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Abstract

Digital technologies in agriculture (drones, IoT sensors, satel-
lite imagery, and precision machinery) have created an op-
portunity for AI systems that not only forecast outcomes
but also recommend and safely execute field-level interven-
tions. We present a digital twin-based decision support frame-
work in which a tool-using Large Language Model (LLM)
agent operates over a dual twin of crop–soil dynamics and
farm operations. Farmers express high-level goals and con-
straints in natural language (e.g., “reduce fungicide use by
10% without risking major outbreaks”), which are compiled
into machine-readable Field Management Cards that encode
multi-season objectives, safety constraints, and regulatory
limits. The LLM agent plans candidate interventions (e.g.,
modified spray schedules, irrigation adjustments) by invoking
twin services and farm asset APIs (sprayers, drones, sensors)
through a standardized tool interface. Digital twins enforce
feasibility and safety before recommendations are surfaced
or actions are dispatched. Through comprehensive evaluation
on 85 test cases, we demonstrate that the system achieves
87.5% accuracy in mapping natural language queries to ap-
propriate tool calls and 88% success rate in enforcing safety
constraints such as pre-harvest intervals and irrigation lim-
its. Critically, the digital twin successfully repairs 100% of
detected violations, ensuring fail-safe operation. Our results
illustrate a path toward robust, human-centered AI assistants
that connect agricultural data, domain models, and actuation
in a single decision loop while maintaining safety and regu-
latory compliance.

Introduction
Agriculture faces unprecedented challenges from climate
variability, increasing pest pressures, and the need to opti-
mize resource use while maintaining productivity (Zhuang
et al. 2023; Sun et al. 2022). Digital technologies, includ-
ing IoT sensors, drones, satellite imagery, and mobile plat-
forms, generate vast streams of heterogeneous, temporally
rich data that offer opportunities for AI-enabled precision
farming (Sarkar et al. 2024; Gupta et al. 2024). However,
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many existing AI solutions for agriculture remain narrow in
focus, difficult to generalize, and often lack the transparency
and human-centered design necessary for farmer adoption.

Current decision support systems typically focus on pre-
diction (yield forecasting, disease detection) without clos-
ing the loop to safe, explainable actuation. Farmers need
systems that can understand high-level goals expressed in
natural language, reason about complex tradeoffs between
yield, resource use, and environmental impact, and recom-
mend interventions that respect safety constraints and regu-
latory requirements. This requires bridging the semantic gap
between long-horizon objectives (“minimize pesticide use
this season”) and short-horizon actions (“reduce spray rate
by 15% on field A3 tomorrow”).

In this work, we present a digital twin-based framework
that addresses these challenges through three key contribu-
tions. First, we develop an architecture combining dual dig-
ital twins that model both crop–soil dynamics and farm op-
erations, orchestrated by an LLM agent that translates nat-
ural language goals into validated interventions through a
standardized tool interface. Second, we design a user-facing
interface enabling plan–compile–execute–audit workflows
with graduated autonomy levels, allowing farmers to choose
between autonomous execution with checkpoints, human-
in-the-loop approval, or advisory-only modes. Third, we
provide comprehensive evaluation demonstrating 87.5% ac-
curacy in natural language intent grounding and 88% suc-
cess rate in safety constraint enforcement, with 100% repair
rate for detected violations, validating the feasibility of safe
LLM-based agricultural decision support.

Background and Related Work
Digital Twins in Agriculture. Digital twins (virtual repli-
cas of physical systems) have been successfully deployed
in manufacturing and aerospace for predictive maintenance
and optimization (Verdouw et al. 2021). In agriculture, dig-
ital twin concepts have been applied to greenhouse control
and irrigation management (Roy et al. 2020), but most fo-
cus on single aspects rather than integrated farm-level de-
cision making. Our dual-twin approach combines crop–soil
biophysical models with operational constraints of farm ma-
chinery and actuators.



AI Decision Support in Precision Agriculture. Machine
learning has been widely applied to crop yield prediction,
disease detection, and variable-rate application (Betti Sor-
belli et al. 2024; Feng et al. 2022). However, these systems
typically operate in isolation without considering multi-
objective tradeoffs or safety constraints. Recent work on re-
inforcement learning for irrigation shows promise but lacks
the interpretability needed for farmer trust.

LLM Agents and Tool Use. Large Language Models have
demonstrated capability in tool use and planning tasks (Li
et al. 2024; Cao, Zhuang, and He 2024). Recent frameworks
like Model Context Protocol (MCP) enable LLMs to interact
with external systems through standardized APIs. However,
deploying LLM agents in safety-critical cyber-physical sys-
tems like farms requires careful constraint enforcement; our
twin-based validation addresses this gap.

System Architecture
Our framework transforms the agricultural discovery loop
into a disciplined workflow that compiles long-horizon
goals into short-horizon, safety-ensured actuator actions. We
adapt principles from automated scientific discovery to the
agricultural domain across three synergistic layers. Figure 1
illustrates the complete system architecture, showing the
LLM-orchestrated agent layer, dual digital twin platform,
safety validation workflow, and user interaction timeline.

Farm Digital Twin Architecture
We implement a dual digital twin design that captures both
the biophysical and operational aspects of farming systems:

Crop–Soil Twin. This twin encodes agronomic knowl-
edge through integrated process models that capture the
complex interactions between crops, soil, weather, and man-
agement practices. The crop growth models simulate phe-
nology, biomass accumulation, and water stress responses
based on environmental conditions and management inter-
ventions. Soil water balance and nutrient dynamics models
track moisture levels, nutrient availability, and their impacts
on crop development. Disease pressure models incorporate
weather data, spore load estimates, and host susceptibility
to predict infection risks and treatment efficacy (Cao et al.
2024). The twin also enforces critical constraints such as
maximum chemical application rates, pre-harvest intervals
for food safety, and environmental thresholds that prevent
operations under adverse conditions.

Operations Twin. This twin models the physical capabili-
ties and limitations of farm machinery and infrastructure that
execute field operations. It captures actuator capabilities in-
cluding sprayer boom widths, drone flight endurance, and
irrigation system capacities that determine feasible appli-
cation rates and coverage patterns. Operational constraints
such as no-fly zones for drone operations, equipment avail-
ability windows, and labor scheduling requirements are en-
coded to ensure proposed actions can actually be executed.
The twin maintains response surfaces and calibration states
for each piece of equipment, tracking factors like nozzle

Table 1: LLM Agent Tool Interface

API Details

Read-Only Tools
query twin() Retrieve current field state estimates

from biophysical models
forecast() Predict future conditions based on

weather and growth models
check constraints() Validate proposed actions against

safety and regulatory rules
simulate() Run what-if analysis to predict inter-

vention outcomes

Write Tools (Twin-Validated)
sched irrigation() Schedule irrigation event subject to

water budget constraints
adjust spray rate() Modify chemical application rate

within approved limits
plan drone survey() Request aerial imagery collection for

specified fields

wear that affect application accuracy. Communication laten-
cies and potential failure modes are also modeled to ensure
the system can handle real-world uncertainties in equipment
performance and connectivity.

Together, these twins define the feasible action space for
any given field state and forecast conditions.

LLM Agent and Tool Interface
The LLM agent interacts with the farm digital twin through
a RESTful API that exposes farm capabilities as JSON-
RPC style function calls, following a strict separation be-
tween read-only tools for querying and analysis versus write
tools that trigger validated field-level interventions. Table 1
summarizes the available tools. All parameters are validated
against predefined schemas for type safety, and return values
include confidence scores and metadata enabling the LLM
to reason about information quality. The design prevents di-
rect equipment control, instead requiring all actions to flow
through twin validation layers.

All write operations follow a validate-then-execute pat-
tern where the digital twin first checks the proposed action
against hard constraints (equipment limits, safety thresh-
olds, regulatory requirements) and soft preferences (cost tar-
gets, sustainability goals). Only actions passing all valida-
tion checks enter the approval queue, where they may re-
quire human confirmation depending on the configured au-
tonomy level. This architecture ensures that LLM halluci-
nations or misinterpretations cannot directly trigger unsafe
farm operations, instead failing safely at the validation layer.

Natural Language Workflow Pipeline
Operations follow a four-phase pipeline that exposes AI as a
service while preserving human oversight:

Plan. Users submit objectives in natural language, bind-
ing agricultural contexts (crop type, growth stage, field his-
tory) to operational constraints (budget limits, equipment
availability, regulatory requirements). For example: “Re-



Figure 1: Complete system architecture and workflow. (a) LLM-orchestrated agent layer with tool interface API separating
read-only and write tools, along with validation and repair mechanisms; (b) Dual digital twin concept showing both operations
twin (landscape) and crop-soil twin (underground) with real-time state estimation from sensor data; (c) Multi-stage safety
validation workflow with constraint checking, resource checking, simulation, and repair/alternative generation capabilities; (d)
User interaction and audit timeline illustrating the plan-compile-execute-audit cycle with session logging.

duce fungicide use by 10% on low-risk fields while keeping
disease index below 0.35.”

Compile. Natural language objectives are compiled into
Field Management Cards, machine-readable documents en-
coding:

• Multi-objective reward functions (yield, resource use, en-
vironmental impact)

• Hard constraints (regulatory limits, safety thresholds)

• Soft preferences (risk tolerance, sustainability goals)

The compilation process leverages both physics-based mod-
els and learned preferences from historical decisions.

Execute. The workflow engine orchestrates farm opera-
tions through three modes:

1. Autonomous with checkpoints: Agent executes ap-
proved actions, pausing at predefined gates

2. Human-in-the-loop: Each action requires explicit
farmer approval

3. Advisory only: Agent provides recommendations with-
out execution capability

Audit. Each decision generates an immutable audit trail
including:

• Original user query and compiled Management Card

• Twin state at decision time

• All simulation runs and constraint checks

• Final action plan with rationales

• Actual execution results and deviations

This provenance enables both real-time monitoring and
post-season analysis for continuous improvement.

Figure 2: Field Twin Designer interface with workflow edi-
tor, connected data sources, and natural language interaction
log.

User Interface and Interaction Design
We developed a web-based interface that makes the digi-
tal twin framework accessible to farmers and agronomists
through four integrated views. Figure 2 shows the Field
Twin Designer view, which provides the primary interface
for configuring workflows and interacting with the digital
twin through natural language.

Field Twin Designer
This visual workflow editor provides farmers and
agronomists with an intuitive interface for configuring
how data flows through models to generate decisions.
Users can connect diverse data sources including real-time
weather feeds, soil sensor networks, and satellite imagery
streams to build comprehensive situational awareness. The
interface supports configuration of model pipelines where
outputs cascade through processing stages, such as crop
growth predictions feeding into disease risk assessments
that ultimately inform spray timing decisions. Farmers



define Management Cards that encode their specific objec-
tives and constraints, balancing factors like yield targets,
resource budgets, and sustainability goals. The system al-
lows flexible configuration of autonomy levels and approval
gates, enabling farmers to specify which decisions require
human review based on their risk tolerance and regulatory
requirements.

Live Simulation and What-If Analysis
This view enables rapid exploration of intervention sce-
narios through interactive simulation capabilities. When a
farmer poses questions like “What if I reduce irrigation by
20% next week?”, the system initiates a comprehensive anal-
ysis pipeline. The natural language query is first parsed into
a concrete action plan with specific parameters and timing.
The digital twin then runs parallel simulations across all af-
fected fields, accounting for spatial variability in soil types
and current moisture levels. The interface displays predicted
impacts on critical variables including soil moisture trajec-
tories, crop stress indices, and projected yield impacts over
multiple time horizons. Any constraint violations, such as
moisture dropping below permanent wilting point or exceed-
ing stress thresholds during critical growth stages, are im-
mediately highlighted with visual warnings. If the original
plan proves infeasible, the system automatically generates
and simulates alternative scenarios that achieve similar ob-
jectives while respecting all constraints. Real-time visualiza-
tion overlays irrigation schedules with weather forecasts and
risk indices, enabling farmers to see how proposed changes
interact with expected environmental conditions.

Live Farm Monitor
The monitoring dashboard provides real-time situational
awareness through interactive maps displaying soil mois-
ture, disease risk heatmaps, and active intervention track-
ing. Sensor data from IoT devices deployed across fields is
continuously ingested and processed, with the digital twin
automatically reconciling measurements with model predic-
tions to detect discrepancies that may indicate sensor drift or
unexpected field conditions. The system performs continu-
ous anomaly detection using statistical process control meth-
ods, alerting farmers to unusual conditions like dry patches
developing faster than predicted or pest pressure hotspots
emerging in unexpected locations. Each alert includes con-
textual information such as historical patterns for that field
location, nearby sensor readings, and recommended investi-
gation or response actions. The interface visualizes ongoing
interventions with real-time status updates, showing which
equipment is currently operating, progress toward comple-
tion, and any deviations from planned application rates or
coverage patterns. Complete activity logs capture all system
actions, user decisions, and override events for operational
transparency and regulatory compliance, with timestamps,
GPS coordinates, and associated sensor readings automati-
cally recorded for each field operation.

Season Analytics
Post-season analysis tools aggregate performance metrics
including yield, resource use, and input costs across all fields

Table 2: Natural Language Intent Grounding Performance

Query Category Cases Match Rate Avg Score

Complex Query 6 100.0% 1.00
Decision Support 6 100.0% 1.00
Multi-field Query 2 100.0% 0.50
Resource Adjustment 12 100.0% 1.00
Safety Compliance 8 87.5% 0.88
Status Query 14 100.0% 0.82
What-if Simulation 12 75.0% 0.75

Overall 60 93.3% 0.88

and interventions, enabling comparative evaluation of AI-
guided decisions against baseline approaches and histori-
cal benchmarks. The analytics dashboard provides multi-
dimensional performance visualization, breaking down out-
comes by field characteristics, intervention types, and envi-
ronmental conditions to identify which management strate-
gies were most effective under different circumstances. Re-
source efficiency metrics quantify water use per unit yield,
chemical application rates versus disease pressure outcomes,
and energy consumption for mechanical operations, with au-
tomated identification of opportunities for optimization in
future seasons. The system tracks decision quality through
multiple indicators including constraint violation rates that
measure safety compliance, prediction accuracy that com-
pares forecasted outcomes against actual measurements,
and user override patterns that reveal where human judg-
ment disagreed with AI recommendations. Machine learn-
ing models analyze these override patterns to identify sys-
tematic biases or knowledge gaps, feeding insights back
into model refinement for continuous improvement. Eco-
nomic analysis tools calculate return on investment for dif-
ferent intervention strategies, accounting for input costs, la-
bor requirements, yield impacts, and market prices to sup-
port data-driven budget planning for subsequent growing
seasons.

Evaluation
We evaluate our framework through 85 test cases assessing
natural language intent grounding (60 cases) and safety con-
straint enforcement (25 cases). The virtual farm digital twin
evaluation suite includes 13 tool capabilities spanning query,
simulation, and control functions across realistic agricultural
scenarios.

Metrics
For intent grounding, we measure partial match rate (binary
success for correct tool selection) and average match score
(continuous quality metric from 0.0 to 1.0 reflecting both
tool selection and parameter accuracy). For safety enforce-
ment, we track detection rate, repair rate, and overall success
rate in identifying and correcting violations.

Results
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Figure 3: Evaluation results: (a) Intent grounding performance by category; (b) Intent matching score distribution; (c) Safety
violation detection and repair by type.

Table 3: Safety Constraint Enforcement Performance

Violation Type Cases Detected Repaired Success

Low Moisture 1 0/1 0/0 100%
Max Irrigation 4 4/4 4/4 100%
Max Spray Rate 2 0/2 0/0 0%
Null 11 0/11 0/0 100%
PHI Violation 6 5/6 5/5 83%
Pot. PHI Violation 1 1/1 1/1 100%

Overall 25 10 10 88%

Natural Language Intent Grounding Our system
achieved 87.5% average intent matching score with 93.3%
partial match rate across 60 queries. As shown in Table 1
and Figure 3(a), performance was strongest on resource
adjustments and decision support (100%), representing
common farmer interactions. Lower scores on what-if
simulations (75%) and multi-field queries (50%) primarily
stemmed from parameter naming inconsistencies rather
than intent misunderstanding.

Figure 3(b) shows a bimodal distribution where the sys-
tem either performs nearly perfectly or fails completely, with
81.7% of cases achieving scores of 0.90–1.00.

Safety Constraint Enforcement The digital twin safety
system achieved an 88% overall success rate across 25
test scenarios designed to trigger various constraint viola-
tions. As detailed in Table 2 and Figure 3(c), the system
demonstrated particularly strong performance on irrigation
limit enforcement, detecting and repairing all four test cases
where excessive water application was requested. This per-
fect performance on irrigation constraints is critical for pre-
venting equipment damage and water waste.

Pre-harvest interval violations, which represent one of the
most important regulatory constraints in agricultural chem-
ical application, were handled with 83% success rate. The
system detected five out of six attempted PHI violations
and successfully repaired all detected cases by either de-
laying the application or suggesting alternative treatments.
The single missed detection occurred in an edge case where
the query was ambiguous about timing, highlighting the im-
portance of clear communication interfaces in safety-critical
systems.

A crucial finding is that the system achieved a 100% re-
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Figure 4: Overall evaluation summary showing intent
grounding (93.3% partial match rate, 87.5% average quality)
and safety enforcement (76.9% violation detection, 100%
repair rate).

pair rate for all detected violations, meaning that once a
safety issue was identified, the digital twin always success-
fully generated a safe alternative action. This demonstrates
the effectiveness of the twin-based approach where the sys-
tem can simulate alternatives and verify their safety before
proposing them to the farmer.

System Performance Summary Figure 4 provides a
comprehensive view of system performance across both
evaluation dimensions. The intent grounding results show
that while only 53.3% of cases achieved exact parameter
matches, 93.3% achieved at least partial matches with cor-
rect tool selection, and the overall average quality score of
87.5% indicates strong performance. The gap between par-
tial match rate and average score is relatively small at 5.8%,
suggesting that even partial matches tend to be of high qual-
ity rather than barely passing the threshold.

The safety enforcement results reveal a critical system
property where detection is the primary challenge while re-
pair is highly reliable. The 76.9% detection rate indicates
room for improvement in identifying all potential violations,
particularly those expressed through ambiguous natural lan-
guage. However, the 100% repair rate for detected violations
provides confidence that the system fails safely when issues
are identified. This architecture ensures that safety violations
that make it past the detection layer are extremely unlikely,
as they would require both a detection failure and the ab-
sence of downstream validation.



Qualitative Analysis

To better understand system behavior, we examine represen-
tative examples from each evaluation category. For success-
ful intent grounding, consider the query ”Check moisture on
field A1, then simulate adding 10mm irrigation.” The sys-
tem correctly decomposed this into two sequential opera-
tions, first invoking query moisture with field id=”A1”, then
simulate irrigation with field id=”A1” and amount mm=10.
This demonstrates the system’s ability to maintain context
across multi-step operations and correctly sequence depen-
dent actions.

For successful safety enforcement, when presented with
”Apply fungicide to field A1 at full rate” where field A1
was only 5 days from harvest, the digital twin correctly iden-
tified the PHI violation and responded with a detailed ex-
planation: ”PHI violation detected: Field A1 is 5 days from
harvest (minimum 7 days required). Action blocked. Sug-
gestion: Delay application by 3 days or reduce rate to bi-
ological control only.” This response not only prevents the
unsafe action but also provides actionable alternatives and
clear reasoning.

Conclusion

We presented a digital twin framework that enables LLM
agents to provide safe, explainable decision support for pre-
cision agriculture by combining biophysical and operational
twins with natural language interfaces. Our comprehensive
evaluation demonstrates 87.5% accuracy in grounding nat-
ural language queries to appropriate tool calls, with partic-
ularly strong performance on resource adjustment and deci-
sion support requests that represent the majority of farmer
interactions, and 88% success in safety constraint enforce-
ment coupled with 100% repair rate for detected viola-
tions, validating the effectiveness of twin-based validation
in preventing potentially harmful agricultural operations.
The high intent matching accuracy demonstrates that natural
language interfaces can successfully lower barriers to pre-
cision agriculture adoption while maintaining safety guar-
antees through systematic constraint enforcement and au-
tomated repair mechanisms. Future work should focus on
field trials with partner farms to validate system performance
with real agricultural complexity, integration with federated
learning for privacy-preserving model updates that capture
local farming practices, extension to multi-stakeholder de-
cisions involving farmers, advisors, and regulators to bet-
ter reflect collaborative agricultural decision-making, and
techniques for efficient simulation and progressive refine-
ment of recommendations to achieve real-time responsive-
ness at scale. As climate variability increases and sustain-
able intensification becomes critical, our results demon-
strate that LLM-orchestrated digital twins offer a promising
path toward trustworthy AI assistants that augment human
decision-making while respecting safety and transparency
requirements, providing natural language accessibility with-
out sacrificing the rigor and safety guarantees required for
production agriculture.
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