connected neural network112

fθ, producing the vision embedding zns = fθ([Ienc(s
n
0 ); Ienc(s

n
T )])/ ‖fθ([Ienc(sn0 ); Ienc(snT )])‖ ∈113

Rd. B2 similarity logits are formed by applying dot product across all state-instruction pairs, and a114

symmetric cross entropy loss term is calculated by applying softmax normalization with temperature115
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α across the states and across the text:116

LCLIP = −
[ B∑
n=1

log

(
ez

n
l ·zns /α∑B

k=1 e
zkl ·zns /α

)
+

B∑
n=1

log

(
ez

n
l ·zns /α∑B

k=1 e
znl ·zks /α

)]
(1)

3.2 Instruction Augmentation on Offline Datasets117
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Figure 2: The construction of datasets: Dataset A
(DA) (blue) consists of theN trajectories {τn}Nn=1
labeled with crowd-sourced hindsight instructions
{ln}Nn=1 describing what the robot agent per-
formed in the episode. Dataset B (DB) (yel-
low) consists of a much larger set of trajecto-
ries, {τ̂m}Mm=1 generated by foresight instructions
{l̂m}Mm=1 without hindsight labels. Dataset C (DC )
(black, dashed) contains Dataset B trajectories re-
labeled with VLM-sourced hindsight instruction(s)
{l̃m1 , . . . , l̃mk }Mm=1.

We are also given a much larger offline dataset of118

M � N trajectories [τ̂1, . . . , τ̂M ], where τ̂m =119

([(ŝm0 , â
m
0 ), (ŝm1 , â

m
1 ), . . . , (ŝmT )]). These trajec-120

tories may be collected from human teleoperated121

demonstrations on a wide variety of tasks [1], or122

from episodes from unstructured robotic “play”123

collection [21]. In the first scenario, we may124

have access to the original foresight instructions,125

l̂m, given to the human teleoperators to perform126

the m-th demonstration episode, while in the lat-127

ter case there are no associated instructions with128

the play episodes. Assuming that we do have the129

foresight instructions, we denote this larger of-130

fline dataset as DB = [(τ̂1, l̂1), . . . , (τ̂M , l̂M )].131

We use the fine-tuned VLM model to propose al-132

ternative natural language instructions l̃m for the133

trajectory τ̂m to augment the foresight/absent in-134

structions in DB . Our specific instantiation of135

DIAL uses the fine-tuned CLIP text encoder to136

independently embed the crowd-sourced natural137

language instructions from the first stage, i.e.138

l̃m ∈ L = {l1, . . . , lN} ∼ DA and store them:139

{z1l , . . . , zNl } = {Tenc(l1), . . . , Tenc(lN )}

Similarly, we use the fine-tuned CLIP image140

encoder and MLP fusion to embed the initial141

and final observations from the second dataset:142

{ẑ1s , . . . , ẑMs } = {fθ([Ienc(ŝ10); Ienc(ŝ1T )]), . . . , fθ([Ienc(ŝM0 ); Ienc(ŝ
M
T )])}

With these embeddings pre-computed, we can retrieve the most likely candidates using k-Nearest143

Neighbors [13] with cosine similarity between the vision-language embedding pairs d(znl , ẑ
m
s ) =144

znl ·ẑms
‖znl ·ẑms ‖

as the metric. The resulting top-k candidate instructions {l̃m1 , . . . , l̃mk } for each trajectory τ̂m145

is used to construct the relabeled dataset DC = [(τ̂1, l̃
1
1), . . . , (τ̂1, l̃

1
k), . . . , (τ̂M , l̃

M
1 ), . . . , (τ̂M , l̃

M
k )] .146

Figure 2 visualizes the three datasets generated.147

The hyperparameter k trades off precision and recall of the relabeled dataset. A smaller k will148

return mostly relevant candidate instructions, while a larger k value can recall a broader spectrum of149

potential hindsight descriptions for the episode at the expense of introducing irrelevant instructions.150

We will investigate the effects of k in Section 5 on the downstream policy performance.151

3.3 Learning Language Conditioned Policies with Behaviour Cloning152

Given a dataset of robot trajectories and corresponding augmented language instructions, we can train153

a language-conditioned control policy with Behavior Cloning (BC). While instruction augmented154

offline datasets can be used by any downstream language-conditioned policy learning method such as155

offline RL or BC, we limit our work to the conceptually simpler BC in order to focus our analysis on156

the importance of instruction augmentation.157
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Figure 3: (a) A mobile manipulator robot performs a variety of manipulation tasks with various
objects and cabinet drawers in an office kitchen environment. (b) An example of some of the kitchen
objects found in the demonstration dataset. (c) The mobile manipulator robot receives RGB images
from an over-the-shoulder camera and uses a 7 DoF arm with parallel-jaw grippers.

4 Experimental Setup158

4.1 Environment, Robot, and Datasets159

We implement DIAL in a challenging real-world robotic manipulation setting in a kitchen environment160

similar to SayCan [1]. We focus on the practically-motivated setting where a dataset of teleoperated161

demonstrations is available, collected for downstream imitation learning [1, 16]. An Everyday Robots162

robot [33], a mobile manipulator with RGB observations, is placed in an office kitchen to interact163

with common objects using concurrent [34] continuous closed-loop control from pixels, as shown in164

Figure 3. The robot uses parallel-jaw grippers, an over-the-shoulder RGB camera, and a 7 DoF arm.165

We collect a large-scale dataset of over 80,000 robot trajectories via human teleoperation (DB in166

Section 3.2), where teleoperators perform 551 unique tasks motivated by common manipulation skills167

and objects in a kitchen environment [1]. Afterwards, we leverage crowd-sourced human annotators168

to label 2,800 robot trajectories with two possible hindsight instructions each, resulting in a total of169

5,600 unique episodes with crowdsourced captions (DA in Section 3.1). Human annotators are shown170

the first and last frame of the episode and asked to provide a free-form text description describing171

how a robot should be commanded to go from the start to the end.172

4.2 Instruction Augmentation and Policy Training173

After finetuning a CLIP model on 5,600 annotated episodes using the procedure described Sec-174

tion 3.1, we then perform instruction augmentation on the 80,000 demonstrations which do not175

contain hindsight instructions (DC as in Section 3.2). By increasing the number k of instruction176

augmentations applied to each episode, we produce three instructed augmented datasets: 80,000177

relabeled demonstrations (k = 1), 240,000 relabeled demonstrations (k = 3), and 800,000 relabeled178

demonstrations (k = 10).179

When increasing k, the augmented datasets become larger but the proposed instructions may become180

increasingly irrelevant or inaccurate. To measure how instruction augmentation accuracy changes as181

we increase k, we ask human labelers to rate whether the proposed captions are factually accurate182

descriptions of a given episode. We show an example of predicted instruction augmentations in183

Figure 4 and measure the accuracy of predicted instructions in Table ??.184
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First Frame Last Frame

Instruction Augmentation Prediction by CLIP Accurate?

#1: pick up the green can and place it in the bowl which is at the left side of the table
#2: lift green can from table and place it in white cup
#3: pick up the green can which is close to the water bottle and place it in the bowl
#4: place green can into the plastic white bowl
#5: pick the green can from the bottom right of the table and place it into the white bowl
#6: pick up the silver can and place it in the white bowl 
#7: bring the blue can and place it into white paper bowl 
#8: pick up the green can from the bottom left side of the table
#9: pick up the green can from the bottom side of the table and drop it into bowl
#10: pick up the red bull can and drop it in the white bowl

✅
✅
❌
✅
✅
❌
❌
❌
✅
❌

Figure 4: The top 10 proposed instruction augmentations for a single episode with original foresight
instruction place green can in white bowl. In some cases, the predicted captions provide
additional semantic information such as describing the location of the can or the material of the bowl.

Category Instruction Samples
Spatial [‘knock down the right soda’, ‘raise the left most can’, ‘raise

bottle which is to the left of the can’]
Rephrased [‘pick up the apple fruit’, ‘liftt the fruit’ [sic], ‘lift the

yellow rectangle’]
Semantic [‘move the lonely object to the others’, ‘push blue chip bag to the

left side of the table’, ‘move the green bag away from the others’]

Table 1: Sample novel instructions in each evaluation category. Spatial tasks focus on tasks involving
Spatial relationships, Rephrased tasks contain tasks that directly map to a foresight skill, and Semantic
tasks describe semantic concepts not contained in the relabeled or original datasets. In total, there are
60 instructions across the three categories.

Using these various instruction augmented datasets, we train vision-based language-conditioned185

behavior cloning policies similar to the formulation in BC-Z [16], as described in Section 3.3.186

Compared to BC-Z, we use a larger Transformer [32] based backbone instead of ResNet18 and187

use a CLIP language encoder instead of a Universal Sentence Encoder [5]. Nonetheless, we treat188

the behavior cloning policy as an independent component of our method and focus on studying189

instruction augmentation methods; we do not explore different policy architectures or losses in this190

work.191

4.3 Evaluation192

In contrast to prior works [16] on instruction following, we focus our evaluation only on novel193

instructions unseen during training. To source these novel instructions, we crowd-source instructions194

from a different set of humans than the original dataset labelers and filter out any instructions already195

contained in either the instruction augmentation process in Section 3.2 or in the original set of196

551 foresight tasks in Section 4.1; in total, we sample 60 novel evaluation instructions. While197

these evaluation instructions were not curated with specific properties in mind, after sourcing these198

instructions we organize them into various semantic categories to allow for more detailed analysis of199

qualitative policy performance; some examples are shown in Table 1.200
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1. Spatial: 40 tasks focusing on instructions involving reasoning about spatial relationships.201

For example, this includes specifying an object’s initial position relative to other objects in202

the scene.203

2. Rephrased: 10 tasks which are linguistic re-phrasings of the original 551 foresight tasks.204

For example, this includes referring to sodas and chips by their colors instead of their brand205

name.206

3. Semantic: 10 tasks which encompass skills not contained in the original dataset. For207

example, this includes the instruction of moving objects away from all other objects, since208

the original dataset only contains trajectories of moving objects towards other objects.209

5 Experimental Results210

5.1 Does using DIAL improve policy performance on unseen tasks?211

We investigate to what extent a behavior-cloned policy can be successfully learned from instruction212

augmented datasets, even when some relabeled instructions are potentially inaccurate. We use all213

available datasets containing foresight labels (FS), ground-truth hindsight labels (GT), and instruction214

augmentation (IA). We vary the amount of instruction augmentation by setting the hyperparameter215

k = {1, 3, 10}, resulting in additional 80k to 800k trajectory-instruction pairs. As baselines, we also216

consider training policies without instruction augmentation, i.e. only on FS, and on (FS + GT).217

Table 2 summarises the evaluation results across three categories of novel tasks. Additional baselines218

we consider in Table 5 include methods that perform instruction augmentation without visual context.219

We find that only instruction augmentation using CLIP is able to perform well at novel “Spatial” tasks220

that require visual understanding and “Semantic” tasks that introduce generalizing to semantic skills221

not contained in the original foresight instructions.222

5.2 Does using DIAL for unlabeled datasets improve policy performance on unseen tasks?223

Starting with a dataset of 5,600 trajectories with crowd-sourced hindsight labels, we apply different224

amounts of instruction augmentation onto a dataset of 80,000 trajectories that do not have any225

hindsight language labels. This experiment emulates the practical setting of when a large amount of226

unstructured trajectory data is available but hindsight labels are expensive to collect, such as robot227

play data [10, 21, 22]. We find that training on the instruction augmented trajectories increases228

performance on a set of 60 sampled novel instructions not seen in the original hindsight label set, as229

shown in Table 3. However, overall performance suffers when increasing the number of augmented230

instructions from k = 3 to k = 10, suggesting there is some limit to how much label inaccuracy the231

language-conditioned policies can tolerate.232

Instruction Augmented Dataset Properties Evaluation on Novel Instructions
Episodes w/ FS Episodes w/ GT Episodes w/ IA Spatial Rephrased Semantic Overall

80k 0 0 33.3% 62.5% 10.0% 35.0%

80k 5600 0 45.2% 87.5% 0.0% 43.3%

80k 5600 80k (k = 1) 59.5% 75.0% 30.0% 56.7%

80k 5600 240k (k = 3) 64.3% 50.0% 30.0% 55.0%

80k 5600 800k (k = 10) 35.7% 50.0% 40.0% 35.0%

Table 2: Combining episodes with foresight labels of the structured tasks attempted during data
collection (FS) with groundtruth crowd-sourced hindsight instructions (GT) with an increasing
amount k of instruction augmentation (IA). DIAL performs the best at challenging “Spatial” tasks.
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Instruction Augmented Dataset Properties Evaluation on Novel Instructions
Episodes w/ GT Episodes w/ IA IA Accuracy Spatial Rephrased Semantic Overall

5600 0 N/A 23.8% 37.5% 0.0% 21.7%

5600 80k (k = 1) 68.0% 50.0% 75.0% 0.0% 45.0%

5600 240k (k = 3) 65.3% 52.4% 50.0% 20.0% 46.7%

5600 800k (k = 10) 57.0% 38.1% 62.5% 10.0% 36.7%

Table 3: Training on groundtruth crowd-sourced hindsight instructions (GT) compared with utilizing
increasing the amount k of instruction augmentation on unlabeled data (IA), with a corresponding
decrease in label accuracy. Instruction Augmentation up to k = 3 significantly improves overall
novel instruction performance, especially on “Spatial” tasks requiring visual reasoning.

Evaluation on Novel Instructions
Model Task Instruction Encoder Spatial Rephrased Semantic Overall

GT Only USE 16.7% 33.3% 0.0% 18.6%

GT Only FT CLIP 23.8% 37.5% 0.0% 21.7%

FS + GT Pretrained CLIP 42.9% 75.0% 0.00% 40.0%

FS + GT FT CLIP 42.9% 75.0% 20.0% 41.7%

FS + GT + IA, k = 1 USE 47.6% 50.0% 10.0% 43.3%

FS + GT + IA, k = 1 FT CLIP 59.5% 75.0% 30.0% 56.7%

Table 4: Comparing downstream policy performance when improving the task representation from
USE [5] to Pretrained CLIP [29] to Finetuned CLIP (FT CLIP), as described in Section 3.1. We find
that the FT CLIP representation is the best task representation in all dataset settings.

5.3 Is a VLM good at relabeling also a good task representation?233

We study whether a VLM fine-tuned for instruction augmentation can also act as a better task234

representation for policy learning in the form of a more powerful language embedding. Across the235

various groundtruth and relabeled datasets we focus on, we find that Finetuned CLIP is the most236

effective task representation, as seen in Table 4. Finetuned CLIP is a good representation not only for237

freeform language instructions like those contained in the finetuning dataset in Section 4.2, but also238

for structured foresight commands like those contained in Section 4.1.239

6 Conclusion240

In this work, we introduced DIAL, a method that uses VLMs to label offline datasets for language-241

conditioned policy learning. We show that control policies are able to utilize relabeled demonstrations242

even when some labels are inaccurate, suggesting that DIAL is able to provide a cheap and automated243

option to extract additional semantic knowledge from offline control datasets. As the performance of244

internet-scale VLMs improve, we expect that DIAL might work increasingly better on even richer245

control settings.246
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A Appendix339

A.1 Instruction Augmentation Accuracy340

Figure 5: The accuracy of the top 20
instruction augmentation predictions of
a sample of 50 episodes that have been
relabeled by a Finetuned CLIP model in
Section 4.2.

As described in Section 4.3, instruction prediction ac-341

curacy may decrease when increasing the number k of342

instruction augmentations. In Figure 5, we sample 50343

episodes and ask human labelers to assess the predicted344

instruction accuracy as we increase the number of pre-345

dictions produced by CLIP. While the initial predictions346

are correct often, the later predictions are often factually347

inaccurate. The top-20-th instruction prediction is only348

factually accurate 20.0% of the time. An example of the349

top 10 predictions of an episode is shown in Figure 4.350

A.2 Additional Experiments351

While our proposed method utilizes instruction augmenta-352

tion with pretrained visual-language models, we can also353

attempt to increase the diversity of task instructions with354

non-visual methods. Two potential methods to do this are355

madlibs-style augmentations that replace words in the foresight instructions with synonyms and356

with Gaussian Noise augmentations that add noise with variance=0.05 to the text embeddings of357

foresight instructions. In Table 5, we compare relabeling methods in a setting similar to Section 5.1,358

where we apply relabeling to ground-truth labels from 80,000 episodes with foresight tasks and 5,600359

episodes with groundtruth tasks. We note that while our dataset allows the baseline methods to relabel360

starting from the ground-truth foresight labels, “IA with CLIP” is able to relabel potentially unlabeled361

episodes, a setting that is not possible for the baseline methods.362

Evaluation on Novel Instructions
Relabeling Method Spatial Rephrased Semantic Overall

No relabeling 33.3% 62.5% 10.0% 35.0%

Madlibs Text Augmentation 31.0% 87.5% 20.0% 35.0%

Gaussian Noise 31.4% 75.0% 0.0% 30.0%

IA with CLIP, k = 1 59.5% 75.0% 30.0% 56.7%

IA with CLIP, k = 3 64.3% 50.0% 30.3% 55.0%

Table 5: Comparing instruction augmentation with CLIP (IA) with non-visually grounded ways
of relabeling the foresight tasks. We try Madlibs-style text augmentation as well as adding task
embedding Gaussian noise. Policies train on foresight labels, groundtruth hindsight labels, and the
additional relabeled episodes. While these improve performance on “Rephrased” tasks, they fail to
improve performance on other task categories.
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