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ABSTRACT

This study investigates the robustness of deep reinforcement learning agents
against targeted attacks that aim to manipulate the victim’s behavior through ad-
versarial interventions in state observations. While several methods for such tar-
geted manipulation attacks have been proposed, they all require white-box access
to the victim’s policy, and some rely on environment-specific heuristics. Further-
more, no defense method has been proposed to counter these attacks. To address
this, we propose a novel targeted attack method for manipulating the victim, which
does not depend on environmental heuristics and applies in black-box and no-box
settings. Additionally, we introduce a defense strategy against these attacks. Our
theoretical analysis proves that the sensitivity of a policy’s action output to state
changes affects the defense performance and that the earlier in the trajectory, the
greater the effect. Based on this insight, we introduce a time-discounted regu-
larization as a countermeasure for such behavior targeted attacks, which helps
to improve robustness against attacks while maintaining task performance in the
absence of attacks. Empirical evaluations demonstrate that our proposed attack
method outperforms baseline attack methods. Furthermore, our defense strategy
shows superior robustness against existing defense methods designed for untar-
geted attacks.

1 INTRODUCTION

Applications of Deep Reinforcement Learning (DRL) have grown significantly in recent years
(Berner et al., 2019; Kiran et al., 2021; Ouyang et al., 2022). However, trained DRL agents re-
main vulnerable to adversarial attacks (Huang et al., 2017). While numerous studies have explored
adversarial attacks and defenses in DRL agents (Pattanaik et al., 2018; Zhang et al., 2020b; Wu
et al., 2022), much of the attention has been pained to untargeted attacks, where the adversary aims
to minimize the cumulative reward the victim earns from the environment. In real-world scenarios,
the adversary’s goal can be more specific—manipulating the victim’s behavior to achieve malicious
outcomes. For example, in autonomous driving, an adversary could control the route or speed to
cause a collision or traffic jam under certain conditions. These behavior-manipulating attacks are
more precise and sophisticated than untargeted ones, presenting a stealthier and more severe threat.
In this work, we define such attacks as behavior-targeted attacks (Figure 1). One of the key objec-
tives of this study is to develop a methodology to attain behavior-targeted attacks, assuming that the
adversary can intervene in the victim’s observations and induce false observations of the environ-
ment. It is important to note that our focus is on attacking trained victim agents, which differs from
poisoning attacks that occur during the victim’s training process.

Prior works proposing behavior-targeted attacks face several limitations. Hussenot et al. (2020)
introduced an attack method that precomputes universal adversarial perturbations for each action
in advance, forcing the victim to choose actions consistent with the adversary’s specified policy at
each step. However, this approach becomes impractical when the action space is large or continuous,
limiting its applicability in more complex tasks. Boloor et al. (2020) developed an attack method
specifically for autonomous driving agents. This method, however, relies on a heuristic objective
function that requires detailed knowledge of the autonomous driving task, resulting in a lack of
generalizability across other tasks. A further limitation common to both methods is their dependence
on white-box settings that assume full access to the victim’s policy. In many real-world scenarios,
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Untargeted Attack Behavior-Targeted Attack (Ours)

?

Crash into that car from the side.
The route is...
The time is...

Have an accident anyway.

Figure 1: Overview of behavior-targeted attack.

an adversary is unlikely to have full knowledge of the victim’s policies, making this assumption
severely limits its practical application.

In this work, we propose a novel behavior-targeted attack, Behavior Imitation Attack (BIA), which is
applicable even under limited access to the victim’s policy (i.e., black-box and no-box settings) and
does not require environment-specific heuristics. Specifically, we define the adversary’s objective as
forcing the victim to imitate a policy specified by the adversary, referred to as the target policy. As
demonstrated in Section 7, a naive approach that attempts to match the victim’s action with the target
policy’s action at each step is ineffective. This result is because when the adversary’s intervention
capability is limited, there are often no false states in which the victim’s behavior fully aligns with
the target policy. Instead, our approach aims to guide the victim to imitate the overall behavior
rather than matching individual actions at each step. Consequently, our attack can achieve overall
behavioral alignment even in situations where perfect action matching is not possible at each step.

Another goal of this study is to develop a countermeasure for the behavior-targeted attack. We
present the first robust training framework, Time-Discounted Reglarization Training (TDRT), for
such attacks as a defense method. Our theoretical analysis reveals two important insights: (1) sup-
pressing the sensitivity of the policy’s action outputs to state changes enhances robustness against
attacks, and (2) achieving less sensitivity during the early stages of a trajectory significantly im-
proves overall robustness. Through this analysis, we introduce a time-discounted regularization
approach, where stronger regularization is applied during the critical early stages of the trajectory
and gradually weakened in the later, less critical stages.

This method is particularly effective against attacks that do not reduce rewards much but alter the re-
sulting behavior significantly. This is especially important for situations where a change in behavior
does not correlate to the reward.Since defense methods designed for untargeted attacks cannot deal
with this type of attack, this regularization strategy is effective for behavior-targeted attacks. Fur-
thermore, time-discounted regularization mitigates performance degradation without compromising
robustness compared to regularization without time discounting. Consequently, time discounting
improves the trade-off between robustness against attacks and performance under non-attack condi-
tions. To the best of our knowledge, no defense mechanism has been considered for the behavior-
targeted attack.

Our primary contributions can be summarized as follows:

• We formulate the concept of behavior-targeted attack in reinforcement learning and propose
the Behavior Imitation Attack (BIA), an attack algorithm in this setting. BIA does not
require environment-specific heuristics and is applicable in both black-box/no-box settings.

• We propose a robust training framework, Time-Discounted Regularization Training
(TDRT). TDRT is robust against attacks that do not significantly reduce rewards but greatly
alter behavior. Existing defenses designed for untargeted attacks are ineffective against
such threats. Furthermore, time-discounted regularization mitigates performance degrada-
tion without compromising robustness, outperforming regularization methods without time
discounting. To the best of our knowledge, TDRT is the first defense method specifically
designed to counter behavior-targeted attacks.

• We demonstrate the effectiveness of our proposed attack and defense methods using the
reinforcement learning benchmark Meta-World (Yu et al., 2020) and MuJoCo environment.
Our attack method is more effective than baselines.
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2 RELATED WORKS

Untargeted attack and its defense Untargeted attacks aim to minimize the victim’s cumulative
reward. Gradient-based methods, which require white-box access to the victim’s policy, have been
proposed Huang et al. (2017); Pattanaik et al. (2018); Gleave et al. (2020). One common defense
method against untargeted attacks is policy smoothing. Shen et al. (2020) and Zhang et al. (2020b)
introduced regularization terms to smooth the policy, demonstrating increased robustness. However,
unlike our approach, these methods do not incorporate time discounting. Additionally, adversarial
training has been proposed Zhang et al. (2021); Oikarinen et al. (2021); Sun et al. (2022); Liang
et al. (2022). While these methods demonstrated high levels of robustness, Korkmaz (2021; 2023)
pointed out that agents trained to be adversarial robust are still vulnerable to attacks that were not
anticipated during training. Liang et al. (2024) introduced a new concept called temporally-coupled
perturbations, where consecutive perturbations are constrained. Belaire et al. (2024) proposed a
novel defense method based on regret minimization. Liu et al. (2024) have proposed PROTECTED,
which is effective not only against worst-case attacks but also against more general forms of attack.
Another approach is certified defense (Wu et al., 2022; Kumar et al., 2022; Mu et al., 2024; Sun
et al., 2024). These methods guarantee a lower bound on the reward obtained by that victim under
adversarial attacks.

Targeted attack Targeted attacks manipulate the victim to follow a specific direction and can
be categorized into two main types: enchanting attacks and behavior-targeted attacks. Enchanting
attacks aim to lure the victim to a predetermined final state without specifying the entire behavior
trajectory. Lin et al. (2017) and Tretschk et al. (2018) proposed methods to guide the victim to a
target state through crafted perturbations. More recently, Ying et al. (2023) introduced an enchanting
attack using universal adversarial perturbations. Behavior-targeted attacks, on the other hand, aim
for more detailed control over the victim’s entire behavior. The introductory section has discussed
the works of (Hussenot et al., 2020) and (Boloor et al., 2020) in detail.

Poisoning attack Several studies have proposed poisoning attacks against RL agents that inter-
vene during the victim’s training phase (Sun et al., 2021; Rakhsha et al., 2020; Rangi et al., 2022;
Xu et al., 2023; Xu & Singh, 2023). These works explored various approaches, from theoretical
investigations to practical black-box attacks. However, as our research focuses on attacking trained
victims rather than interfering during training, our threat model differs fundamentally from these
poisoning attack studies. A comprehensive review of related work is provided in Appendix A.

3 PRELIMINARIES

Our threat model supposes that the adversary can make the victim observe false states that are
different from the true observation of states. Zhang et al. (2020b) formulated this threat model
for the first time as the State-Adversarial Markov Decision Process (SA-MDP) and introduced the
optimal untargeted attacks. Our work is built on the SA-MDP to formulate the behavior-targeted
attack. In addition, we utilize imitation learning for the realization of our attack goal. In this section,
we first introduce the SA-MDP and then imitation learning, which are essential components of our
study.

Notaion. We denote the Markov decision process (MDP) as (S,A, R, p, γ), where S is the state
space, A is the action space, R : S × A → R is the reward function, and γ ∈ (0, 1) is the
discount factor. We use P(X ) as the set of all possible probability measures on X . We denote
p : S × A → P(S) as the transition probability, π : S → P(A) as a stationary policy, and p0 as an
initial state distribution. The objective of reinforcement learning is to train a policy that maximizes
the expected sum of discounted rewards from the environment. When the agent follows policy π in
MDP M , the objective function can be defined as follows:

max JRL(π) ≜ EMπ [R(s, a, s′)] = E s0∼p0(·)
at∼π(·|st)

st+1∼p(·|st,at)

[ ∞∑
t=0

γtR(st, at, st+1)

]
. (1)
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3.1 STATE-ADVERSARIAL MARKOV DECISION PROCESS (SA-MDP)

We suppose the victim follows a fixed policy π in an MDP M . To model the situation where an
adversary intervenes in the victim’s state observations, we use SA-MDP (Zhang et al., 2020b). In
the SA-MDP, we introduce an adversarial policy ν : S → P(S) that interferes with the victim
agent’s state observations by making the victim observe a false state ŝ ∼ ν(·|s) at each time without
altering the true state of the environment.

The SA-MDP is defined as M̂ = (S,A, R,B, p, γ), where B is a mapping from the true state s ∈ S
to false state space B(s) ⊆ S that the adversarial policy can choose from. The size of B(s) indicates
the adversary’s intervention capability and is typically set in the neighborhood of s. The smaller the
size of B(s), the more challenging it becomes to achieve the attack objective.

Environment

Victim’s policy

6

Adversarial policy

(i)

(ii)

(iii)

Figure 2: Overview of SA-MDP. The
Adversarial policy makes the victim ob-
serve the false state from the true state.

Figure 2 illustrates the transition process of the SA-MDP
at each step. The process is composed of the following
three steps: (i) The adversarial policy receives a true state
s from the environment and shows a false state ŝ ∼ ν(·|s)
to the victim. (ii) The victim observes the false state ŝ and
selects an action a ∼ π(·|ŝ) based on this observation.
(iii) The environment transitions to the next state s′ ∼
p(·|s, a) based on the true state s and the action a.

3.2 IMITATION LEARNING

Imitation learning aims to develop a policy that mimics an expert policy from given demonstrations
without requiring rewards from the environment. In our proposed attack method, we leverage imi-
tation learning to train an adversarial policy aimed at manipulating the victim’s behavior following
the adversary’s specification. In this section, we introduce Adversarial Imitation Learning (AIL), a
typical imitation learning framework that serves as a key component of our proposal attack method.

Imitation Learning from Demonstration (ILfD). Let πE be the expert policy, and τE be the
demonstration sampled from πE . ILfD is a problem setting where the demonstration τE consists of
state-action pairs of length T : τE = {s0, a0, . . . , sT−1, aT−1 | at ∼ πE(·|st), st+1 ∼ p(·|st, at)}.
Without ambiguity, we assume that the expert and learning policies run in the same MDP.

Imitation learning aims to find π that minimizes the distance between π and πE . Ho & Ermon
(2016) has shown that this minimization is equivalent to the minimization of the distance between
the state-action distributions induced by the policy π and the expert policy πE by leveraging the
duality of state-action distributions. The state-action distribution ρπ : S × A → [0, 1] is defined by
the probability of encountering specific state-action pairs when transitioning according to a policy
π:

ρπ(s, a) = (1− γ)
∞∑
t=0

γt Pr (st = s, at = a|s0 ∼ p0(·), at ∼ π(·|st), st+1 ∼ p(·|st, at)) . (2)

With this, we formulate the objective of AIL as follows:
min
π
JAIL(π) ≜ D(ρπ, ρπE

), (3)

whereD is a distance function that measures the distance between two state-action distributions, for
instance, f-divergences such as JS divergence or KL divergence are commonly used for D (Ho &
Ermon, 2016; Kostrikov et al., 2019).

While various algorithms have been proposed to optimize equation 3, GAIL (Ho & Ermon, 2016)
introduced the most fundamental optimization algorithm. In GAIL, equation 3 is reformulated as
the following GAN-style min-max optimization problem:

min
π

max
D

JGAIL(π) ≜ EMπ [log(D(s, a))] + EMπE
[log(1−D(s, a))], (4)

where D : S × A → [0, 1] is a discriminator that tries to distinguish whether a state-action pair is
taken from the expert demonstration. The generator is given by π, which is trained to choose actions
such that the discriminator makes incorrect identifications. Training is performed alternately for the
generator π and the discriminator D. In practice, EMπE

[log(1 − D(s, a))] is empirically evaluated
with demonstration τE , instead of evaluation with πE .

4
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Imitation Learning from Observation (ILfO). ILfO is a problem setting where the demonstra-
tion τE consists of only state sequences: τE = {s0, . . . , sT−1 | at ∼ πE(·|st), st+1 ∼ p(·|st, at)}.
Similar to ILfD, the objective of ILfO is the distribution matching, where the distance between state
distributions is minimized. Due to the lack of information about the expert’s actions, ILfO is known
to be empirically more challenging than ILfD.

4 THREAT MODEL

In this section, we outline the threat models for the behavior-targeted attack. We assume that the
victim follows a fixed policy π while it observes false states generated through the adversary’s
intervention. We define this process as an SA-MDP M = (S,A, R,B, p, γ). The adversary’s
objective is to manipulate the victim into performing a specific behavior desired by the adversary,
which is denoted by target policy πtgt. To achieve this objective, the adversary trains an adversarial
policy ν that makes the victim observe a false state at each step. In this context, the adversary’s
influence against the victim is characterized as follows:

Access to the victim’s policy. We suppose the adversary does not have full access to the victim’s
policy π, including the neural network parameters and the training algorithm of the victim’s policy.
The adversary in the black-box setting can obtain the victim’s policy inputs and outputs at each
time, specifically the victim’s states in the environment and the corresponding actions taken. In
contrast, the adversary in the no-box setting can only obtain the victim’s state in the environment at
each time. The information available to the adversary influences the type of imitation learning the
adversary employs for its attack. In the black-box setting, the adversary can use Imitation Learning
from Demonstration (ILdD) to train the adversarial policy. In the no-box setting, the adversary needs
to use Imitation Learning from Observation (ILfO), which is generally less effective than ILfD in
terms of performance.

Intervention ability on victim’s state observations. We assume that the adversary can alter the
victim’s state observation from the true state s to the false state ŝ ∈ B(s). This assumption is
common in most adversarial attacks on RL.

5 ATTACK METHOD

In this section, we propose a training framework for the adversarial policy, called Behavior Imita-
tion Attack (BIA), as an attack method. In Section 5.1, we define the adversary’s objective as a
distribution matching approach. However, we cannot directly apply AIL algorithms to learn the ad-
versarial policy due to constraints on the victim’s policy. Consequently, in Section 5.2, we provide
a theoretical analysis and specific algorithms for learning the adversarial policy.

5.1 FORMULATION OF ADVERSARY’S OBJECTIVE

Let s ∈ S be the true state. In the SA-MDP framework, the adversarial policy replaces the victim’s
state observation s with ŝ ∼ ν(·|s), and the victim selects the next action by a ∼ π(·|ŝ). Conse-
quently, the victim’s resulting behavior policy under the adversary’s influence is represented by the
composite policy π ◦ ν:

π ◦ ν(a|s) ≜
∑
ŝ∈S

ν(ŝ|s)π(a|ŝ). (5)

Thus, we define the adversary’s objective as a distribution matching problem between π ◦ ν and πtgt:

min Jadv(ν) ≜ D(ρπ◦ν , ρπtgt). (6)

To solve this distribution matching problem, we adopt a two-step approach. First, we reformulate
this problem of equation 6 into a GAN-style minimax optimization following the GAIL framework
in equation 4. Unfortunately, this minimax optimization cannot be solved straightforwardly because
it requires optimizing equation 6 w.r.t. the victim’s behavior policy π ◦ ν as a decision variable. In
our attack setting, only the adversarial policy ν can serve as the decision variable while the victim’s
policy is fixed. To address this, we introduce a trick that transforms optimization w.r.t. π ◦ ν into
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Algorithm 1 Behavior Imitation Attack (BIA) in GAIL
Input: victim’s policy π, initial adversarial policy νθ, initial discriminator Dϕ, demonstration
τtgt, Batch size B, learning rate α
Output: Optimized adversarial policy νθ

1: for n = 0, 1, 2, . . . do
2: τ ← ∅ ▷ Initialize empty trajectory
3: for b = 1 to B do ▷ Collect B samples
4: ŝ← Project(νθ(s),B(s)) ▷ Sample and project state
5: a ∼ π(·|ŝ), s′ ∼ p(·|s, a) ▷ Sample action and next state
6: τ ← τ ∪ {(s, ŝ, a, s′)}, s← s′

7: end for
8: ϕ← ϕ+ α∇ϕ[

∑
(s,a)∈τ logDϕ(s, a)−

∑
(s,a)∈τtgt

log(1−Dϕ(s, a))] ▷ Update D
9: for (s, ŝ, a, s′) ∈ τ do ▷ Estimate rewards

10: r ← − logDϕ(s, a)
11: Update (s, ŝ, a, s′) to (s, ŝ, a, r, s′) in τ
12: end for
13: θ ← θ + α∇θE(s,ŝ,r)∼τ [r] ▷ Update adversarial policy
14: end for

optimization w.r.t. ν by Lemma 1 in Section 5.2. Using this, we propose the Behavior Imitation
Attack, as described in Algorithm 1, which allows finding adversarial policies for the behavior-
targeted attacks.

5.2 BEHAVIOR IMITATION ATTACK (BIA)

In this section, we introduce Behavior Imitation Attack (BIA). For simplicity, we consider the attack
in the black-box setting by adopting ILfD in the following discussion. However, these arguments
are also applicable to the no-box setting with adopting ILfO immediately.

We begin by reformulating equation 6 into the following min-max problem by introducing a dis-
criminator D, similarly to the approach used in GAIL, as presented in equation 4:

min
ν

max
D

EMπ◦ν [log(D(s, a))] + EMπtgt
[log(1−D(s, a))]. (7)

Focusing on the adversarial policy ν in equation 7, the adversary solves the following optimization
problem:

min
ν

EMπ◦ν [log(D(s, a))] = max
ν

EMπ◦ν [− log(D(s, a))]. (8)

It is important to note that equation 8 is regarded as a reinforcement learning problem aimed at find-
ing a policy π ◦ ν that maximizes the cumulative reward, with − log(D(s, a)) serving as a reward
function. If the adversary could update the entire π ◦ ν, equation 8 could be optimized using any
RL algorithm. However, since π is a fixed policy, directly optimizing equation 8 using standard RL
algorithms is infeasible.

Inspired by Lemma 1 from (Zhang et al., 2020b), we present the following lemma to optimize
equation 8. This lemma transforms the MDP for equation 8 into a different MDP M̂ such that the
policy that maximizes equation 8 corresponds to the optimal policy for M̂ . Since the policy for
MDP M̂ in equation 11 depends solely on ν rather than on the composite π ◦ ν, we can apply any
standard RL algorithm to solve this.
Lemma 1. Consider an SA-MDPM = (S,A, R,B, p, γ), and let π be the victim’s policy. Given the
reward function R̄ specified by the adversary, the reward function R̂ and state transition probability
p̂ are defined as follows:

R̂(s, ŝ, s′) = E[r̂|s, ŝ, s′] =

{∑
a∈A π(a|ŝ)p(s′|s,a)R̄(s,a,s′)∑

a∈A π(a|ŝ)p(s′|s,a) if ŝ ∈ B(s)
C otherwise,

(9)

p̂(s′|s, ŝ) =
∑
a∈A

π(a|ŝ)p(s′|s, a). (10)
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Then, for the MDP M̂ = (S,S, R̂, p̂, γ), the following equality holds:

ν∗ = argmax
ν

EM̂ν [R̂(s, ŝ, s′)] = argmax
ν

EMπ◦ν [R̄(s, a, s′)]. (11)

The proof is provided in Appendix C.1. With this lemma, we present a practical algorithm for
BIA that utilizes GAIL as ILfD to train adversarial policy, as outlined in Algorithm 1. The reward
in equation 9 is equivalent to the expected value of − log(D(s, a)) when the adversarial policy
chooses false state ŝ when the true state is s. Thus, in practice, it is sufficient to provide the reward
− log(D(s, a)) directly. Also, to stabilize the learning process, we avoid imposing large negative
rewards; instead, we limit the range of false states, ensuring that the adversarial policy is enforced
to select false states in B(s) in our experiments.

We emphasize that our behavior-targeted attack method does not necessarily require the adversary
to construct the target policy; rather, it functions only with trajectories that are expected to align
with the target policy. This characteristic offers a significant advantage in real-world scenarios.
Developing the target policy typically involves intricate reward design and policy optimization by
reinforcement learning, which requires interaction with the environment and can be extremely costly.
In contrast, collecting trajectories can be achieved by reproducing specified behaviors for a few
episodes, which is less costly compared to constructing the target policy itself. Section F.2 provides
a more detailed analysis of the relationship between trajectories and attack performance.

In addition, our attack method does not depend on environmental heuristics because it is formulated
only with the properties of MDPs. Also, since our method does not require direct access to the
victim’s policy, our method is applicable in the black-box setting when ILfD is adopted and no-box
settings when ILfO is adopted for imitation learning.

As a supplement, we prove that the optimization in equation 6 is equivalent to minimizing the
distance between policies in Appendix B. This proof ensures that, in our problem setting as well,
the distribution matching approach rigorously performs imitation of the target policy.

6 DEFENSE METHOD

In this section, we propose a robust training framework against the behavior-targeted attack, Time-
Discounted Regularizations Training (TDRT). In Section 6.1, we formulate the defender’s objective.
In Section 6.2, we provide a theoretical analysis of the objective function and, based on this analysis,
introduce a time-discounted regularization term.

6.1 FORMULATION OF DEFENDER’S OBJECTIVE

Since the defender has no access to the target policy specified by the adversary, the defender cannot
directly maximize the adversary’s objective function as given in equation 6 for defense. Instead, we
redefine the defender’s objective as minimizing the change in the state-action distribution caused by
the worst-case adversarial policy ν:

min Jdef(π) = −JRL(π) + λmax
ν

DKL(ρπ||ρπ◦ν), (12)

where λ is a hyperparameter that adjusts the trade-off between performance and robustness, andDKL
is the KL divergence. The worst-case adversarial policy ν is designed to maximize the difference in
state-action distributions, serving as a substitute for the inaccessible target policy during the defense
training. The distance between the state-action distributions of π and π ◦ ν indicates the extent to
which the victim’s behavior has changed under the worst-case attack. The smaller this divergence,
the more robust π is against behavior-targeted attacks. In other words, equation 12 seeks to de-
velop a robust policy π that minimizes changes in the victim’s behavior even under the worst-case
adversarial policy.

Equation 12 is designed to be robust against behavior-targeted attacks that existing defense methods
designed for untargeted attacks cannot mitigate. Existing defenses against untargeted attacks com-
monly aim to minimize the reduction in cumulative reward caused by attacks. However, policies
trained under such objectives may remain vulnerable to attacks that, while not significantly affect-
ing cumulative rewards, change the agent’s behavior significantly. In contrast, policies trained with
equation 12 can be robust against these behavior-targeted attacks.

7
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6.2 TIME-DISCOUNTED REGULARIZATION TRAINING (TDRT)

In this section, we propose a robust reinforcement learning framework, Time-Discounted Regular-
ization Training (TDRT). Directly optimizing equation 12 is challenging as it requires numerous
interactions to estimate the state-action distributions. Instead, we prove that equation 12 is bounded
by the change in the policy’s action distribution in response to state changes:
Theorem 1. Let the discount factor be γ ∈ (0, 1). For state-action distributions ρπ and ρπ◦ν
corresponding to policies π and π ◦ ν, the following inequality holds:

DKL(ρπ||ρπ◦ν) ≤
1

1− γ

∞∑
t=0

γtEs∼dtπ [DKL(π(·|s)||π ◦ ν(·|s))], (13)

where dtπ(s) = Pr(st = s|π) represents the state distribution of π at time t.

The proof is provided in Appendix C.2. In the proof, we bound the state-action distribution using
the log-sum inequality. Theorem 1 shows that the smaller the policy’s action distribution change in
response to state changes, the less the victim’s behavior is affected by attacks. It also reveals that
the sensitivity of action outputs in the early stages of the trajectory has a greater impact on changes
in the victim’s behavior. This implies that maintaining low sensitivity of action outputs in the earlier
stage of the trajectory can enhance the policy’s robustness more against behavior-targeted attacks.

Based on Theorem 1, we introduce a discounted regularization term to more strongly constrain the
policy’s action distribution at an earlier time. Let B = {st}Nt=1 be a mini-batch consisting of states
st at time t. We then redefine the defender’s objective by:

Jdef(π) = −JRL(π) + λmax
ν

∑
st∈B

γtDKL(π(·|st)||π ◦ ν(·|st)), (14)

We provide the full algorithm for robust training with TDRT when using PPO as the optimizer in
Algorithm 2. Note that calculating equation 14 requires the time information of each state. In our
implementation, we add time as the last dimension of the state. This time information is used only
to calculate the regularization term and is not included in the policy input.

7 EXPERIMENTS

In this section, we empirically evaluate the performance of our proposed method using Meta-World
(Yu et al., 2020), a benchmark that simulates robotic arm manipulation. We assess the following
three aspects: (i) Attack Performance: Can the adversarial policy learned through BIA effectively
manipulate the victim’s behavior? (ii) Robustness: Are policies learned through TDRT more robust
against behavior-targeted attacks than conventional defense methods designed for untargeted at-
tacks? (iii) Trade-off: Can the time-discounted regularization term in TDRT suppress performance
degradation while maintaining robustness better than regularization without time discounting? We
conducted additional experiments in the MuJoCo environment in Appendix F. Detailed descriptions
of experiments are provided in Appendix G.

7.1 SET UP

Adversary’s Objective and Setting In real-world attack scenarios, an adversary would aim to
force a victim, trained to act safely to avoid harming people, into performing harmful actions. There-
fore, we set the adversary’s goal to force the victim to complete tasks that are the exact opposite of
what it has been trained to do. To evaluate this, we designed experiments on four tasks featuring
opposing goals: {window-close, window-open} and {drawer-close, drawer-open}.
Following the prior works (Zhang et al., 2021; Sun et al., 2022), we constrain the set of adversarial
states B(s) using the L∞ norm: B(s) ≜ {ŝ | ∥ŝ− s∥∞ ≤ ϵ}, where ϵ represents the attack budget.
All experiments are performed with ϵ = 0.3. States are standardized across all tasks, with standard-
ization coefficients calculated during the training of the victim agent. To learn adversarial policy
with BIA, we employed DAC (Kostrikov et al., 2018) of ILfD and OPOLO (Zhu et al., 2020) for
ILfO as imitation learning algorithms, which are variants of GAIL, and known to be more stable.
We used 20 episodes as demonstrations.
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Table 1: Comparison of attack performances. Each value is the average episode rewards ± the
standard deviation over 50 episodes. The Target Reward is the reward obtained by the target policy.
Attack Rewards are the rewards obtained by the victim under the attack. The attack budget was set
to ϵ = 0.3.
Adv Task Target Reward Attack Rewards (↑)

Random Targeted PGD Reward Maximization BIA-ILfD (ours) BIA-ILfO (ours)

window-close 4543 ± 39 947 ± 529 1057 ± 652 4505 ± 65 3962 ± 666 4036 ± 510
window-open 4508 ± 121 322 ± 261 296 ± 117 506 ± 444 566 ± 523 557 ± 679
drawer-close 4868 ± 6 1069 ± 1585 1031 ± 1437 4658 ± 747 4760 ± 640 4626 ± 791
drawer-open 4713 ± 16 841 ± 357 825 ± 326 1499 ± 536 1556 ± 607 1445 ± 610

Attack Baselines We compare our proposed attack method with three baselines. (i) Random At-
tack: This attack perturbs the victim’s state observation by random noise drawn from a uniform
distribution. (ii) Targeted PGD Attack: This naive attack method optimizes fake states ŝ using
PGD (Projected Gradient Descent) to align the victim’s actions with those of the target policy’s at
each time: ŝ = argminŝ d(π(·|ŝ), πtgt(·|s)). It is important to note that PGD requires white-box ac-
cess to the victim’s policy, giving the adversary an advantage not available in our proposed method.
(iii) Target Reward Maximization Attack: This attack leverages Lemma 1 to learn an adversarial
policy that maximizes the victim’s cumulative reward from the reward function Rtgt which is used
when learning the target policy: ν∗ = argmaxMπ◦ν [Rtgt(s, a, s

′)]. This attack requires access to the
reward function used during the target policy’s learning, which is not allowed in our proposed attack.
Thus, this attack also gives the adversary an advantage not available in our proposed method.

Defense Baselines No defense methods have yet been proposed specifically for behavior-targeted
attacks. Therefore, we use three defense methods designed for untargeted attacks as baselines: (i)
SA-PPO (Zhang et al., 2020b): This method aims to increase the smoothness of the policy’s action
outputs by a regularizer. The difference between TDRT-PPO and SA-PPO is that SA-PPO does
not apply time discounting in the regularization. (ii) ATLA-PPO (Zhang et al., 2021): This is an
adversarial training method that alternately trains the adversary and the victim. (iii) WocaR-PPO
(Liang et al., 2022): This method combines adversarial training and smooth regularization.

7.2 ATTACK PERFORMANCE RESULTS

We provide the results in Table 1. Target reward represents the cumulative reward obtained by the
target policy in the adversary’s task, serving as the upper bound for attack rewards. Our BIA in the
black-box model shows superior performance compared to Targeted PGD in the white-box model.
Moreover, BIA shows performance that is nearly equivalent to Target Reward Maximization, which
directly uses the reward functions when learning the target policy. The performance of BIA with
ILfO (i.e., no-box) is lower than that with ILfD (i.e., black-box) because ILfO is not allowed to
access the victim’s actions.

Interestingly, Targeted PGD showed almost identical performance to Random Attack. Our investi-
gation revealed that, even after optimization by PGD, the loss remains high at several points in the
trajectory. As mentioned in Section 5, the attack is likely to fail because no false states that can
perfectly align with the actions specified by the target policy exist, especially when epsilon is small.
All attack methods show relatively low attack performance in the window-open and drawer-open
tasks. This can be attributed to the greater disparity in the state-action distributions between the
victim policy and the target policy in these tasks compared to other tasks.

7.3 DEFENSE PERFORMANCE RESULTS

The results are shown in Table 2. Clean reward represents the cumulative reward obtained by the
victim in their original task without attacks; higher values indicate less performance degradation
due to robust learning. Best Attack Rewards represent the largest cumulative reward among the five
attacks listed in Table 1 when the adversary attempts to force the victim to attain the adversary’s
target task; lower values indicate greater robustness. Complete results for all attack methods are
shown in Table 3.
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Table 2: Comparison of Defense Methods. Each value is the average episode rewards± the standard
deviation over 50 episodes. Clean Rewards are the rewards for the victim’s tasks (no attack). Best
Attack Rewards shows the highest reward among the five types of adversarial attacks. The attack
budget was set to ϵ = 0.3.

Adv Task Methods Clean Rewards (↑) Best Attack Rewards (↓)

window-close

PPO 4508 ± 121 4505 ± 65

ATLA-PPO (Zhang et al., 2021) 4169 ± 467 4270 ± 188
WocaR-PPO (Liang et al., 2022) 2879 ± 1256 575 ± 135
SA-PPO (Zhang et al., 2020b) 4367 ± 107 485 ± 61
TDRT-PPO (ours) 4412 ± 55 482 ± 3

window-open

PPO 4543 ± 39 566 ± 523

ATLA-PPO (Zhang et al., 2021) 4566 ± 80 586 ± 649
WocaR-PPO (Liang et al., 2022) 3645 ± 1575 295 ± 18
SA-PPO (Zhang et al., 2020b) 4092 ± 461 272 ± 37
TDRT-PPO (ours) 4383 ± 57 254 ± 214

drawer-close

PPO 4714 ± 16 4760 ± 640

ATLA-PPO (Zhang et al., 2021) 4543 ± 102 4858 ± 6
WocaR-PPO (Liang et al., 2022) 4193 ± 304 4867 ± 8
SA-PPO (Zhang et al., 2020b) 2156 ± 453 4 ± 2
TDRT-PPO (ours) 4237 ± 93 4860 ± 4

drawer-open

PPO 4868 ± 6 1556 ± 607

ATLA-PPO (Zhang et al., 2021) 4863 ± 7 1158 ± 1026
WocaR-PPO (Liang et al., 2022) 4704 ± 654 579 ± 15
SA-PPO (Zhang et al., 2020b) 4161 ± 1537 403 ± 49
TDRT-PPO (ours) 4802 ± 27 378 ± 10

TDRT-PPO shows the highest robustness in three out of the four tasks. Both SA-PPO and TDRT-
PPO were tested using the same regularization coefficients. Overall, we observed no significant
difference in robustness between the two methods, while TDRT-PPO consistently achieved higher
Clean Rewards. These results demonstrate two advantages of time-discounted regularization. First,
using TDR does not compromise robustness against attacks, as reflected in Best Attack Rewards.
Second, TDR mitigates performance degradation, as seen in Clean Rewards. In the following sec-
tions, we evaluate the impact of TDR on performance in more detail.

Overall, methods that regularize the output of the policy with respect to input changes (i.e., SA-
PPO, TDRT-PPO, WocaR-PPO) show better robustness, while adversarial training-based defense
(i.e., ATLA-PPO) lacks robustness against behavior-targeted attacks. This result is likely because
adversarial perturbations used in ALTA-PPO are designed for untargeted attacks, making them less
effective than other types of attacks. In the drawer-close task, only SA-PPO demonstrates strong
robustness. This suggests that the later stages of the trajectory are critical for attacks in this task, and
time discounting may have a negative impact on defense in this task. On the other hand, the Clean
Reward of SA-PPO for this task is significantly lower than others, suggesting SA-PPO struggles to
maintain a good balance between Clean Rewards and Best Attack Rewards in this task. For further
analysis, we present experiments with multiple regularization coefficients in Appendix G.4.

8 CONCLUSION

In this work, we proposed the Behavior Imitation Attack (BIA), which manipulates victim behav-
ior through perturbed state observations using imitation learning and operates with limited victim
policy access. We also introduced Time-Discounted Regularization (TDR), the first defense method
specifically designed for behavior-targeted attacks, which achieved robustness without compromis-
ing normal performance.

Limitations and Future work. Behavior-targeted attacks cannot force victims to perform behav-
iors that they would never execute under any observation. When the target policy’s behavior sig-
nificantly deviates from the victim’s original patterns, appropriate adversarial states may not exist,
leading to attack failure. Additionally, while TDR is effective against behavior-targeted attacks, it
shows limited effectiveness against untargeted attacks in the later stages of the trajectory, making the
development of defense methods effective against both types of attacks an important future research
direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This paper focused on adversarial attacks on reinforcement learning and their defense methods,
aiming to improve the reliability of deep reinforcement learning. Our contribution lies in proposing
attack methods and defenses that are envisioned for real-world scenarios. However, our proposed
methods still face challenges in practical real-world applications. Our research fully complies with
legal and ethical standards, and there are no conflicts of interest. Throughout this study, we utilized
only publicly available benchmarks. No private datasets were used in this research. For repro-
ducibility, we have made our experimental code public.

REPRODUCIBILITY STATEMENT

We provide the complete experimental code that allows for the full reproduction of the experiments
presented in this paper: link. Additionally, we have provided detailed algorithms for our proposed
methods. The benchmarks used in our experiments are public and accessible to everyone. As
described above, we have made substantial efforts to ensure the reproducibility of our results.

REFERENCES

AV Arkhangel’skiı̌ and Vitaly V Fedorchuk. The basic concepts and constructions of general topol-
ogy. In General Topology I: Basic Concepts and Constructions Dimension Theory, pp. 1–90.
Springer, 1990.

Roman Belaire, Pradeep Varakantham, Thanh Nguyen, and David Lo. Regret-based defense in
adversarial reinforcement learning. In Proceedings of the 23rd International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 2633–2640, 2024.

Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. Advances in
Neural Information Processing Systems, 36, 2024.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Adith Boloor, Karthik Garimella, Xin He, Christopher Gill, Yevgeniy Vorobeychik, and Xuan
Zhang. Attacking vision-based perception in end-to-end autonomous driving models. Journal
of Systems Architecture, 110:101766, 2020.

Prasanth Buddareddygari, Travis Zhang, Yezhou Yang, and Yi Ren. Targeted attack on deep rl-based
autonomous driving with learned visual patterns. In 2022 International Conference on Robotics
and Automation (ICRA), pp. 10571–10577. IEEE, 2022.

Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang,
Songan Zhang, and Tuo Zhao. Robust multi-agent reinforcement learning via adversarial reg-
ularization: Theoretical foundation and stable algorithms. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

X Fernique, PW Millar, DW Stroock, M Weber, and P Warwick Millar. The minimax principle in
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A RELATED WORKS

In this section, we discuss prior research on attacks and defenses on DRL that mainly assume an
adversary’s perturbed the victim’s state observations.

A.1 UNTARGETED ATTACK AND ITS DEFENSE

In untargeted attacks, the adversary’s goal is to minimize the cumulative reward received by the
victim. The most basic approach is gradient-based methods. Huang et al. (2017) proposed an attack
method that uses the Fast Gradient Signed Method (FGSM) (Goodfellow et al., 2014) to compute
adversarial perturbations that prevent the victim from choosing optimal actions. Pattanaik et al.
(2018) performed a more powerful attack by creating adversarial perturbations that minimize the
value estimated by the Q-function. (Gleave et al., 2020) proposed an attack that assumes a two-
agent environment. This method creates an adversarial agent that maximally degrades the victim’s
performance.

One approach to learning robust policies against untargeted attacks is to make the policy smooth.
Shen et al. (2020) introduced a regularization term to smooth the policy and demonstrated increased
sample efficiency and robustness. Zhang et al. (2020b) formulated the State-Adversarial Markov
Decision Process (SA-MDP) to represent situations where an adversary interferes with the victim’s
state observations. Based on SA-MDP, they showed that regularization to smooth the policy is
effective in resisting untargeted attacks.

Another approach for defense is adversarial training. Zhang et al. (2021) showed that the optimal
adversarial policy can be learned as a policy in MDP and proposed ATLA, an adversarial train-
ing framework that exploits this insight. Sun et al. (2022) proposed a theoretically optimal attack
method that finds the optimal direction of perturbation and proposed PA-ATLA as an extension of
ATLA, which is efficient even in large state spaces. Oikarinen et al. (2021) proposed a framework
for training a robust RL by incorporating an adversarial loss that accounts for the worst-case input
perturbations. Additionally, they introduced a new metric to efficiently evaluate the robustness of the
agent. Liang et al. (2022) efficiently estimated the lower bound of cumulative rewards under adver-
sarial attacks and performed adversarial learning with partial smoothness regularization. However,
Korkmaz (2021; 2023) pointed out that agents trained to be adversarially robust are still vulnerable
to attacks that were not anticipated during training.

McMahan et al. (2024) proposed a comprehensive framework for computing optimal attacks and de-
fenses, modeling the attack problem as a meta-MDP and the defense problem as a partially observ-
able turn-based stochastic game. Bukharin et al. (2024) proposed a robust Multi-Agent RL (MARL)
framework that uses adversarial regularization to promote Lipschitz continuity of policies, thereby
enhancing robustness against environmental changes, observation noise, and malicious agent ac-
tions. Liang et al. (2024) introduced a new concept called temporally-coupled perturbations, where
consecutive perturbations are constrained. Their proposed method, GRAD, demonstrates strong ro-
bustness against standard and temporally-coupled perturbations. Belaire et al. (2024) proposed a
novel defense method based on regret minimization. Liu et al. (2024) have proposed a new frame-
work called ”PROTECTED.” This framework is characterized by its effectiveness against not only
worst-case attacks but also more general forms of attacks. Additionally, another approach in robust
reinforcement learning is certified defense Wu et al. (2022); Kumar et al. (2022); Mu et al. (2024);
Sun et al. (2024). These studies guarantee a lower bound on the rewards obtained by the victim
under adversarial attacks.

A.2 TARGETED ATTACK

The adversary’s goal of the targeted attack is to manipulate the victim so that it follows some direc-
tion made by the adversary. One type of targeted attack is the enchanting attack. This attack aims
to lure the victim agent to reach a predetermined target state. Lin et al. (2017) first proposed this
type of attack. In their approach, the adversary predicts future states and generates a sequence of
actions that cause the victim to reach the target state. The adversary then crafts a sequence of per-
turbations to make the victim perform the sequence of actions. Tretschk et al. (2018) proposed an
enchanting attack where adversarial perturbations to maximize adversarial rewards are heuristically
designed for the attack purpose, thereby transitioning to the specified target state. Buddareddygari
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et al. (2022) proposed a different enchanting attack using visual patterns placed on physical objects
in the environment so that the victim agent is directed to the target state. Unlike (Lin et al., 2017)
and (Tretschk et al., 2018), which affect the victim’s state observations, this attack affects the envi-
ronmental dynamics, not the victim’s state observations. Ying et al. (2023) proposed an enchanting
attack with a universal adversarial perturbation. When any state observations are modified with this
perturbation, the victim agent is forced to be guided to the target state. All of these enchanting
attacks require white-box access to the victim’s policy.

The other type of targeted attack is the behavior-targeted attack, which aims to manipulate not only
the final destination but also the behavior in a more detailed direction by the adversary. Hussenot
et al. (2020) proposed a behavior-targeted method that forces the victim to select the same actions
as the policy specified by the adversary. More specifically, this attack precomputes a universal per-
turbation for each action so that the victim who observes the perturbed states takes the same action
as the adversarially specified policy. One limitation of this attack is that the computation cost to
precompute such universal perturbations can be large when the action space is large or continu-
ous. Since the cost required for pre-computing perturbations is significant, applying this attack is
challenging. Boloor et al. (2020) proposed a heuristic attack specifically designed for autonomous
vehicles. They formulated an objective function with a detailed knowledge of the target task, which
is not applicable to behavior-targeted attacks for general tasks. We remark that all existing behavior-
targeted attacks also require white-box access to the victim’s policy.

A.3 POISONING ATTACK

Several studies have proposed poisoning attacks against RL agents, which intervene during the vic-
tim’s training phase. Sun et al. (2021) proposed VA2C-P, a poisoning attack framework that can
adapt without access to environment dynamics. They proposed both untargeted attacks and target
attacks that aim to align the victim’s policy with a target policy.Rakhsha et al. (2020) theoretically
investigated the attack problem in both offline planning and online RL settings with tabular MDPs.
Rangi et al. (2022) also provided theoretical insights into the fundamental limits of poisoning attacks
in episodic reinforcement learning. Xu et al. (2023); Xu & Singh (2023) proposed more practical
black-box attacks that do not require knowledge of environment dynamics or the victim’s learning
algorithm. As our research focuses on attacking trained victims, our threat model differs from those
of these studies.

B THEORITICAL ANALYSIS OF THE DISTRIBUTION MATCHING APPROACH IN
OUR ADVERSARIAL ATTACK SETTING

In this section, we prove that the distribution matching approach in our problem setting is equivalent
to the problem of minimizing the distance between policies through inverse reinforcement learning.
This shows that the adversarial policy, which is learned through our distribution matching approach,
rigorously mimics the target policy. Our procedures follow the proof of Proposition 3.1 in (Ho &
Ermon, 2016).

Let a set of all stationary stochastic policies as Π and a set of all stationary stochastic adversarial
policies as N . Also, we write R̄ for extended real numbers R ∪ {∞}. The goal of inverse rein-
forcement learning is to find a reward function such that when a policy is learned to maximize the
rewards obtained from this function, it matches the expert’s policy. This process aims to derive a
reward function from the expert’s trajectories. We formulate the adversary’s objective as learning an
adversarial policy that maximizes the victim’s cumulative reward from the reward function estimated
by IRL:

IRLψ,ν(πtgt) = argmax
c∈RS×A

−ψ(c) +
(
min
ν∈N

EMπ◦ν [c(s, a)]
)
− EMπtgt

[c(s, a)], (15)

RL(c) = argmin
ν∈N

Eπ◦ν [c(s, a)], (16)

where c : S × A → R is a cost function, ψ : RS×A → R̄ is a convex cost function regularization.
Note that we use a cost function instead of a reward function to represent reinforcement learning
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as a minimization problem. Let c∗ ∈ IRLψ,ν(πtgt) be the optimal cost function through IRL. The
optimal adversarial policy is learned with respect to the optimal cost function: ν∗ ∈ RL(c∗).

For the proof, we define the occupancy measure. The occupancy measure is an unnormalized state-
action distribution:

ρ̂π(s, a) =

∞∑
t=0

γt Pr (st = s, at = a|s0 ∼ p0(·), at ∼ π(·|st), st+1 ∼ p(·|st, at)) . (17)

Therefore, we present the Theorem 2. The Theorem shows that the optimal adversarial policy ob-
tained via inverse reinforcement learning coincides with the optimal adversarial policy obtained
through the distribution matching approach:

Theorem 2. Let C be the set of cost functions, ψ be a convex function and ψ∗ be the conjugate of
ψ. When π is fixed and C is a compact convex set, the following holds:

RL ◦ IRLψ,ν(πtgt) = argmin
ν∈N

ψ∗(ρ̂π◦ν − ρ̂πtgt). (18)

Proof. Let Dπ◦ν = {ρ̂π◦ν |ν ∈ N}. If Dπ◦ν is a compact and convex set, equation 18 is valid
according to the proof of Theorem 3.1 in (Ho & Ermon, 2016). Thus, we prove that Dπ◦ν is a
compact and convex set.

Compactness: The mapping from ν to π ◦ ν is linear, and N is compact. Therefore, by
(Arkhangel’skiı̌ & Fedorchuk, 1990), Πν is a compact set. From (Ho & Ermon, 2016), when Πν is
compact, Dπ◦ν is also compact. Consequently, Dπ◦ν is a compact set.

Next, we show that Dπ◦ν is closed. Policy π ∈ Π and occupancy measure ρ̂ ∈ D have a one-to-one
correspondence by Lemma 1 in (Ho & Ermon, 2016). Let Πν = {π′ | ν ∈ N , π′ = π ◦ ν} be the
set of all behavior policies. Since Πν ⊆ Π, π ◦ ν ∈ Πν and ρ̂π◦ν ∈ Dπ◦ν also have a one-to-
one correspondence. Thus, let {ρ̂π◦ν1 , ρ̂π◦ν2 , . . . } be any cauchy sequence with ρ̂π◦νn ∈ Dπ◦ν .
Due to the one-to-one correspondence, there exists a corresponding sequence {π ◦ ν1, π ◦ ν2, . . . }.
Since Πν is compact, the sequence {π ◦ ν1, π ◦ ν2, . . . } converges to π ◦ ν ∈ Πν . Hence, the
sequence {ρ̂π◦ν1 , ρ̂π◦ν2 , . . . } also converges to the occupancy measure ρ̂π◦ν corresponding to π ◦ ν.
Therefore, Dπ◦ν is closed.

Convexity: First, we show that Πν is a convex set. For ∀ν1 ∈ N ,∀ν2 ∈ N and λ ∈ [0, 1], we define
π ◦ ν as

π ◦ ν = λπ ◦ ν1 + (1− λ)π ◦ ν2. (19)

Then, we have

π ◦ ν = λπ ◦ ν1 + (1− λ)π ◦ ν2 (20)

= t
∑
â∈S

ν1(â|s)π(a|â) + (1− t)
∑
â∈S

ν2(â|s)π(a|â) (21)

=
∑
â∈S

(tν1(â|s) + (1− t)ν2(â|s))π(a|â) (22)

= π ◦ (λν1 + (1− λ)ν2) (23)

Using the convexity of N , we have tν1 + (1 − t)ν2 ∈ N . Thus, π ◦ ν ∈ Πν holds for any ν1 ∈
N , ν2 ∈ N , and λ ∈ [0, 1] and Πν is convex.

Noting that the one-to-one correspondence of ρ̂π◦ν ∈ Dπ◦ν and π ◦ ν ∈ Πν , for any mixture policy
π ◦ νm ∈ Πν , we have ρ̂π◦νm ∈ Dπ◦ν . Consequently, Dπ◦ν is a convex set.

Based on the above, we prove the Theorem following the same procedure as the proof of Theorem
3.1 in (Ho & Ermon, 2016). Let c̃ ∈ IRLψ,ν(πtgt), π̃ ◦ ν ∈ RL(c̃) = RL ◦ IRLψ,ν(πtgt). The RHS
of 18 is denoted by

π ◦ νA ∈ argmin
π◦ν

ψ∗(ρ̂π◦ν − ρ̂πtgt) = argmin
π◦ν

max
c
−ψ(c) +

∫
s,a

(ρ̂π◦ν(s, a)− ρ̂πtgt(s, a))c(s, a).

(24)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We define the RHS of 18 by L̄ : Dπ◦ν × C → R as follow:

L̄(ρ̂, c) = −ψ(c) +
∫
s,a

ρ̂(s, a)c(s, a)−
∫
s,a

ρ̂πadvc(s, a). (25)

We remark that L̄ takes an occupancy measure as its argument.

To prove π̃ ◦ ν = π ◦ νA, we utilize the minimax duality of L̄.

Policy π ∈ Π and occupancy measure ρ̂ ∈ D have a one-to-one correspondence by Lemma 1 in
(Ho & Ermon, 2016). Since Πν ⊆ Π, π ◦ ν ∈ Πν and ρ̂π◦ν ∈ Dπ◦ν also have a one-to-one
correspondence. Thus, the following relationship is established:

ρ̂π◦νA
∈ argmin

ρ̂∈Dπ◦ν

max
c∈C

L̄(ρ̂, c), (26)

c̃ ∈ argmax
c∈C

min
ρ̂∈Dπ◦ν

L̄(ρ̂, c), (27)

ρ̂π̃◦ν ∈ argmin
ρ̂∈Dπ◦ν

L̄(ρ̂, c̃). (28)

Dπ◦ν is a compact convex set and C is also a compact convex set. Since ψ is a convex function, we
have that L̄(·, c) is convex for all c, and that L̄(ρ̂, ·) is liner for all ρ̂, so L̄(ρ̂, ·) is concave for all ρ̂.
Due to minimax duality(Fernique et al., 1983), we have the following equality:

min
ρ̂∈Dπ◦ν

max
c∈C

L̄(ρ̂, c) = max
c∈C

min
ρ̂∈Dπ◦ν

L̄(ρ̂, c). (29)

Therefore, from equation 26 and equation 27, (ρ̂π◦νA
, c̃) is a saddle point of L̄, which implies that

ρ̂π◦νA
∈ argminρ̂∈Dπ◦ν

L̄(ρ̂, c̃) and so ρ̂π̃◦ν = ρ̂π◦νA
.

The right-hand side of equation 18 represents the optimal adversarial policy that minimizes the
distance between occupancy measures as measured by ψ∗. Therefore, Theorem 2 indicates that the
optimal adversarial policy obtained through the distribution matching approach is equivalent to that
via inverse reinforcement learning.

C PROOFS

C.1 PROOF OF LEMMA 1

Lemma 1. Consider an SA-MDPM = (S,A, R,B, p, γ), and let π be the victim’s policy. Given the
reward function R̄ specified by the adversary, the reward function R̂ and state transition probability
p̂ are defined as follows:

R̂(s, ŝ, s′) = E[r̂|s, ŝ, s′] =

{∑
a∈A π(a|ŝ)p(s′|s,a)R̄(s,a,s′)∑

a∈A π(a|ŝ)p(s′|s,a) if ŝ ∈ B(s)
C otherwise,

(9)

p̂(s′|s, ŝ) =
∑
a∈A

π(a|ŝ)p(s′|s, a). (10)

Then, for the MDP M̂ = (S,S, R̂, p̂, γ), the following equality holds:

ν∗ = argmax
ν

EM̂ν [R̂(s, ŝ, s′)] = argmax
ν

EMπ◦ν [R̄(s, a, s′)]. (11)

Proof. This proof follows the approach outlined in the proof of Lemma 1 in (Zhang et al., 2020b),
with some modifications to account for the differences in our setting.

In the proof of Lemma 1 presented in [1], by substituting−R(s, a, s′) with R̄(s, a, s′), we can derive
the subsequent results:

R̂(s, â, s′) =

∑
a R̄(s, a, s

′)p(s′|a, s)π(a|â)∑
a p(s

′|a, s)π(a|â)
. (30)
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Let M = maxs,a,s′ R̄(s, a, s
′) and M = mins,a,s′ R̄(s, a, s

′). We Define the reward C for when
the adversarial policy selects an action â ̸∈ B as follows:

C < min

{
M,

1

1− γ
M − γ

1− γ
M

}
. (31)

From the definition of C and M , we have for ∀(s, â, s′),

C < R̂(s, â, s′) ≤M, (32)

and, for ∀â ∈ B(s), according to equation 30,

M ≤ R̂(s, â, s′) ≤M. (33)

MDP has at least one optimal policy, so the M̂ has an optimal adversarial policy ν∗, which satisfies
V̂π◦ν∗(s) ≥ V̂π◦ν(s) for ∀s,∀ν. From the property of the optimal policy, ν∗ is deterministic. Let
R ≜ {ν | ∀s,∃â ∈ B(s), ν(â | s) = 1}. This restricts that the adversarial policy does not take
actions â /∈ B(s), so ν∗ ∈ R. If ν∗ /∈ R at state s0,

V̂π◦ν∗(s0) = Ep̂,ν∗

[ ∞∑
k=0

γkr̂t+k+1 | st = s0

]
(34)

= C + Ep̂,ν∗

[ ∞∑
k=1

γkr̂t+k+1 | st = s0

]
(35)

≤ C +
γ

1− γ
M (36)

<
1

1− γ
M (37)

≤ Ep̂,ν′

[ ∞∑
k=0

γkr̂t+k+1 | st = s0

]
= V̂π◦ν′(s0). (38)

The last inequality holds for any ν′ ∈ R. This contradicts the assumption that ν∗ is optimal. Hence,
the following analysis will only consider policies included in N .

For any policy ν ∈ R:

V̂π◦ν(s) = Ep̂,ν

[ ∞∑
k=0

γkr̂t+k+1 | st = s

]
(39)

= Ep̂,ν

[
r̂t+1 + γ

∞∑
k=0

γkr̂t+k+2 | st = s

]
(40)

=
∑
â∈S

ν(â|s)
∑
s′∈S

p̂(s′|s, â)

[
R̂(s, â, s′) + γEp̂,ν

[ ∞∑
k=0

γkr̂t+k+2 | st+1 = s′

]]
(41)

=
∑
â∈S

ν(â|s)
∑
s′∈S

p̂(s′|s, â)
[
R̂(s, â, s′) + γV̂π◦ν(s

′)
]
. (42)

All policies in R are deterministic, so we denote the deterministic action â chosen by a ν ∈ R at s
as ν(s). Then for ∀ν ∈ R, we have

V̂π◦ν(s) =
∑
s′∈S

p̂(s′|s, â)
[
R̂(s, â, s′) + γV̂π◦ν(s

′)
]

(43)

=
∑
s′∈S

∑
a∈A

π(a|â)p(s′|s, a)
[∑

a R̄(s, a, s
′)p(s′|a, s)π(a|â)∑

a p(s
′|a, s)π(a|â)

+ γV̂π◦ν(s
′)

]
(44)

=
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
R̄(s, a, s′) + γV̂π◦ν(s

′)
]
. (45)
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Thus, the optimal value function is

V̂π◦ν∗(s) = max
ν∗(s)∈B(s)

∑
a∈A

π(a|ν∗(s))
∑
s′∈S

p(s′|s, a)
[
R̄(s, a, s′) + γV̂π◦ν∗(s′)

]
. (46)

The Bellman equation for the state value function Ṽπ◦ν(s) of the SA-MDP M = (S,A,B, R, p, γ)
is given as follows:

Lemma 2 (Theorem 1 of (Zhang et al., 2020b)). Given π : S → P(A) and ν : S → S, we have

Ṽπ◦ν(s) =
∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γṼπ◦ν(s

′)
]

(47)

Therefore, if the reward function is R̄, then V̂π◦ν∗ = Ṽπ◦ν∗ . So, we have

Ṽπ◦ν∗(s) = max
ν∗(s)∈B(s)

∑
a∈A

π(a|ν∗(s))
∑
s′∈S

p(s′|s, a)
[
R̄(s, a, s′) + γṼπ◦ν∗(s′)

]
, (48)

and Ṽπ◦ν∗(s) ≥ Ṽπ◦ν(s) for ∀s,∀ν ∈ R. Hence, ν∗ is also the optimal ν for Ṽπ◦ν .

C.2 PROOF OF THEOREM 1

Theorem 1. Let the discount factor be γ ∈ (0, 1). For state-action distributions ρπ and ρπ◦ν
corresponding to policies π and π ◦ ν, the following inequality holds:

DKL(ρπ||ρπ◦ν) ≤
1

1− γ

∞∑
t=0

γtEs∼dtπ [DKL(π(·|s)||π ◦ ν(·|s))], (13)

where dtπ(s) = Pr(st = s|π) represents the state distribution of π at time t.

Proof. We first introduce the state distribution to prove Theorem 1. The state distribution dπ : S →
[0, 1] represents the probability of encountering a specific state when transitioning according to a
policy π:

dπ(s) = (1− γ)
∞∑
t=0

γt Pr (st = s|s0 ∼ p0(·), at ∼ π(·|st), st+1 ∼ p(·|st, at)) . (49)

We establish the following lemma:

Lemma 3. Given two policies π, π ◦ ν : S → P(A) and their state distribution dπ, dπ◦ν , the
following inequality holds:

DKL(dπ∥dπ◦ν) ≤
γ2

1− γ2
∞∑
t=1

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))] (50)

Proof. This proof is based on Theorem 4.1 of (Belkhale et al., 2024). Regarding the distance be-
tween the state distributions of π and π ◦ ν at time t DKL(d

t
π, d

t
π◦ν), the following inequality holds
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for t ≥ 1 by using KL’s joint convexity and Jensen’s inequality:

DKL(d
t
π∥dtπ◦ν) =

∫
s′
dtπ(s

′) log
dtπ(s

′)

dtπ◦ν(s
′)

(51)

=

∫
s′

(∫
s,a

γdt−1
π (s)π(a|s)p(s′|s, a)

)
log

∫
s,a
γdt−1

π (s)π(a|s)p(s′|s, a)∫
s,a
γdt−1

π◦ν(s)π ◦ ν(a|s)p(s′|s, a)
(52)

≤
∫
s′

∫
s,a

γdt−1
π (s)π(a|s)p(s′|s, a) log γdt−1

π (s)π(a|s)p(s′|s, a)
γdt−1

π◦ν(s)π ◦ ν(a|s)p(s′|s, a)
(53)

≤
∫
s′

∫
s,a

γdt−1
π (s)π(a|s)p(s′|s, a)

(
log

dt−1
π (s)

dt−1
π◦ν(s)

+ log
π(a|s)

π ◦ ν(a|s)

)
(54)

≤ γ
∫
s,a

dt−1
π (s)π(a|s)

(
log

dt−1
π (s)

dt−1
π◦ν(s)

+ log
π(a|s)

π ◦ ν(a|s)

)
(55)

≤ γ
∫
s

dt−1
π (s) log

dt−1
π (s)

dt−1
π◦ν(s)

+ γ

∫
s,a

dt−1
π (s)π(a|s) log π(a|s)

π ◦ ν(a|s)
(56)

≤ γDKL(d
t−1
π ∥dt−1

π◦ν) + γEs∼dt−1
π

[DKL(π(·|s)∥π ◦ ν(·|s))] (57)

≤ γtDKL(d
0
π∥d0π◦ν) +

t−1∑
j=0

γt−jEs∼djπ [DKL(π(·|s)∥π ◦ ν(·|s))] (58)

≤
t−1∑
j=0

γt−jEs∼djπ [DKL(π(·|s)∥π ◦ ν(·|s))] (59)

Thus, we obtain the following inequality:

DKL(dπ∥dπ◦ν) =
∫
s

(

∞∑
t=0

γtdtπ(s)) log

∑∞
t=1 γ

tdtπ(s)∑∞
t=1 γ

tdtπ◦ν(s)
(60)

≤
∫
s

∞∑
t=0

γtdtπ(s) log
γtdtπ(s)

γtdtπ◦ν(s)
(61)

≤
∞∑
t=0

γt
∫
s

dtπ(s) log
dtπ(s)

dtπ◦ν(s)
(62)

≤
∞∑
t=1

γtDKL(d
t
π∥dtπ◦ν) (63)

≤
∞∑
t=1

γt
t−1∑
j=0

γt−jEs∼djπ [DKL(π(·|s)∥π ◦ ν(·|s))] (64)

≤
∞∑
t=1

t−1∑
j=0

γ2t−jEs∼djπ [DKL(π(·|s)∥π ◦ ν(·|s))] (65)

≤ γ2

1− γ2
∞∑
t=1

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))] (66)
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Using Lemma 3, the following inequality holds for the distance between state-action distributions:

DKL(ρπ∥ρπ◦ν) =
∫
s,a

ρπ(s, a) log
ρπ(s, a)

ρπ◦ν(s, a)
(67)

=

∫
s,a

π(a|s)dπ(s) log
π(a|s)dπ(s)

π ◦ ν(a|s)dπ◦ν(s)
(68)

=

∫
s,a

π(a|s)dπ(s) log
π(a|s)

π ◦ ν(a|s)
+

∫
s,a

π(a|s)dπ(s) log
dπ(s)

dπ◦ν(s)
(69)

=

∫
s,a

π(a|s)(
∞∑
t=0

γtdtπ(s)) log
π(a|s)

π ◦ ν(a|s)
+

∫
s

dπ(s) log
dπ(s)

dπ◦ν(s)
(70)

=

∞∑
t=0

γt
∫
s,a

dtπ(s)π(a|s) log
π(a|s)

π ◦ ν(a|s)
+DKL(dπ∥dπ◦ν) (71)

≤
∞∑
t=0

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))] +
γ2

1− γ2
∞∑
t=1

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))]

(72)

≤
∞∑
t=0

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))] +
γ2

1− γ2
∞∑
t=0

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))]

(73)

=
1

1− γ2
∞∑
t=0

γtEs∼dtπ [DKL(π(·|s)∥π ◦ ν(·|s))] (74)

D TDRT-PPO ALGORITHM

Algorithm 2 Time-Discouted Robust Training in PPO (TDRT-PPO)
Input: Number of iterations T , clipping parameter ϵc, Minibatch size M , regularization coeffi-
cient λ
Output: Optimized policy πθ

1: Initialize actor network πθ(a|s) and critic network Vϕ(s)
2: for t = 1 to T do
3: D ← Collect trajectories using current policy πθ
4: for each (st, at, rt, st+1) in D do
5: R̂t ←

∑∞
l=0 γ

lrt+l ▷ Compute discounted returns
6: Ât ← R̂t − Vϕ(st) ▷ Estimate advantages
7: end for
8: for K epochs do
9: B ← {(sti , ati , R̂ti , Âti)}Mi=1 ∼ D ▷ Sample minibatch of size M

10: ϕ← ϕ− αV∇ϕ 1
M

∑M
i=1(Vϕ(si)− R̂i)2 ▷ Update critic network

11: # Compute the time-discounted regularization term
12: Rθ ←

∑
sti∈B

maxŝti∈B(sti )
γtiDKL(πθ(·|sti)∥πθ(·|ŝti))

13: ri(θ) =
πθ(ai|si)
πθold (ai|si)

▷ Compute probability ratio
14: # Update actor-network with regularization
15: θ ← θ + απ∇θ

(
1
M

∑M
i=1 min(ri(θ)Âi, clip(ri(θ), 1− ϵc, 1 + ϵc)Âi) + λRθ

)
16: end for
17: end for
18: return Optimized parameters θ, ϕ

We present the complete algorithm for TDRT-PPO in Algorithm 2. This algorithm extends the
standard PPO algorithm by incorporating time-discounted regularization Rθ. For calculating the
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Figure 3: Evaluation on the Ant task.
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Figure 4: Evaluation on the HalfCheetah task.

Figure 5: The horizontal axis represents the attack budget, which indicates the Adversary’s interven-
tion capability. The vertical axis shows the Attack Reward, which represents the reward obtained
during the attack. Each value represents the average reward over 50 episodes.

regularization term, we employ either SGLD or convex relaxations of neural networks, similar to
the approach used by (Zhang et al., 2020b). For convenience, we use ŝ ∈ B(s). However, since
the defender does not have access to the B specified by the adversary, ŝ is optimized to fall within a
range specified by the defender.

E EFFICIENCY ANALYSIS

E.1 EFFICIENCY OF BIA-ILFD/ILFO

We analyze the efficiency of BIA-ILfD/ILfO from two perspectives: training time of the adversarial
policy and testing time. The training phase uses standard imitation learning without additional over-
head, keeping learning costs low. Regarding demonstrations, the adversary’s effort to prepare target
policy demonstrations is more practical than designing new target reward functions. For testing ef-
ficiency, BIA only requires inference cost from the trained adversarial policy, giving it a significant
advantage over methods like the targeted-PGD attack that requires optimization at each step. Addi-
tional experiments on attack performance are provided in Sections F.2 and F.3. Section F.2 inves-
tigates the relationship between demonstration quantity and attack performance, while Section F.3
analyzes attack efficiency across different attack budgets. These comprehensive experiments provide
insights into both the data requirements and computational constraints of our proposed method.

E.2 EFFICIENCY OF TDRT-PPO

TDRT-PPO adds regularization terms to standard RL algorithms. Following SA-PPO Zhang et al.
(2020b), we applied common convex relaxation methods (Zhang et al., 2018; Wong & Kolter, 2018;
Salman et al., 2019; Zhang et al., 2020a) to obtain KL term bounds. We implemented this using the
auto LiRPA toolkit(Xu et al., 2020), reducing regularization term computation costs and enabling
efficient TDRT-PPO implementation. This regularization-based approach achieves shorter training
times compared to adversarial training methods that require learning adversarial policies Liang et al.
(2022).

F ADDITIONAL EXPERIMENTS

F.1 PERFORMANCE EVALUATION IN MUJOCO

In this section, we conduct additional experiments on the Ant and HalfCheetah tasks from the Ope-
nAI Gym Mujoco.
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Figure 6: Attack performance of BIA-ILfD/ILfO with varying amounts of demonstrations. The x-
axis shows the number of demonstration episodes, and the y-axis represents the Attack Reward. The
attack budget ϵ is set to 0.3. Each environment name represents an adversarial task. The solid line
and shaded area denote the mean and the standard deviation / 2 over 50 episodes.

Setup We set the adversary’s goal as making a less-trained victim imitate the behavior of a well-
trained target policy. In other words, the behavior-targeted attack is considered successful as the
cumulative reward the victim obtains increases. We conduct experiments across several attack bud-
gets ϵ to evaluate the performance of the attack.

Results The results are shown in Figures 5. A higher Attack Reward indicates a more successful
attack. In the Ant task, we can see that the attacks against PPO are sufficiently successful. Addition-
ally, we observe that TDRT-PPO has a lower Attack Reward than PPO. Thus, TDRT-PPO is more
robust against behavior-targeted attacks. In the HalfCheetah task, we can confirm that the attacks
are less effective than the Ant task. Furthermore, BIA fails to show effectiveness in the HalfCheetah
task. This is likely due to the difficulty in imitating the target policy, which may have led to an
eventual collapse in learning adversarial policies.

F.2 ANALYSIS OF THE RELATIONSHIP BETWEEN DEMONSTRATIONS AND ATTACK
PERFORMANCE OF BIA-ILFD/ILFO

In this section, we conduct additional experiments to investigate how the quantity and quality of
target policy demonstrations affect the attack performance of BIA-ILfD/ILfO. We evaluate the per-
formance of BIA-ILfD/ILfO using different amounts of demonstrations: 1, 4, 8, 12, 16, and 20
episodes. The victim is a vanilla PPO agent without any defense method. All experimental settings
remain the same as in Section 7.2, with the attack budget ϵ set to 0.3.

Figure 6 shows the experimental results. Across all tasks, we observed no significant performance
degradation when using up to 4 demonstration episodes. However, performance declined when
only one demonstration episode was provided. This decline can be attributed to the variability in
initial states, where the discriminator cannot effectively handle such diversity with extremely limited
demonstrations.

We consider that the number of demonstrations required for successful behavior-targeted attacks
depends on the environment’s characteristics. In environments with deterministic state transitions
and initial state distributions, where the target policy exhibits similar behavior across episodes, fewer
demonstrations may suffice. Conversely, environments with more randomness in state transitions
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Figure 7: Attack performance of BIA-ILfD/ILfO with varying attack budget ϵ. The x-axis shows
the value of the attack budget, and the y-axis represents the Attack Reward. The Target Reward
represents the cumulative reward obtained by the target policy and serves as the upper bound for the
attack rewards of BIA-ILfD/ILfO. Each environment name represents an adversarial task. The solid
line and shaded area denote the mean and the standard deviation / 2 over 50 episodes.

and initial state distributions require more demonstrations to ensure proper generalization of the
discriminator.

F.3 ANALYSIS OF THE RELATIONSHIP BETWEEN ATTACK BUDGET AND ATTACK
PERFORMANCE OF BIA-ILFD/ILFO

In this section, we present a more comprehensive analysis of the attack efficiency of BIA-ILfD/ILfO.
We conduct experiments across different attack budgets ϵ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and evaluate
the Attack Rewards. The victim is a vanilla PPO agent without any defense methods. All experimen-
tal parameters remain consistent with those in Section 7.2, and the results for ϵ = 0.3 correspond to
those presented in Table 1.

The experimental results are shown in Figure 7. Across all tasks, we observe that Attack Rewards
increase proportionally as the attack budget increases. Notably, in the window-close and drawer-
close tasks, the Attack Rewards nearly match the Target Rewards when given larger attack budgets,
indicating that the attack successfully guides the victim to almost perfectly replicate the target be-
havior.

In the window-close and drawer-close tasks, where the attacks are particularly successful, we ob-
served an interesting phenomenon. When the attack budget is small, there are high variances in
Attack Rewards, but this variance decreases as the attack budget increases. The high variances in-
dicate that among the 50 evaluation episodes, some attacks achieve perfect success while others
completely fail. This finding suggests that the initial state significantly influences the attack success
rate. We hypothesize that this occurs because certain initial states require the victim to perform ac-
tions that are rarely selected in their normal behavior, making the attack more challenging in these
scenarios.

G EXPERIMENTAL DETAILS

In this section, we provide the details of our experiments. We use a single NVIDIA Tesla V100
GPU and Intel Xeon E5-2698 v4 2.2GHz 20core CPU in all experiments.
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Algorithm 3 Optimization of adversarial states at each step in the targeted PGD attack
Input: Initial state s, target policy network πtgt, victim policy network π, perturbation bound ϵ,
number of steps T
Output: Perturbed state ŝ

1: ϵstep ← ϵ/T ▷ Initialize perturbation step size
2: smin ← s− ϵ, smax ← s+ ϵ ▷ Set clipping bounds
3: ŝ← s+ Uniform(−ϵstep, ϵstep) ▷ Add initial random noise
4: atgt ∼ πtgt(ŝ|·) ▷ Compute target action
5: for t = 1 to T do
6: acurrent ∼ π(ŝ|·) ▷ Compute current victim’s action
7: L ← ∥acurrent − atgt∥22 ▷ Compute L2 loss
8: ŝ← ŝ− sign(∇ŝL) · ϵstep ▷ Update state
9: ŝ← clip(ŝ, smin, smax) ▷ Clip state

10: end for
11: return ŝ

G.1 ENVIRONMENTS

We conducted the experiments described in Section 7 using Meta-World(Yu et al., 2020), a bench-
mark that simulates robotic arm manipulation. All tasks in Meta-World share a common 39-
dimensional continuous state space and a 4-dimensional continuous action space. In our experi-
ments, we use four tasks: window-close, window-open, drawer-close, and drawer-open. The objec-
tive of each task is to move a specific object to a designated position.

Reward Design The reward design is specific to each task in MetaWorld. For example, the reward
functions for window-close and window-open tasks are designed independently. Therefore, when
attacking a victim trained on the window-close task to perform a window-open task, this differs from
an untargeted attack since it does not simply minimize the victim’s reward.

G.2 THE DETAILS OF TARGETED PGD ATTACK

In this section, we provide a detailed explanation of targeted PGD attacks and present additional
experiments. In Section G.2.1, we show the pseudo-code for targeted PGD attacks and provide
specific details about their implementation. In Section G.2.2, we conduct experiments with various
attack budgets and analyze the results to gain deeper insights into targeted PGD attacks.

G.2.1 IMPLEMENTATION DETAILS OF THE TARGETED PGD ATTACK

We present the algorithm used to optimize the false state at each step for the targeted PGD attack
in Algorithm 3. The attack aims to find optimal false states that minimize the difference between
the victim’s action and the target policy’s action at each step. The algorithm performs T iterations,
during which it updates states using FGSM in each iteration. Specifically, it uses the L2 distance
between current victim actions and target actions as the loss function and updates states by scaling
in the direction of gradient signs by ϵstep. In all experiments, we set T = 30. We also implement
random initialization for stable optimization.

G.2.2 PERFORMANCE ANALYSIS OF TARGETED PGD ATTACKS UNDER DIFFERENT ATTACK
BUDGETS

We evaluate the performance of targeted PGD attacks across various attack budgets ϵ. We con-
duct attacks against victims trained with PPO without any defense method, using ϵ values of
[0.3, 0.5, 1.0, 3.0, 5.0, 10.0]. The adversary’s objectives are the same as in Section 7.
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Figure 8: Performance of targeted PGD attacks under different attack budgets ϵ. The x-axis rep-
resents the attack budget ϵ, and the y-axis represents the Attack Reward. Each environment name
represents an adversarial task. The solid line and shaded area denote the mean and the standard
deviation / 2 over 50 episodes.

Figure 8 shows the experimental results. The environment names in the graphs represent adversarial
tasks. For all tasks except drawer-open, we observed improved attack performance when the attack
budget ϵ was set to very large values, such as 1.0 or higher. The window-open task showed par-
ticularly significant performance improvements. We believe this occurs because, with larger attack
budgets, adversarial states that perfectly align the victim’s actions with the target policy’s actions
become available at many steps, leading to overall behavioral alignment between the victim and
target policy.

We attribute the failure of attacks, even at high attack budgets in the drawer-open task, to the victim
never selecting actions that perfectly match the target policy, regardless of the state. In such environ-
ments, step-by-step optimization proves ineffective, suggesting that optimization across the entire
episode would be more beneficial.

G.3 FULL RESULTS IN DEFENSE PERFORMANCE EVALUATION

In our evaluation of defense methods in Section 7, we only provide the results of the best attack. In
this section, we present the results of all attacks in 3. Targeted PGD is ineffective against robustly
trained victims. We observed a trend where the Reward Maximization Attack tended to be slightly
more effective than BIA when attacking highly robust victims. When the victim’s robustness is high,
it becomes difficult to make the victim behave like the target policy, which may cause the learning
process in BIA to fail or collapse. On the other hand, in the Reward Maximization Attack, the
reward serves as a good guidepost, allowing learning to proceed even when the victim’s robustness
is high.

G.4 EFFECT OF REGULARIZATION ON PERFORMANCE

We investigated the impact of time-discounting regularization versus regular regularization on the
Clean Rewards. Figure 9 shows the Clean Rewards when the regularization parameters are varied.
TDRT-PPO (with time discounting) shows less performance degradation than SA-PPO (w/o time
discounting). We can argue that this mitigation of performance degradation occurs because the
upper bound in equation 13 becomes tighter due to time discounting.
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Table 3: Comparison of Defense Methods. Each value is the average episode rewards ± standard
deviation over 50 episodes. Clean Rewards are the rewards for the victim’s tasks (no attack). Best
Attack Rewards are the highest reward among the five types of adversarial attacks. The attack budget
is set to ϵ = 0.3.
Adv Task Methods Clean Rewards (↑) Attack Rewards (↓)

Random Targeted PGD Reward Maximization BIA-ILfD (ours) BIA-ILfO (ours) Best Attack

window-close

PPO 4508 ± 121 947 ± 529 1057 ± 652 4505 ± 65 3962 ± 666 4036 ± 510 4505 ± 65

ATLA-PPO (Zhang et al., 2021) 4169 ± 467 1706 ± 1097 2028 ± 1387 4270 ± 188 2564 ± 787 3063 ± 1515 4270 ± 188
WocaR-PPO (Liang et al., 2022) 2879 ± 1256 480 ± 5 480 ± 5 575 ± 135 381 ± 30 403 ± 29 575 ± 135
SA-PPO (Zhang et al., 2020b) 4367 ± 107 478 ± 5 477 ± 5 485 ± 61 21 ± 12 21 ± 12 485 ± 61
TDRT-PPO (ours) 4412 ± 55 422 ± 56 409 ± 44 482 ± 3 376 ± 43 377 ± 43 482 ± 3

window-open

PPO 4543 ± 39 322 ± 261 296 ± 117 506 ± 444 566 ± 523 557 ± 679 566 ± 523

ATLA-PPO (Zhang et al., 2021) 4566 ± 80 354 ± 257 319 ± 250 547 ± 611 586 ± 649 532 ± 444 586 ± 649
WocaR-PPO (Liang et al., 2022) 3645 ± 1575 287 ± 24 287 ± 24 295 ± 18 247 ± 64 253 ± 60 295 ± 18
SA-PPO (Zhang et al., 2020b) 4092 ± 461 259 ± 46 258 ± 47 272 ± 37 200 ± 57 208 ± 60 272 ± 37
TDRT-PPO (ours) 4383 ± 57 213 ± 54 213 ± 54 229 ± 54 254 ± 214 229 ± 137 254 ± 214

drawer-close

PPO 4714 ± 16 1069 ± 1585 1031 ± 1437 4658 ± 747 4760 ± 640 4626 ± 791 4760 ± 640

ATLA-PPO (Zhang et al., 2021) 4543 ± 102 1004 ± 892 962 ± 1532 4858 ± 6 3919 ± 1808 3919 ± 1808 4858 ± 6
WocaR-PPO (Liang et al., 2022) 4193 ± 304 562 ± 1335 834 ± 1635 3654 ± 1976 4867 ± 8 4838 ± 22 4867 ± 8
SA-PPO (Zhang et al., 2020b) 2156 ± 453 3 ± 1 3 ± 1 3 ± 1 4 ± 2 4 ± 2 4 ± 2
TDRT-PPO (ours) 4237 ± 93 1143 ± 1779 667 ± 1620 4770 ± 1 4860 ± 4 4860 ± 4 4860 ± 4

drawer-open

PPO 4868 ± 6 841 ± 357 825 ± 326 1499 ± 536 1556 ± 607 1445 ± 610 1556 ± 607

ATLA-PPO (Zhang et al., 2021) 4863 ± 7 464 ± 270 421 ± 129 1158 ± 1026 831 ± 653 741 ± 561 1158 ± 1026
WocaR-PPO (Liang et al., 2022) 4704 ± 654 410 ± 9 405 ± 8 579 ± 15 446 ± 28 442 ± 22 579 ± 15
SA-PPO (Zhang et al., 2020b) 4161 ± 1537 368 ± 9 368 ± 9 368 ± 9 403 ± 49 403 ± 49 403 ± 49
TDRT-PPO (ours) 4802 ± 27 378 ± 10 378 ± 10 378 ± 10 357 ± 4 357 ± 4 378 ± 10
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Figure 9: Regularization effect on performance
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