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Abstract

We study the robustness of data-centric methods to find neural network architectures, known
as neural architecture search (NAS), against data poisoning. To audit this robustness, we
design a poisoning framework that enables the systematic evaluation of the ability of NAS
to produce architectures under data corruption. Our framework examines three off-the-shelf
NAS algorithms, representing different approaches to architecture discovery, against four
data poisoning attacks, including one we tailor specifically for NAS. In our evaluation with
the CIFAR-10 benchmark, we show that NAS is seemingly robust to data poisoning, showing
marginal accuracy drops even under large poisoning budgets. However, we demonstrate that
when considering NAS algorithms designed to achieve a few percentage points of accuracy
gain, this expected improvement can be substantially diminished under data poisoning.
We also show that the reduction varies across NAS algorithms and analyze the factors
contributing to their robustness. Our findings are: (1) Training-based NAS algorithms are
the least robust due to their reliance on data. (2) Training-free NAS approaches are the most
robust but produce architectures that perform similarly to random selections from the search
space. (3) NAS algorithms can produce architectures with improved accuracy, even when
using out-of-distribution data like MNIST. We lastly discuss potential countermeasures.

1 Introduction

Recent years have seen success stories of a data-centric approach to designing neural network architectures,
namely neural architecture search (NAS) (Liu et all |2018bj |[Real et al., 2019; |Liu et al., 2018a}; |Zoph &
Lel 2017, [Zoph et al., [2018]). Given a dataset and a predefined search space of architectural choices, NAS
algorithms iteratively explore architectures that optimize specific objectives. A common objective is to
maximize validation accuracy: during search, NAS selects architectures that perform the best on the data.
This approach has shifted the paradigm from manual engineering to automated neural network design,
facilitating the improvement of seminal architectures such as Transformers (So et al.| [2019).

Research has warned that approaches to “learning” system internals from external data may introduce a
critical risk—data poisoning. A data poisoning adversary compromises a subset of the training data with the
objective of inducing malicious outcomes. Most existing work on poisoning attacks focuses on adversaries
who manipulate the training process of neural networks and induce multitudes of adversarial effects to trained
models, such as performance degradation (Steinhardt et al., |2017} [Lu et al 2022; [2023} Zhao & Lao, 2022]),
backdoors (Geiping et al., 2021; [Huang et al., 2020; Shafahi et al., 2018; |Aghakhani et al., [2021)), or the
leakage of sensitive information (Wen et al., [2024; |Chen et al.l 2022). However, to the best of our knowledge,
it remains an open question whether an adversary can, by only compromising the data—without altering the
search algorithm—mnegate the benefits of NAS and cause it to produce “sub-optimal” architectures.

In this work, we address this knowledge gap by studying the following research question: How wvulnerable are
NAS algorithms to data poisoning attacks? We particularly focus on the performance improvements achieved
by architectures produced by NAS and assess how data poisoning can undermine these gains. Poisoning
adversaries can introduce adversarial distributional shifts, such that when the compromised data is used for
architecture search, the victim NAS algorithm generates architectures that deviate significantly from optimal,
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leading to, for instance, degraded performance. This threat is particularly alarming because NAS is purely
empirical, making it challenging to identify whether generated architectures are truly sub-optimal.

1.1 Contributions

We first present a framework for systematically studying the robustness of NAS algorithms against data
poisoning. Designed for auditing purposes, the framework operates under a white-box assumption, where the
adversary has knowledge of the NAS algorithms. But certain poisoning attacks do not require such knowledge
and can be performed in a black-box manner. Our framework includes four poisoning attacks, one specifically
tailored for NAS. We also develop a testing methodology and a metric for quantifying the performance gains
of architectures produced through NAS.

Second, we comprehensively evaluate NAS algorithms using our framework. To conduct a systematic
comparison, we carefully choose three recent NAS algorithms that share the same search space but operate
using different paradigms: training-based, training-free, and hybrid. We run each attack ten times, exceeding
the standard practices established in prior work (Liu et al.; 2019). We make the following intriguing findings:

(1) The NAS algorithms we examine are seemingly robust to data poisoning attacks, when evaluated using
the standard metric, accuracy. But, when assessed with our proposed metric, their performance gains
are significantly degraded—Dby as much as 93%.

(2) Training-based NAS is the most vulnerable to poisoning, whereas training-free methods show the most
resilience. However, when run on clean data, training-based methods produce architectures with the
highest accuracy, followed by hybrid approaches, while training-free methods achieve the lowest accuracy,
suggesting a potential utility-robustness trade-off.

(3) Our in-depth analysis raises open questions. Training-free algorithms show insensitivity to the training
distribution and generate architectures that perform comparably to those randomly selected from the
search space, questioning their ability to find high-quality, dataset-specific architectures.

(4) The NAS algorithms we examine, even when run on out-of-distribution data—such as using MNIST for
discovering CIFAR-10 architectures—still produce architectures that perform well, and in some cases,
even outperform those found using CIFAR-10 itself.

We lastly review existing defenses against poisoning attacks, with a focus on their applicability to NAS. We
evaluate two defenses and demonstrate that they are ineffective in mitigating the impact of data poisoning.

2 Preliminaries

Neural architecture search (NAS) is an automated technique for designing neural network architectures.
Given a dataset, search space, and objective, NAS algorithms iteratively sample architectures from the search
space and select the best-performing candidates. The search space defines the possible architectural choices,
including layer types, configurations, and connections. The sampling process is designed to optimize the
given objective, typically validation performance (Liu et all|2019; Pham et al., [2018} |Zoph & Le, [2017). But
recent studies incorporate additional objectives, such as latency and computational efficiency (Cai et al.
2019; 'Tan et al., [2019; |Lu et al.l [2019; 2020)).

Differentiable NAS enhances efficiency by formulating architecture search as a continuous optimization
problem (Liu et al., [2019; |Cai et al., [2019; [ Xu et al., [2020)). Instead of sampling discrete candidates from the
search space, these algorithms train a supernet that encodes all possible architectures. The supernet includes
architectural parameters that weight different operations in the forward pass. These operations are commonly
fused as follows:

i exp (a(oi’j))
#9(5) = ¥ ) ola).
0e0 ZO/GO exp (ao/7 )
where O is the set of candidate operations, and oz((f’j ) is the architectural parameter that weights operation o
between layers ¢ and j. This formulation enables bi-level optimization, where architectural parameters and
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supernet weights are optimized simultaneously. A final discretized architecture is derived by selecting the
highest-weighted operations.

Training-free and hybrid NAS are more recent approaches that forgo architecture training and instead
assess candidates with efficient-to-compute training-free metrics (He et al., 2024; |Chen et al.| 2021} [Shu
et al., |2022bfa)). These metrics estimate architecture quality based on expressivity (Xiong et al. [2020),
trainability (Jacot et al., 2018)), and other data-agnostic properties and can be computed orders of magnitude
faster than full model training. Training-free NAS selects architectures solely based on these metrics, bypassing
model training. Hybrid NAS balances efficiency and performance by incorporating limited training—e.g., to
inform Bayesian optimization-guided search (Shu et al., [2022b; |He et al., [2024; |Shen et al., [2023).

Data poisoning is a training-time attack where the attacker injects carefully crafted poisoned samples into
the victim’s training data to induce the models trained on the compromised data to behave maliciously. A
typical objective of poisoning attacks is indiscriminate performance degradation (Steinhardt et al. [2017;|Zhaol
& Lao, [2022; He et all 2023; |Lu et al., [2023)), while targeted attacks cause misclassification of specific test
samples (Shafahi et al.; 2018} [Aghakhani et al., 2021} |Huang et al., [2020; |Geiping et al.| [2021)), increase privacy
leakage of sensitive training data (Wen et al., |2024; |Chen et al., |2022), or teach models to misclassify inputs
with a learned trigger pattern (known as backdooring) (Gu et al.; 2019; Liu et al., 2018¢c|). Our work studies
indiscriminate attacks in a new setting: we deviate NAS algorithms from finding optimal architectures.

3 The Auditing Framework

3.1 Threat Model

)

We consider a data-poisoning adversary that exploits the inherent vulnerability of NAS, a “data-centric’
approach for finding optimal neural network architectures. The attacker aims to degrade the performance of
architectures produced by the victim’s NAS algorithm when it is run on tampered data. By manipulating
the data used in the search process, the adversary can mislead NAS into selecting suboptimal architectures.
This is particularly a problem because there is no oracle that can determine the best or worst architectures
NAS can discover before running the search. In consequence, the victim has to trust that the identified
architecture is optimal, even if it has been manipulated to be suboptimal.

Capabilities. We assume that the attacker has the capability to compromise the dataset used for running
NAS algorithms. Recent studies demonstrate that large-scale data poisoning is practical (Carlini et al., 2024]),
e.g., an attacker can host malicious images on publicly accessible websites, such as GitHub Pages, to increase
the likelihood that the victim will collect and use these poisoned samples. The scale makes it challenging
to manually filter out suspicious samples. We denote the attacker’s poisoning budget as p. Prior studies
consider a ~1% budget practical, but we also consider scenarios where the adversary compromises up to 50%
of the entire dataset to assess the upper bound of each attack’s impact.

Knowledge. Because we focus on auditing, we assume a white-box adversary with knowledge of the victim’s
NAS algorithm. However, we emphasize that only one of the four poisoning attacks we evaluate requires this
assumption, while the remaining three can operate in a black-box manner.

3.2 (Our) Data Poisoning Attacks

We conduct our evaluation on image classification benchmarks, where existing poisoning attacks against
models trained for this task are broadly categorized into two types: dirty-label attacks, which manipulate
the labels of training samples, and clean-label attacks, which subtly modify images while preserving labels.
A naive attacker may not employ a sophisticated strategy but instead randomly manipulate either labels
or images. In contrast, an advanced adversary leverages carefully-designed poison-crafting algorithms to
maximize the impact of their poisoning samples. We consider these axes comprehensively and include the
following four poisoning attacks in our framework:
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Dirty-label poisoning attacks. The first attack we consider is random label-flipping (RLF), which flips
training data labels to randomly chosen alternatives. RLF serves as a measure of the impact of label noise on
NAS performance (Northcutt et al., [2021).

In contrast, a sophisticated adversary may flip labels in a manner that maximizes performance degradation.
To test against this adversary, we also develop confidence-based label-flipping (CLF). CLF attacks select labels
to flip based on the confidence of a pre-trained (surrogate) neural network. We first rank all the training
samples based on the surrogate model’s prediction probabilities—i.e., the logit value of each sample’s most
likely class. Next, we flip the labels to the least likely classes. By compromising samples that a surrogate
model classifies with high confidence, CLF increases task complexity, making it more difficult for NAS to
effectively “learn” optimal architectures compared to RLF. We show the detailed algorithm in Algorithm [T}

Algorithm 1 Confidence-Based Label-Flipping
Require: Surrogate model F(-), training images and labels (z;, ;) , poisoning budget p.

1: Initialize empty array for logits: Z « {}

2: fori=1,2,...,ndo

3: Zi F(l‘z)

4:  Z.append((z;, z;)) // store logits of ' training example

5: end for

6: Sort Z by max(z;) for all (z;, ;) in decreasing order // sort by maximum logit to find the most confident
samples

7: Initialize array for poisons: P < {}
8 fori=1,2,...,npdo
9:  (2},x}) « Z;

10:  y, = argmin(z}) // set new label to least confident class
11:  P.append((x},v;))
12: end for

13: return poisoned samples P

Clean-label poisoning attacks. We first consider Gaussian noise, which represents the weakest form of a
clean-label attack. It adds Gaussian random noise ~ N(0, o2I) to datasets. While not typically classified as a
data poisoning attack, it has been extensively studied as an image-level corruption (Hendrycks & Dietterich|
2019; [Rusak et al., 2020). To ensure meaningful perturbations without overly degrading image quality, we set
o to 16 and bound the noise using an f,,-norm of 16-pixels.

We also employ gradient canceling (GC) (Lu et al., [2023)), the current state-of-the-art, clean-label, indiscrimi-
nate attack. It first utilizes the GradPC framework (Sun et al., |2020) to generate a set of target parameters
(weights and biases) that are close to the model’s original parameters, yet lead to degraded performance. GC
then crafts poisoning samples that, when injected into the training data, manipulate the training dynamics.
They induce gradient updates that counteract those from clean data, effectively forcing the model to converge
to the target parameters generated by GradPC.

Moreover, we adapt the existing GC attacks for NAS, introducing NAS-specific GC, which varies on the
victim’s NAS algorithm. For training-free and hybrid NAS, instead of crafting poisoning samples based on
predefined target model parameters, we generate them using the parameters of the final architectures trained
on clean data. For training-based NAS algorithms, we adapt GC to target the architecture parameters from
which gradient-based poisoning can be derived. This ensures that the poisoning process directly influences
the architecture selection process, rather than targeting a fixed-trained model. Here, we assume the attacker
has knowledge of the victim’s NAS algorithm and its selection process.

We present the final attack in Algorithm [2} We adopt the official GC implementation (Lu et al., |2023)) with
a few minor modifications. The original work uses SGD with momentum for optimization, but we employ
Adam (Kingma & Bal 2017) as we find it consistently produces lower-loss poisons. It also does not consider
the standard perturbation bounds in the clean-label literature (Huang et al.l |2020; (Geiping et al., 2021;
Aghakhani et al., [2021). To achieve consistency with prior work, we introduce an ¢,-norm bound moderated
by the hyperparameter e. We did not observe substantial differences in attack success when using € = 16.
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Algorithm 2 Gradient Canceling [Lu et al.| (2023)
Require: Victim model {F(-), 0}, training images and labels (z;,y;)" ;, poisoning budget p, perturbation
bound &, number of optimization steps S.
Randomly sample a subset P C {x;,y;}"_; of size np as poisons
Initialize perturbation mask: A € R"*¢ // C is the size of one image
Compute gelean %Zyzl Veﬁxe(F(Iz% yz)
fort=1,2,...5do
Apply poison mask: P’ < (z; + Aj)z,ep
Compute gady ﬁ 2 (iierr VoLxe(F (i), y:)
Compute loss: L  £[[(1 = p) - gelean + P * Gadvl|3 // “cancels” clean gradients with poisons
Update A with a step of Adam
Project A onto ||Allee < €
end for
: return poisoned samples (z; + A, i)z, eP

— =
= O

For TE-NAS and RoBoT, F(-) is a fully trained architecture from the search space, and 6 its weights and
biases. To craft poisons on P-DARTS, F'(-) is set to a converged supernet and 6 its architectural parameters
controlling the weight of operations in the forward pass. In both cases, we first perturb the target parameters
0 using GradPC (Sun et al.| |2020)), which performs bounded parameter updates that increase the cross-entropy
loss to decrease performance. We refer readers to the original work (Lu et al., |2023)) for more details.

3.3 Testing Methodology and Metric

Methodology. Our primary objective is to evaluate the impact of data poisoning on architectures produced
by NAS algorithms. To achieve this, we carefully design our testing methodology to isolate the impact of
poisoning samples on the architecture selection process while ensuring that model training remains unaffected.
In all our experiments, we run NAS algorithms on the tampered data to select architectures, but we train
the generated architectures from scratch using clean data. This approach makes sure that any observed
degradation in performance is attributable solely to the influence of poisons on NAS, rather than on the
training process itself—i.e., model parameters are not affected by poisons.

Metrics. The standard metric for assessing the impact of poisoning attacks is classification accuracy (or
accuracy). A straightforward approach to measuring attack effectiveness is to evaluate the accuracy of
architectures produced by NAS algorithms after being trained from scratch on clean data. However, accuracy
alone is not a sufficient metric to fully capture the impact of data poisoning on architectures. NAS algorithms
are not designed to transform poor architectures into good architectures; rather, they aim to refine good
architectures into great ones. Even without NAS, existing architectures (or architectures randomly sampled
from the search space) already achieve over 95% accuracy on CIFAR-10, and the improvements reported in
prior work are typically a few percentage points, e.g., from 95% to 97%. To better quantify the impact of
poisoning attacks on the improvement NAS provides, we design an additional metric Almprovement (Almp.):
the percentage point change in accuracy between the architecture produced by a NAS algorithm running on
tampered data and an architecture randomly sampled from the same search space. Almp. better captures
how poisoning attacks degrade the intended performance gains of NAS.

3.4 Selection of NAS Algorithms

We consider NAS algorithms based on the following criteria: (1) Comprehensiveness—we ensure the in-
clusion of diverse NAS approaches: training-based, training-free, and hybrid algorithms; (2) Recency and
representativeness—we prioritize NAS algorithms that have been recently introduced and are gaining popu-
larity; and (3) Computational efficiency—because running NAS algorithms can take from a few to hundreds
of GPU hours, we select those that can be efficiently run within a few hours on a single GPU.

P-DARTS (Chen et al.l [2019) is a training-based algorithm that builds upon the seminal work DARTS (Liu
et al., 2019)). It employs a differentiable supernet and optimizes architectural parameters—which determine
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the importance of different operations—via gradient descent. The key advance from DARTS is a progressive
search strategy, which gradually increases the supernet’s layer count, allowing the search to occur in a space
more representative of final architectures. Both P-DARTS and DARTS are popular differentiable NAS, but
DARTS (Liu et al.) 2019) suffers from computational complexity and training instability (Chen et al.| [2019;
Xu et al} [2020; [Chu et al) 2021). P-DARTS addresses these problems and runs faster than DARTS.

TE-NAS (Chen et all 2021)) is a training-free algorithm that evaluates a network’s performance based on
trainability and expressivity. Trainability is measured using the condition number of the neural tangent
kernel (Jacot et al., [2018), while expressivity is quantified by the number of linear regions in the activation
space. These metrics guide an iterative pruning process on a NAS supernet until a final, discretized architecture
is produced. Recent studies (He et al., |2024; |Shu et al., [2022b) find TE-NAS to be one of the most effective
training-free algorithms, which, along with its popularity, makes it a strong candidate for our study.

RoBoT (He et al., [2024]) is a hybrid NAS that combines training-free metrics with Bayesian optimization
(BO). It first samples architectures from the search space and computes multiple training-free metrics. BO
then optimizes a weighted combination of these metrics based on validation accuracy (measured after a
few training epochs) as the objective function. The architecture with the highest weighted score is chosen.
We choose RoBoT for our study as it is the most recent and effective hybrid NAS. It also employs a BO
framework similar to prior works (Shen et al., 2023} |Shu et all 2022b)), making it representative.

4 Empirical Evaluation
Now we utilize our framework to audit the robustness of NAS against data poisoning.

4.1 Experimental Setup

Hardware and software. We use Pythoxﬂ with PyTorchE| for all experiments, with version varying
depending on the NAS algorithm. We run experiments on a system with a 48-core Intel Xeon Processor,
768GB of memory, and 8 NVIDIA A40 GPUs.

NAS algorithms. We use the official PyTorch implementation of all NAS algorithms (Chen et al.l 2021} |[He
et al., 2024} (Chen et al., [2019)) introduced in We use the same hyperparameters as in the original works
and add functionality for inserting poisons before searching. To obtain a fully trained network, we run the
NAS search algorithm on the poisoned training data, save the final architecture, and retrain the architecture
from scratch for 600 epochs on clean data. We retrain all architectures using the P-DARTS (Chen et al.|
2019) training implementation with the default hyperparameters.

NAS search space. We adopt the popular DARTS search space (Liu et al. [2019)), which is defined by three
factors: the number of internal nodes, the incorporation of prior states, and the set of candidate operations.
These factors are used to build a cell, which is stacked to build the final architecture after searching. The
candidate operations are: {none, 3x3 max pooling, 3x3 average pooling, skip connection, 3x3 separable
convolution, 5x5 separable convolution, 3x3 dilated convolution, 5x5 dilated convolution}, where none denotes
the absence of a connection between two nodes. Following prior work, we search over architectures with
four internal nodes, each of which incorporates the previous two states (i.e., candidate operations from those
states are applied to the internal nodes). The original work estimates that this search space contains ~ 108
possible architectures, without accounting for graph isomorphisms.

Poison crafting. We run our evaluation with CIFAR-10 (Krizhevskyl [2009). To craft poisons, we randomly
select {1,10,50}% of the training data and run the poisoning attacks from In our CLF attack, we use a
ResNet-18 (He et al.l |2016]) model trained on CIFAR-10 as the surrogate classifier. The target parameters
for GC depend on the NAS algorithm: for TE-NAS and RoBoT, we use the weights and biases of final
architectures, while for P-DARTS, we use the architectural parameters of the supernet. For both, we set
the highest accuracy networks on clean data (out of ten trials) as the target and craft poisons for 250 steps.
Following the standard setting in prior work (Huang et al., 2020; |Geiping et al., 2021} |Aghakhani et al., 2021]),

IPython: https://www.python.org
2PyTorch: https://pytorch.org/
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we apply fo-norm bounds of € = 16 to all clean-label perturbations. Figure [l shows examples of the crafted
poisons and their clean counterparts.

Horse Deer Automobile Bird

Clean

Noise

GC

Figure 1: Visualization of poisons. A comparison of six randomly drawn images in CIFAR-10. Clean
refers to clean samples, GC is the gradient canceling attack (2023), and Noise is Gaussian noise.
The other attacks we employ, random and confidence-based label flipping, use clean images but modify labels.

Table 1: Robustness of NAS to data poisoning. We report the accuracy (Acc.) and percentage-point
change from random sampling (AImp.). Each cell contains the mean over ten trials with the standard
deviation. p is the poisoning budget. We underline and bold statistically significant results.

Poisonine attack P-DARTS RoBoT TE-NAS
& p Acc. Almp. Acc. Almp. Acc. Almp.
No attack | - | 97.32+£007 058 |96.99£020 025 |96.80+040  0.07

1% 97.33 £ 0.12 0.60 97.10 &+ 0.10 0.36 96.91 & 0.29 0.17
Gaussian noise | 10% | 97.17 + 0.13 0.44 97.08 £+ 0.12 0.35 96.67 £ 0.46 -0.07
50% || 97.26 £ 0.11 0.53 | 97.03 £ 0.04 0.30 96.71 £ 031 -0.02

1% || 97.19 £ 0.15 0.46 97.01 £ 0.15 0.28 96.85 £+ 0.28 0.12
Gradient canceling | 10% | 97.21 £+ 0.18 0.48 97.20 £ 0.18 0.47 96.86 + 0.23 0.13
50% || 97.15 + 0.15 0.42 97.13 + 0.08 0.40 96.91 + 0.31 0.18

1% 97.23 £+ 0.23 0.50 97.13 £ 0.23 0.39 - -
Random label-flipping | 10% || 97.22 £+ 0.19 0.49 96.95 + 0.13 0.21 - -
50% || 96.77 £0.38  0.04 | 97.04 + 0.13 0.30 - -

1% | 97.11 +£020 0.38 | 97.03+0.31  0.30 - -
Confidence-based label-flipping | 10% || 97.27 &+ 0.11 0.54 96.88 + 0.06 0.15 - -
50% || 97.04 £029  0.31 | 97.15+£0.04  0.42 - -

4.2 Effectiveness of Data Poisoning Attacks

We first sample ten random architectures from the DARTS search space and train them from scratch on
CIFAR-10 to obtain an average test-time accuracy of 96.73%. This serves as our random sampling baseline
for computing the Almp. metric. We then conduct our data poisoning attacks on each NAS algorithm for ten
trials and report the accuracy (Acc.) and percentage point difference in accuracy relative to random sampling
(AImp.). A poisoning attack is considered to be effective if it reduces Almp. below the level achieved under
clean data. To evaluate whether this effect is statistically significant, we conduct one-sided Welch’s t-tests
comparing the mean accuracies of poisoned architectures to their clean counterparts (No Attack) at a
significance level of @ = 0.05. The null hypothesis states that poisoning does not reduce accuracy, and we
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reject it when p < 0.05. For each model, we control the false discovery rate (FDR) at = 0.05 using the
Benjamini-Hochberg (BH) procedure applied to all p-values. We denote statistically significant results by
underlining and bolding them. Results are shown in Table

NAS is seemingly robust to data poisoning. Our results show that NAS appears to be robust to data
poisoning: in the instances where Acc. is reduced, it drops by only 0.04-0.54% points. The state-of-the-art
indiscriminate poisoning attack reduces Acc. by ~15% points on standard neural networks (Lu et al., [2023]),
suggesting that NAS is 27-375x more resilient. However, comparing this degradation to the benefit NAS
provides over random sampling reveals that several attacks significantly reduce the expected improvement.
Specifically, the best-performing algorithm, P-DARTS, offers only a 0.58% point improvement over random
sampling, i.e., Almp. = 0.58. The RLF and CLF attacks induce statistically significant drops in Almp. to
0.04-0.31, diminishing the benefit by 47-93%. While poisoning causes small absolute drops in accuracy, these
reductions can be substantial relative to the gains these algorithms typically provide.

Label-flipping attacks are effective against training-based NAS. The impact of label-flipping attacks
varies widely across NAS algorithms. For P-DARTS, random label-flipping (RLF) does not significantly
change Almp. for p < 10%, but at p = 50%, it drops to 0.04—a statistically significant reduction that
eliminates almost all benefit over random sampling. Confidence-based label-flipping (CLF) appears slightly
more effective across all poisoning budgets, achieving statistically significant drops in Almp. to 0.38 when
p = 1% and 0.31 when p = 50%. However, it does not degrade performance to random sampling; at high
poisoning budgets, random label noise appears more detrimental than targeted flips. RoBoT shows greater
robustness, with no reductions that reach statistical significance. Since TE-NAS is inherently robust to
label-flipping, training-based algorithms like P-DARTS are especially vulnerable to this attack vector.

Clean-label attacks are not effective. We find that Gaussian noise does not lower Almp. at the lowest
poisoning budget of p = 1%. This limited success is expected, as Gaussian noise tends to improve the
generalization and robustness of neural networks when added to training data (Bishopl |1995; [Franceschi et al.)
2018; [Rosenfeld et al., 2020]). However, excessive noise can degrade NAS performance: at p = 10%, Almp.
drops to 0.44 for P-DARTS, a statistically significant result. Surprisingly, Gradient canceling (GC), the
targeted clean-label attack, is largely ineffective. The changes in Almp. are small across most algorithms, and
in several cases we observe slight increases. Our adapted P-DARTS implementation, which directly targets the
architectural parameters, performs best—achieving statistically significant reductions in Almp. to 0.42-0.46
when p = 1% and 50%—though still underperforming the label-flipping attacks. A possible explanation for
this result is the usage of data augmentations (e.g., random crops and horizontal flips) that are commonly
employed to improve the generalization of neural networks (Perez & Wang, 2017)). All NAS algorithms in this
study employ data augmentations, which are known to reduce the effectiveness of clean-label attacks (Geiping
et al.l |2021; |Schwarzschild et all 2021} Borgnia et al., [2021)).

The utility-robustness tradeoff. NAS robustness to data poisoning correlates with its reliance on training
data. P-DARTS, the most training-intensive algorithm, experiences the largest reductions in Almp. (ranging
from 0.12-0.54) and is the only algorithm for which poisoning produced a statistically significant effect.
It is also the only algorithm where data poisoning almost completely negated the expected improvement
over random sampling (RLF with p = 50%). In contrast, RoBoT and TE-NAS are far more robust: both
exhibit only minor, non-significant Almp. reductions under two attacks each and, in most cases, maintain
performance comparable to the no-attack setting. Interestingly, when we examine the Almp. of these
algorithms on clean data, we see that higher data reliance correlates with greater performance. P-DARTS is
best with a Almp. of 0.58, compared to 0.25 for RoBoT and 0.07 for TE-NAS, which barely outperforms
randomly selecting architectures. These findings suggest a utility-robustness tradeoff: higher data reliance
improves the performance of NAS but increases susceptibility to data poisoning.

5 Understanding the Robustness

This section analyzes the factors that influence the robustness between different NAS algorithms. We first
examine how poisoning affects the architectures produced by NAS algorithms and what makes an architecture
“sub-optimal”. Next we analyze the robustness of the training-free metrics used in hybrid and training-free
NAS. We finally test the ability of NAS to generalize to out-of-distribution data.
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Clean Architecture (Accuracy: 97.43%) Poisoned Architecture (Accuracy: 96.30%)
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Figure 2: Comparison of clean and poisoned architectures. We visualize the best-performing architec-
ture found using clean data (left) and the worst-performing architecture found using poisoned data (right)
with the P-DARTS algorithm. C is the output of cell k, and the numbered squares are the internal nodes
(layers). The worst-performing architecture was found using RLF poisons with a budget of 50%.

5.1 Impact of Data Poisoning on NAS Architectures

To explore the extent to which data poisoning affects NAS and why certain poisoned architectures perform
worse, we conduct a qualitative analysis using architectures found in In Figure [2] we visualize the best
architecture found by P-DARTS on clean data (based on Acc.) and compare it to the worst architecture found
on poisoned data (specifically, RLF with p = 50%). We omit visualizations for TE-NAS and RoBoT because
none of the poisoning attacks resulted in a statistically significant reduction in Acc. for these algorithms.

The clean architecture, with an Acc. of 97.43%, consists primarily of convolutions in the normal cell and
pooling operations in the reduction cell. This is expected, as the normal cell is designed to extract features,
followed by the reduction cell reducing their dimension. It also includes just two skip-connections, as
they facilitate better learning in deeper networks (He et alJ, [2016) but can degrade performance if used
in excess (Chen et al.| 2019)). The poisoned architecture has a similar normal cell with the same number
of convolutions and skip-connections. However, the ~1% point lower Acc. can likely be attributed to its
reduction cell, which has only one pooling operation and, instead, mostly skip-connections. This architecture
was produced on heavily label-flipped data, so the introduction of contradictions between features and their
associated classes may have caused P-DARTS to select more skip-connections as they have less propensity to
introduce error. While this result highlights just one instance of a sub-optimal architecture induced by data
poisoning, it shows that these attacks are capable of substantially altering the architecture selection process.

5.2 Training-Free Metrics are Robust

Table 2: Sensitivity of training-free metrics. For each data poisoning attack, we report the average
change in each training-free metric across 100 randomly sampled architectures. We consider the highest
poisoning budget of 50% for all attacks.

Poisoning attack H TE-NAS ‘ RoBoT

H KNTK R ‘ grad_norm snip grasp fisher

Gaussian noise 2.18 + 51.11% 2.27 £9.03% | -0.69 £ 0.76% -0.54 + 0.67% 1.08 + 10.59% 2.57 £ 1.31%

Gradient canceling || 65.42 £+ 679.35% 3.38 + 8.95% | -0.47 £ 0.67% -0.36 + 0.60% 0.52 £ 5.03% 2.22 £ 1.21%

Random label flipping 0.00 + 0.00% 0.13 £9.45% | -5.62 £ 2.10% -5.85 £ 2.02%  -7.49 £ 54.39% 0.32 £ 1.45%
Confidence-based label flipping 0.00 + 0.00% 0.89 +9.04% | -5.04 + 4.27% -6.66 £+ 3.52% -11.14 + 119.65% -1.87 + 4.37%

We hypothesize that the resilience of training-free and hybrid NAS to data poisoning results from the
insensitivity of training-free metrics to distribution shifts. If the values of these metrics are not sufficiently
altered under poisoning, the algorithms that deploy them will not be affected. To test this hypothesis, we
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evaluate the sensitivity of all training-free metric&ﬂ used by TE-NAS and RoBoT to our data poisoning
attacks. We first sample 100 random architectures from each search space. We then compute all training-free
metrics on these architectures using 1000 randomly sampled clean data points. Then, we recompute the
metrics on data points from the poisoned datasets and record the change as a percentage. By comparing
metric values using the same architecture, we isolate the change caused by the data. We consider poisoning
budgets of p = 50% to assess the robustness in the worst case. Table [2| shows our results for each metric and
poisoning attack, averaged across the 100 architectures.

We find that the training-free metrics are largely insensitive to data poisoning: differences range from
0-65.42% and remain below 10% in all but two cases. For TE-NAS, xknTxk is the most sensitive, increasing by
65.42% on average by GC, though its high standard deviation indicates instability that may not be a direct
consequence of the poisons. For RoBoT, the metrics are less affected, with the largest deviation being -11.14%
for grasp by CLF. Label-flipping attacks tend to have a larger impact than clean-label, except for fisher,
which is altered by 2.57% by Gaussian noise. In all, these metric changes are unlikely to significantly alter
the algorithms that leverage them, accounting for their comparative robustness to training-based methods.

5.3 NAS Generalizes to Out-of-Distribution Data

If NAS generalizes well to out-of-distribution (OOD) datasets, this may explain why poisoning attacks—which
effectively introduce OOD data points—are less effective. To quantify this generalization, we run the three
NAS algorithms from §3.4] on several OOD training datasets to produce architectures and then train these
architectures on CIFAR-10 (the original data). Following our main evaluation, we use Almp. to measure the
performance and use the same random sampling Acc. of 96.73%. Here, we aim to test whether searching on
OOD datasets produces architectures with lower accuracy (compared to searching on CIFAR-10). Accordingly,
as in we measure significance using one-sided Welch’s t-tests at a significance level of a = 0.05 (using
the BH procedure for FDR control); the null hypothesis is that searching on OOD datasets does not degrade
final accuracy. Table [3| presents our results on the MNIST (Deng} 2012), FashionMNIST (Xiao et al., |2017]),
and SVHN (Netzer et al., 2011)) datasets; CIFAR-10 is included as the baseline expected improvement.

The generalization ability of NAS varies

substantially across algorithms. TE-NAS Table 3: Out-of-distribution search results. For each train-
generalizes best, with AImp. ranging ing dataset, we report the percentage-point change in accuracy
from 0.07-0.22 and no statistically sig- compared to random sampling (Almp.). All architectures are
nificant drops compared to searching on re-trained from scratch on CIFAR-10. Statistically significant
CIFAR-10. Interestingly, these bene- results are bolded and underlined.

fits are equivalent to or exceed running

TE-NAS on in-distribution training data  Training Dataset H P-DARTS ‘ RoBoT ‘ TE-NAS
(CIFAR-10), suggesting that the training

distribution need not align with the tar- CIFAR-10 || 0.58 £0.07 | 0.25 £ 0.20 | 0.07 + 0.40
with no statistically significant reductions, FashionMNIST || 0.36 + 0.21 | 0.15 + 0.20 | 0.07 + 0.41

get task. RoBoT also generalizes well MNIST || 0.41 +£0.12 | 0.21 £ 0.36 | 0.16 £+ 0.27

although it only improves over CIFAR- SVHN
10 when training on SVHN. P-DARTS
performs worst, never exceeding its in-
distribution Almp., with all three OOD datasets leading to statistically significant degradation as low as
-0.08% points below the random sampling baseline. Unlike training-free and hybrid methods, P-DARTS
requires in-distribution data to achieve optimal results. However, as we also show in this algorithm
achieves exceedingly higher Almp. when trained on in-distribution data (the CIFAR-10 row in Table [3).
The OOD generalization capabilities of NAS appear to follow the same utility-robustness trade-off.

-0.08 +£ 0.13 | 0.27 £ 0.22 | 0.22 £ 0.19

3We omit metrics that do not use any data.
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6 Discussion

6.1 Potential Countermeasures

We now discuss potential countermeasures. Many defenses have been proposed against data poisoning attacks
on machine learning. A common approach is outlier detection (Paudice et al.l |2018; [Steinhardt et al.l |2017)),
which leverages the insight that poisoned samples are distinct from clean data. However, knowledgeable
attackers (Koh et all 2021)) and clean-label constraints (Geiping et al., |2021) bypass these defenses by
crafting indistinguishable poisons from benign training points. Other works seek to enhance the robustness of
the model through training, offering either certifiable guarantees on test-time accuracy (Hong et al.; |2024;
Rosenfeld et al.l 2020; |Levine & Feizi, 2021)) or strong empirical results against existing attacks (Hong et al.,
2020; [Liu et al., [2022]). While effective, certifiable defenses incur considerable drops in final model performance,
and empirical approaches cannot guarantee robustness to adaptable adversaries. More importantly, it is
unclear how countermeasures designed to defend against data poisoning during training transfer to the
architecture selection process performed by NAS. Prior defenses consider only the final test-time accuracy of
the model trained on poisoned data, i.e., the quality of the learned weights and biases, while NAS cares only
about the quality of the architecture.

To assess the applicability of data poisoning defenses on NAS, we evaluate two compatible countermeasures.
The first, diffusion denoising (Hong et al. [2024)), is a certified defense that uses off-the-shelf diffusion models
to remove adversarial perturbations. Because it operates before training, its certification is independent of
the specific training process, making it suitable for non-standard poisoning scenarios such as NAS. Second,
given our finding that label noise is the most harmful attack vector, we also propose relabeling the training
data via unsupervised clustering. Specifically, we extract the final-layer features of the CIFAR-10 training set
from a pre-trained neural network, cluster them with K-Means (Lloyd, |1982), and assign a common label to
each cluster. This process creates entirely new training labels, eliminating adversarial label flips.

Table 4: Data poisoning countermeasures. The percentage-point change in accuracy compared to random
sampling (Almp.) across defenses. For each defense, the defended poisoning attack is in parentheses. All
attacks use p = 50%. Statistically significant results are bolded and underlined.

Defense | P-DARTS | RoBoT | TE-NAS

Diffusion denoising (GC) || 0.47 £0.30 | 0.18 £ 0.10 | 0.01 £ 0.34

Cluster-based relabeling (RLF/CLF) | 0.42 + 0.17 | 0.24 + 0.18 -
Diffusion denoising (Noise) || 0.56 4+ 0.14 | 0.38 4+ 0.03 | 0.12 + 0.29

Results. We evaluate diffusion denoising against Gaussian noise (Noise) and Gradient canceling (GC)
with p = 50%. The denoising parameter o is set to 0.1, as the original study finds it offers the best trade-off
between robustness and performance. For our relabeling defense, we extract features with a ResNet-152 (He
et al., [2016) model pre-trained on ImageNet (Deng et al.l |2009) and group them into 10 clusters. Relabeling
discards the original labels, inherently defending against RLF and CLF at any attack budget. To assess
effectiveness, we compare the mean accuracy of defended models against poisoned baselines using a one-sided
Welch’s t-test at a significance level of a = 0.05. The null hypothesis assumes no improvement in accuracy
when applying the defenses to poisoned datasets. Results across ten trials are shown in Table [

The defenses show limited effectiveness. Cluster-based relabeling yields a statistically significant improvement
in Almp. for P-DARTS, but significantly underperforms clean training (AImp. of 0.42 vs. 0.58). While it
may mitigate label noise, the new labels are likely too inaccurate to restore performance. Diffusion denoising
leads to significant improvement only for RoBoT under Gaussian noise (increasing Almp. from 0.30 to 0.38),
suggesting it is more effective against random perturbations than targeted attacks. However, considering
the clean-label attacks were ineffective against RoBoT and TE-NAS in our main evaluation (§4.2)), further
investigation is needed to determine the precise impact of this defense. Overall, these results suggest that the
existing defenses are insufficient, necessitating future work on defending NAS against data poisoning.
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6.2 Future Work

Expanding our auditing framework. While our framework is representative, evaluating a broader range
of NAS algorithms and attacks could improve the generalizability of our findings. In particular, incorporating
non-differentiable, training-based algorithms—such as evolutionary (Lu et al.l [2019;|2020; [So et al., 2019)) or
reinforcement learning-based approaches (Zoph & Le, 2017; |Baker et al., 2017)—would allow us to assess the
robustness of other high data-reliance approaches. Moreover, as existing clean-label attacks are ineffective,
designing a stronger, more targeted attack would be a valuable addition to the framework.

Alternative data poisoning scenarios. To isolate the impact of poisoning on the architecture selection
process of NAS—the unexplored component in the prior work—we poison only the search phase and re-
train the final architectures on clean data. In practice, however, the same dataset is often used for both
searching and training, enabling an additional poisoning scenario. Future work can explore this setting, where
poisoning influences both the discovered architecture and its learned parameters, potentially inducing greater
performance degradation and making the studied attack vectors more viable. Such attacks also enable more
complex objectives—such as targeted misclassification (Huang et al.l [2020; (Geiping et al., 2021} |Shafahi et al.,
2018; |Aghakhani et al., |2021) or backdooring (Liu et al.l |2018c; |Gu et al., |2019)—which require altering the
parameters rather than the architecture. Studying this additional threat model may yield deeper insights
into the robustness of the NAS pipeline.

7 Conclusion

Our work demonstrates that the performance gains achieved by architectures produced through NAS
algorithms are not robust to data poisoning attacks. To systematically study this vulnerability, we design
an auditing framework that enables the execution of various NAS algorithms on datasets compromised by
poisoning attacks, including an attack specifically tailored for NAS. Our framework also implements a testing
methodology and a specialized metric to effectively evaluate robustness.

In our evaluation, we first find that accuracy alone is insufficient for quantifying vulnerability: it makes NAS
algorithms appear robust to data poisoning because their reported performance gains over random search are
often marginal. However, our proposed metric, Almp., shows that data poisoning can reduce the benefit of
NAS by up to 93%, revealing a much higher level of susceptibility. We also show that NAS algorithms that
rely heavily on data are inherently more vulnerable, whereas those with reduced data dependence are more
robust but with performance comparable to random sampling. Moreover, our results challenge the validity of
the performance improvements achieved by NAS. Surprisingly, we observe that running NAS on completely
out-of-distribution datasets—such as MNIST—and then training the produced architectures on CIFAR-10 can
yield higher accuracy than running NAS directly on CIFAR-10. These findings raise fundamental questions
about the effectiveness and reliability of NAS as a “data-centric” paradigm for neural architecture design.

Broader Impact Statement

In recent years, data-centric approaches to finding optimal neural network architectures have emerged, namely
neural architecture search (NAS). This paper proposes a data poisoning framework for NAS algorithms as an
auditing tool for their robustness to underlying data distribution shifts in adversarial settings. While our
results suggest that data poisoning only inflicts marginal drops in the accuracy of models produced by these
algorithms, this can practically invalidate their effectiveness with respect to the improvement they provide
over hand-crafted or even randomly sampled architectures. We envision this research to raise awareness
regarding the vulnerabilities associated with NAS and its data-centric approach. By demonstrating how
an attacker could potentially compromise NAS through the data it uses, we illuminate the importance of
verifying training data and promote further research.
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