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Abstract
In the interest of interpreting neural NLI mod-001
els and their reasoning strategies, we carry002
out a systematic probing study which inves-003
tigates whether these models capture the cru-004
cial semantic features central to natural logic:005
monotonicity and concept inclusion. Correctly006
identifying valid inferences in downward-007
monotone contexts is a known stumbling block008
for NLI performance, subsuming linguistic009
phenomena such as negation scope and gener-010
alized quantifiers. To understand this difficulty,011
we emphasize monotonicity as a property of a012
context and examine the extent to which mod-013
els capture monotonicity information in the014
contextual embeddings which are intermedi-015
ate to their decision making process. Draw-016
ing on the recent advancement of the probing017
paradigm, we compare the presence of mono-018
tonicity features across various models. We019
find that monotonicity information is notably020
weak in the representations of popular NLI021
models which achieve high scores on bench-022
marks, and observe that previous improve-023
ments to these models based on fine-tuning024
strategies have introduced stronger monotonic-025
ity features together with their improved per-026
formance on challenge sets.027

1 Introduction028

Large, black box neural models which achieve high029

scores on benchmark datasets designed for testing030

natural language understanding are the subject of031

much scrutiny and investigation.032

It is often investigated whether models are able033

to capture specific semantic phenomena which034

mimic human reasoning and/or logical formalism,035

as there is evidence that they sometimes exploit036

simple heuristics and dataset artifacts instead (Mc-037

Coy et al., 2019; Herlihy and Rudinger, 2021).038

In this work, we consider the rigorous setting039

of natural logic (MacCartney and Manning, 2007).040

This is a highly systematic reasoning principle rely-041

ing on only two abstract features, each of which is042

in itself linguistically complex: monotonicity and 043

concept inclusion relations. It underlies the major- 044

ity of symbolic/rule-based and hybrid approaches 045

to NLI and is an important baseline reasoning phe- 046

nomenon to look for in a robust and principled NLI 047

model. 048

Downward monotone operators such as nega- 049

tions and generalized quantifiers result in the kinds 050

of natural logic inferences which are often known 051

to stump neural NLI models that demonstrate 052

high performance on large benchmark sets such 053

as MNLI (Williams et al., 2018). 054

By contrast, in this work we present a structural 055

study: investigating to what extent the features 056

relevant for identifying natural logic inferences, 057

especially context monotonicty itself, are captured 058

in the model’s internal representations. 059

In this work, we carry out a systematic probing 060

study to estimate and compare the extent to which 061

the abstract features at the heart of monotonicity 062

reasoning – i.e., context monotonicity and concept 063

inclusion relations – are present in various NLI 064

models’ representations. 065

Our contributions are may be summarized as 066

follows: 067

1. We perform a structural investigation as 068

to whether the behaviour of natural logic 069

formalisms are mimicked within popular 070

transformer-based NLI models. 071

2. For this purpose, we present a joint NLI and 072

semantic probing dataset format (and dataset) 073

which we call NLI-XY : it is a unique probing 074

dataset in that the probed features relate to the 075

NLI task output in a very systematic way. 076

3. We employ thorough probing techniques to de- 077

termine whether the abstract semantic features 078

of context monotonicity and concept inclusion 079

relations are captured in the models’ internal 080

representations. 081
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4. We observe that some well-known NLI mod-082

els demonstrate a systematic failure to model083

context monotonicity, a behaviour we observe084

to correspond to poor performance on natu-085

ral logic reasoning in downward-monotone086

contexts. However, we show that the existing087

HELP dataset improves this behaviour.088

5. We support the observations in the prob-089

ing study with several qualitative analyses,090

including decomposed error-breakdowns on091

the NLI-XY dataset, representation visualiza-092

tions, and evaluations on existing challenge093

sets.094

2 Related Work095

Natural logic dates back to the formalisms of096

Sanchez (1991), but has been received more re-097

cent treatments and reformulations in (MacCartney098

and Manning, 2007; Hu and Moss, 2018). Sym-099

bolic and hybrid neural/symbolic implementations100

of the natural logic paradigm have been explored in101

(Chen et al., 2021; Kalouli et al., 2020; Abzianidze,102

2017; Hu et al., 2020).103

The shortcomings of natural logic handling in104

various neural NLI models have been shown with105

several behavioural studies, where NLI challenge106

sets exhibiting examples of downward monotone107

reasoning are used to evaluate performance of108

models with respect to these reasoning patterns109

(Richardson et al., 2019; Yanaka et al., 2019b,a;110

Goodwin et al., 2020; Geiger et al., 2020).111

In an attempt to better identify features that neu-112

ral models manage or fail to capture, researchers113

have employed probing strategies: namely, the di-114

agnostic classification (Alain and Bengio, 2018)115

of auxiliary feature labels from internal model116

representations. Most probing studies in natural117

language processing focus on the syntactic fea-118

tures captured in transformer-based language mod-119

els (Hewitt and Manning, 2019), but calls have120

been made for more sophisticated probing tasks121

which rely more on contextual information (Pi-122

mentel et al., 2020).123

In the realm of semantics, probing studies have124

focused more on lexical semantics (Vulić et al.,125

2020): word pair relations are central to monotonic-126

ity reasoning, and thus form part of our probing127

study as well, but the novelty of our work is the task128

of classifying context monotonicity from contex-129

tual word embeddings. Due to its context-sensitive130

nature, it cannot be learnt by “memorizing" the131

labels of specific words in the training data, a key 132

shortcoming in probing studies which focus on 133

tasks such as POS tagging and word-pair relation 134

classification, which have much less dependency 135

on context. 136

3 Problem Formulation 137

3.1 Decomposing Natural Logic 138

Natural logic inferences (as formalized in Sanchez 139

(1991); MacCartney and Manning (2007)) are usu- 140

ally described with respect to substitution opera- 141

tions. Certain word substitutions result in either 142

forward or reverse entailment, while others result 143

in neither. This is the basis for a calculus of de- 144

termining entailment from substitution sequences 145

(MacCartney and Manning, 2007; Hu et al., 2020; 146

Hu and Moss, 2018). 147

Broadly speaking, we wish to determine whether 148

well-known transformer-based NLI models mimic 149

the reasoning strategies of natural logic. However, 150

as neural NLI models are black box classifiers that 151

only see a premise/hypothesis sentence pair as its 152

input, it is not immediate how to compare its pro- 153

cess to a rule-based system. 154

To this end, we consider a formulation of natural 155

logic which describes its rules in terms of concept 156

pair relations and context monotonicity (similar to 157

(Rozanova et al., 2021)). 158

Consider the following example of a single step 159

natural logic inference, which we will decompose 160

into semantic components relevant to its entailment 161

label:

NLI Label

Premise I did not eat any fruit for breakfast.
EntailmentHypothesis I did not eat any raspberries for breakfast.

162

The hyponym/hypernym pair (raspberries, fruit)
exemplifies a more general relation which we will
refer to as the concept inclusion 1 relation @, (and
dually, reverse concept inclusion A) in reference
to the semantic interpretation of predicates related
with subset inclusion, as in:

{x | raspberry(x)} ⊂ {x | fruit(x)}.

In the above example, they occur in a shared 163

context, namely the sentence template 164

1In (MacCartney and Manning, 2007), this is treated
as a “generalized entailment" relation which is defined on
word/phrase pairs and extends to full sentences pairs using
natural logic rules.
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“I did not eat any for breakfast".165

Such a context may be treated as a function f

f : (X ,v)→ (S,⇒)

between a set of concepts X (ordered by the con-
cept inclusion relation) and the set S of full sen-
tences ordered by entailment. We say that f is
upward monotone (↑) if it is order preserving, i.e.

∀X,Y (X v Y implies f(X)⇒ f(Y ))

and that f is downward monotone (↓) if it is order
reversing, i.e.

∀X,Y (X w Y implies f(X)⇒ f(Y )).

Given a natural language context f , any pair166

of grammatically valid insertions (X,Y ) (e.g.167

("raspberries", "fruit")) yields a sentence pair168

f(X), f(Y ). Treating f(X) as a premise sentence169

and f(Y ) as a hypothesis sentence, a trained neural170

NLI model can provide a classification of whether171

f(X) entails f(Y ).172

In summary, these two abstract linguistic fea-173

tures, context montonicity and concept inclusion174

relation, jointly determine the final gold entailment175

label of this type of NLI example.176

Context Monotonicity
mon(f ) ∈ {↑, ↓}

Concept Relation
rel(X,Y) ∈ {=,v,w}

Entailment Label
for (f(X), f(Y))

3.2 NLI-XY Dataset Format177

We follow this formalism as the basis for a dataset178

format, which we refer to as NLI-XY . This is179

the first probing dataset format (and consequently,180

dataset) in NLP where the auxiliary labels for inter-181

mediate semantic features influence the final task182

label in a rigid and determinate (yet simple) way,183

with these features being themselves linguistically184

complex. As such, it is as such a "decomposed"185

natural logic dataset format, where the positive en-186

tailment labels are further enriched with labels for187

the monotonicity and relational properties which188

gave rise to them. This allows for informative qual-189

itative and structural analyses into natural logic190

handling strategies in neural NLI models.191

The NLI-XY dataset format is comprised of the192

following:193

Auxilliary Label

Context f I did not eat any
for breakfast.

↓ (downward mono-
tone)

Insertion Pair (X,Y) (fruit, raspberries) A (reverse concept
inclusion)

NLI Label

Premise f(X) I did not eat any fruit
for breakfast.

Entailment

Hypothesis f(Y ) I did not eat any rasp-
berries for breakfast.

Table 1: A typical NLI-XY example with labels for con-
text monotonicity, lexical relation and the final entail-
ment label.

1. A set of contexts f with a blank position in- 194

dicated with an ‘x’, marked for the context 195

monotonicity label. 196

2. A set of insertion pairs (X,Y ), which are 197

either words or phrases, labeled with the con- 198

cept inclusion relation. 199

3. A derived set of premise and hypothesis pairs 200

(f(X), f(Y ) made up of permutations of 201

(X,Y ) insertion pairs through contexts f , con- 202

trolled for grammaticality as far as possible. 203

The premise/hypothesis pairs may thus be used as 204

input to any NLI model, while the context mono- 205

tonicity and insertion relation information can be 206

used as the targets of an auxiliary probing task on 207

top of the model’s representations. 208

4 NLI-XY Dataset Construction 209

We make our NLI-XY dataset and all the experi- 210

mental code used in this work is publically avail- 211

able 2. We constructed the NLI-XY dataset used 212

here as follows: 213

Context Extraction We extract context exam- 214

ples from two NLI datasets which were designed 215

for the behavioural analysis of NLI model perfor- 216

mance on monotonicity reasoning. In particular, 217

we use the manually curated evaluation set MED 218

(Yanaka et al., 2019a) and the automatically gen- 219

erated HELP training set (Yanaka et al., 2019b). 220

By design, as they are collections of NLI examples 221

exhibiting monotonicity reasoning, these datasets 222

mostly follow our required (f(X), f(Y )) structure, 223

and are labeled as instances of upward or down- 224

ward monotonicity reasoning(although the contexts 225

are not explicitly identified). 226

2Anonymized github link.
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We extract the common context f from these227

examples after manually removing a few which228

do not follow this structure (differing, for exam-229

ple, in pronoun number agreement or prepositional230

phrases). We choose to treat determiners and quan-231

tifiers as part of the context, as these are the kinds232

of closed-class linguistic operators whose mono-233

tonicity profiles we are interested in. To ensure234

grammatically valid insertions, we manually iden-235

tify whether each context as suitable either for a236

singular noun, mass noun or plural noun in the237

blank/x position.238

Insertion Pairs Our (X,Y ) insertion phrase239

pairs come from two sources: Firstly, the la-240

beled word pairs from the MoNLI dataset (Geiger241

et al., 2020), which features only single-word242

noun phrases. Secondly, we include an additional243

hand-curated dataset which has a small number of244

phrase-pair examples, which includes intersective245

modifiers (e.g. (brown sugar, sugar)) and prepo-246

sitional phrases (e.g. (sentence, sentence about247

oranges)). Several of these examples were drawn248

from the MED dataset. Each word in the pair is249

labelled as a singular, plural or mass noun, so that250

they may be permuted through the contexts in a251

reasonably grammatical way.252

Premise/Hypothesis Pairs Premise/Hypothesis253

pairs are constructed by permuting insertion pairs254

through the set of contexts within the grammatical255

constraints. Note that the data is split into train, dev256

and test partitions before this permutation occurs,257

so that there are no shared contexts or insertion258

pairs between the different data partitions, in an259

attempt to avoid overlap issues such as those dis-260

cussed in (Lewis et al., 2021)261

5 Experimental Setup262

Our experiments are designed to investigate the263

following questions: Firstly, to what extent do264

different NLI models differ in their encoding of265

context monotonicity and lexical relational knowl-266

edge? Secondly, if a model successfully captures267

these features, to what extent do they correspond268

with the model’s predicted entailment label? We269

investigate these questions with a detailed probing270

study and a supporting qualitative analysis, using271

decomposed error break-downs and representation272

visualization.273

Context Monotonicity
Partition (X,Y) Relation Up ↑ Down ↓ Total

train v 671 543 1214
A 671 543 1214
None 244 222 466
Total 1586 1308 2894

dev v 598 389 987
A 598 389 987
None 220 242 462
Total 1416 1020 2436

test v 1103 1066 2169
A 1103 1066 2169
None 502 516 1018
Total 2708 2648 5356

Table 2: Dataset statistics for the NLI-XY dataset. We
employ an aggressive 30, 20, 50 train-dev-test split for
a more impactful probing result.

5.1 Models and Representations 274

We consider a selection of neural NLI models based 275

on transformer language models (such as BERT 276

(Devlin et al., 2019), RoBERTa (Liu et al., 2019) 277

and BART (Lewis et al., 2020)) which are fine- 278

tuned on one of two benchmark training sets: either 279

SNLI (Bowman et al., 2015) or MNLI (Williams 280

et al., 2018). Of particular interest, however, is 281

the case where these models are trained on an ad- 282

ditional dataset (the HELP dataset from (Yanaka 283

et al., 2019b)) which was designed for improving 284

the overall balance of upward and downward mono- 285

tone contexts in NLI training data. We use our own 286

random 50 − 30 − 20 train-dev-test split of the 287

HELP dataset (ensuring unique contexts in every 288

split), so that there is no overlap of contexts be- 289

tween the fine-tuning data and the few HELP-test 290

examples we used as part of our NLI-XY dataset3. 291

5.2 Probing 292

The NLI-XY dataset is equipped with two auxiliary 293

feature labels which are the targets of the probing 294

task: context monotonicity and the relation of the 295

(X,Y ) phrase pair (referred to henceforth as either 296

concept inclusion relation or lexical relation). 297

5.2.1 Models and Representations 298

For each auxiliary task, we use simple linear model 299

architectures as the probes. We train 50 probes of 300

varying complexities using the probe-ably frame- 301

work (Ferreira et al., 2021). The target of the prob- 302

ing study is the classification token of the final 303

3We use the transformers library (Wolf et al., 2020) and
their available pretrained models for this work.
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Figure 1: Probing results for all examined models.

layer of each model, as is used for the final NLI304

classification decision.305

5.2.2 Probe Complexity Control306

The complexities are represented and controlled as
follows: For linear models ŷ =Wx+b, we follow
(?) in using the nuclear norm

||W||∗ =
min(|T |,d)∑

i=1

σi(W).

of the matrix W as the approximate measure of307

complexity. In cases where the auxiliary task has308

a relatively large number of classes, the rank has309

been used as the proxy measure of model complex-310

ity (Hewitt and Manning, 2019). As the nuclear311

norm is a convex approximation of the rank of the312

transformation matrix, it is used in (Pimentel et al.,313

2020), where this allows for a larger number of314

informative values.315

5.2.3 Metrics and Control Tasks316

Accuracy and Selectivity Naively, a strong ac-317

curacy on the probing test set may be understood318

to indicate strong presence of the target features 319

within the learned representations, but there has 320

been much discussion about whether this evidence 321

is compelling on its own. In fact, certain probing 322

experiments have found the same accuracy scores 323

for random representations (Zhang and Bowman, 324

2018), indicating that high accuracy scores are 325

meaningless in isolation. Hewitt and Liang (2019) 326

describe this as a dichotomy between the repre- 327

sentation’s encoding of the target features and the 328

probe’s capacity for memorization, and propose 329

the use of the selectivity measure to always place 330

the probe accuracy in the context of a controlled 331

probing task with shuffled labels on the same vec- 332

tor representations. For each fully trained probe, 333

we report both the test accuracy and the selectivity 334

measure: tracking the selectivity ensures that we 335

are not using a probe that is complex enough to be 336

overly expressive to the point of having the capacity 337

to overfit the randomised control training set. 338

Control Task The selectivity score is calculated 339

with respect to a control task. At its core, this is 340
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Feature Probing NLI Monotonicity Challenge Sets

NLI Models Fine-Tuning
Data

Context
Monotonicity

(%*)

XY Insertion
Relation

(%*)

HELP-Test
(%)

MED
(%)

NLI-XY
(%)

roberta-large-mnli - 71.0 84.0 36.69 46.10 59.01
roberta-large-mnli HELP 82.0 78.0 97.63 78.22 80.68

roberta-large-mnli
HELP,
HELP-Contexts

84.0 76.0 87.17 76.44 79.29

facebook/bart-large-mnli 76.0 48.0 43.61 46.54 60.59
facebook/bart-large-mnli HELP 76.0 56.0 88.99 77.16 79.3417

bert-base-uncased-snli 77.0 50.0 63.55 0.4938 49.09
bert-base-uncased-snli HELP 77.0 51.0 66.80 0.4613 44.79

Table 3: Summary NLI challenge test set and probing results for all considered models. ∗Probing results are
summarized with the accuracy at max selectivity.

just a balanced random relabelling of the auxil-341

iary data, but (Hewitt and Liang, 2019) advocate342

for more targeted control tasks with respect to the343

features in question and a hypothesis about the344

model’s possible capacity for memorization. For345

example, in their control task for POS tagging, they346

assign the same label to each instance of a word’s347

surface form (“word type") to account for possi-348

ble lexical memorization. By construction, our349

context monotonicity classification task is much350

more context-dependant and balanced: a given X351

insertion will occur about as often in upward and352

downward monotone contexts, making it harder353

for a probe to exploit meaningless heuristics, such354

as associating a given word with a context mono-355

tonicity label. For the lexical relation classification356

control task, we assign a shared random label for357

all identical insertion pairs, regardless of context.358

5.3 NLI Challenge Set Evaluations359

As well as the NLI-XY dataset (which can func-360

tion as an ordinary NLI evaluation set), for com-361

pleteness we report NLI task evaluation scores on362

the full MED dataset (Yanaka et al., 2019a), which363

was designed as a thorough stress-test of mono-364

tonicity reasoning performance. Furthermore, we365

report scores on the HELP-test set (from the dataset366

split in (Rozanova et al., 2021)): this data partition367

was not used in the fine-tuning of models on HELP,368

but we include the test scores here for insight.369

5.4 Qualitative Analyses370

To complement the probing and NLI results, we371

make two additional comparisons that may qualify372

the observations.373

Decomposed Error Analysis The composi- 374

tional structure and auxiliary labels in the NLI- 375

XY dataset allow for extensive qualitative analysis. 376

Firstly, we construct decomposed error analysis 377

heatmaps which indicate whether a given premise- 378

hypothesis data point f(X), f(Y ) is correctly clas- 379

sified by an entailment model. For brevity (and 380

because this is representative of our observations), 381

we include only the error breakdowns for the two 382

sublasses of the positive entailment label: where 383

the context monotonicity is upward and lexical re- 384

lation is forward incusion, and where the context 385

monotonicity is downward and the lexical relation 386

is reverse inclusion. 387

Representation Visualization We store the clas- 388

sification token ([CLS]) of the model’s last hidden 389

layer and project it into a lower-dimensional space 390

using the umap library (McInnes et al., 2018) with 391

the default configuration. To qualify the context 392

monotonicity probing results, we label the points 393

according to the gold context monotonicity / con- 394

cept relation labels. 395

6 Results and Discussion 396

6.1 Probing Results 397

The results for the linear probing experiments for 398

both the context monotonicity classification task 399

and the lexical relation classification task may be 400

found in figure 1. The results of the control tasks 401

are taken into account as part of the selectivity mea- 402

sure, which is represented on the right hand plot 403

for each experiment. It is particularly notable that 404

large datasets trained only on the MNLI dataset 405

have inferior performance on context monotonicity 406

classification. This corresponds with the further 407

qualitative studies, suggesting that even in some of 408
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(a)
(b)

(c)
(d)

Figure 2: Decomposed error heat maps for portions of the NLI-XY dataset corresponding to the indicated context
monotonicity and insertion relations (blank positions are present as only grammatical insertions were included in
the dataset.)

the most successful transformer-based NLI models,409

there is a poor “understanding" of the logical reg-410

ularities of contexts and how these are altered with411

downward monotone operators.412

6.2 Comparison to Challenge Set413

Performance414

Evaluation on the challenge test sets is relatively415

consistent with monotonicity probing performance,416

in the sense that there is a correspondence between417

poor/successful modeling of monotonicity features418

and poor/successful performance on a targeted nat-419

ural logic test set. As these challenge sets are fo-420

cused on testing monotonicity reasoning, this is a421

result which strongly bolsters the suggestion that422

explicit representation of the context monotonicity423

feature is crucial, especially for examples involving424

negation and other downward monotone operators.425

Furthermore, we generally confirm previous results426

that additional fine-tuning on the HELP data set427

has been helpful for these specialized test sets, and428

add to this that it similarly improves the explicit ex-429

tractability of relevant context montonicity features430

from the latent vector representations. 431

6.3 Qualitative Analyses 432

Error Break-Downs We are less concerned with 433

the accuracy score (on NLI challenge sets) of a 434

given model as with the behavioural systematic- 435

ity visible in the errors, as we are not interested 436

in noisy errors which may be due to words or 437

phrases from outside the training domain. Con- 438

sistent mis-classification for all examples derived 439

from a fixed context or insertion pair are actually 440

also strongly suggestive of a regularity in reason- 441

ing. The decomposed error analyses paint a striking 442

picture: we generally see that models trained on 443

MNLI routinely fail to distinguish between the ex- 444

pected behaviour of upward and downward mono- 445

tone contexts, despite generally achieving high ac- 446

curacies on large benchmark sets. This is in accor- 447

dance with observations in Yanaka et al. (2019b) 448

Yanaka et al. (2019a), where low accuracy on the 449

downward-monotone reasoning sections of chal- 450

lenge sets points to this possibility. Howver, they 451

show consistently show strong behavioural regular- 452
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(a) roberta-large-mnli-help (b) roberta-large-mnli-help

(c) roberta-large-mnli (d) roberta-large-mnli

Figure 3: UMAP projections of selected classification token representations comparing roberta-large-mnli
and the improved roberta-large-mnli-help, which shows greater distinction between context monotonic-
ity features.

ity with respect to concept inclusion. Even when453

the contexts are downward monotone, they still454

treat them systematically as if they were upward455

monotone, echoing the concept insertion pair re-456

lation only: they completely fail to discriminate457

between upward/downward monotone contexts and458

their opposite behaviours.459

Visualization Each data point corresponds to460

an embedded example ([CLS]) in the NLI-XY461

dataset, with the left and right columns colored462

with the gold auxiliary labels for context mono-463

tonicity and concept inclusion relations respec-464

tively. These illustrate the probing observations: in465

the well-known roberta-large-mnli model,466

concept inclusion relation features are distinguish-467

able, whereas context monotonicity is very ran-468

domly scattered, with no emergent clustering. How-469

ever, the roberta-large-mnli-help model470

shows an improvement in this behaviour, demon-471

strating a stronger context monotonicity distinc-472

tion.473

7 Conclusion 474

In summary, the NLI-XY has enabled us to present 475

evidence that explicit context monotonicity feature 476

clustering in neural model representations seems to 477

correspond to better performance on natural logic 478

challenge sets which test downward-monotone rea- 479

soning. In particular, many popular models trained 480

on MNLI seem to lack this behaviour, accounting 481

for previous observations that they systematically 482

fail in downward-monotone contexts. 483

Furthermore, the probes’ labels also have some 484

explanatory value: both entailment and non- 485

entailment labels can each further be broken down 486

into sub-regions. This qualifies the classification 487

with the observations that the data point occurs in 488

a cluster of examples with a) upward (resp. down- 489

ward) contexts and b) a forward (resp. backward) 490

containment relation between the substituted noun 491

phrases. In this sense, the analyses in this work 492

can thus be interpreted as an explainable “decom- 493

position" of the treatment natural logic examples 494

in neural models. 495
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