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ABSTRACT

We propose a novel framework called FDA for generating Fair synthetic data
through Data Augmentation, offering the first method with provable trade-off
guarantee between fairness and faithfulness. Unlike other existing methods, our
approach utilizes a novel joint model that consists of two sub-models: one focused
on enforcing strict fairness constraints while the other dedicated to preserving fi-
delity to the original data, coupled with a tuning mechanism that provides explicit
control over the trade-off between fairness and faithfulness. Specifically, our FDA
framework enables explicit quantification of the extent to which the generated fair
synthetic data preserve faithfulness to the original data, while achieving an inter-
mediate level of fairness determined by a user specified parameter α ∈ [0, 1]. The-
oretically, we show that the resulting fair synthetic data converge to the original
data in probability when α tends to 1, thereby implying convergence in distribu-
tion. Our framework can be also combined with some GAN-based fair models,
such as DECAF, to further improve the utility of the resulting synthetic data in
downstream analysis, while carefully balancing fairness. Furthermore, we obtain
an upper bound of the unfairness measurement for downstream models trained
on the generated fair synthetic data, which can help users to choose appropriate
α. Finally, we perform numerical experiments on benchmark data to validate our
theoretical contributions and to compare our FDA with other methods.

1 INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) algorithms have increasingly been used to
improve decision-making in almost all aspects of our lives (Zhao et al., 2018; Bogen & Rieke,
2018; Cohen et al., 2020; Mukerjee et al., 2002; Angwin et al., 2016; Berk et al., 2021). However,
there is mounting evidence showing that the developed algorithms may inherit biases and injustices
from historical data, leading to unfair decisions that discriminate against certain populations (Dastin,
2018; Datta et al., 2018; Lu et al., 2020; de Vassimon Manela et al., 2021).If not properly addressed,
biased or unfair decision-making may lead to violations of equality and anti-discrimination laws
(Krishnamurthy, 2021; Wachter et al., 2021). The emerging field of algorithmic fairness seeks to
address this urgent issue by mitigating the bias and discrimination in the AL and ML systems.

Broadly speaking, the bias mitigation methods can be categorized into three types: pre-processing,
in-processing, and post-processing. For a comprehensive overview of these methods, we encour-
age readers to refer to recent review papers, such as (Pessach & Shmueli, 2022; Hort et al., 2022;
Mehrabi et al., 2021; Caton & Haas, 2024), and the extensive references cited within these works.
Pre-processing methods modify the biased training data, with the goal that any downstream model
trained on debiased data would achieve desired fairness requirements. In-processing methods mod-
ify the algorithms by enforcing fairness constraints during training, with the goal that the trained
algorithms achieve the desired fairness requirements on all real-life data. Post-processing methods
modify the predictions based on a trained unfair model, with the goal that the final predictions sat-
isfy certain fairness requirements. In recent years, as a pre-processing method, fair synthetic data
generation has gained significant momentum (Feldman et al., 2015a; Zhang et al., 2017b; Calmon
et al., 2017; Xu et al., 2018; Zemel et al., 2013; Xu et al., 2019; van Breugel et al., 2021; Rajabi &
Garibay, 2022). For example, Xu et al. (2019) proposed FairGAN, a GAN-based method to create
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Table 1: Overview of related fair synthetic data generation methods summarized according to the
following features: (1) supports trade-off between fairness and data utility; (2) allows continuous
labels; (3) allows categorical labels; (4) provides explicit quantification of loss of faithfulness to
the original data, when meeting user-specified fairness requirement; (5) provides theoretical guar-
antee on the convergence of the generated fair synthetic data to the original data in probability and
distribution; (6) provides theoretical analysis on the fairness of downstream models using debiased
synthetic data.

Model Reference (1) (2) (3) (4) (5) (6)
FDA THIS PAPER ✓ ✓ ✓ ✓ ✓ ✓

DECAF VAN BREUGEL ET AL. (2021) ✗ ✓ ✓ ✗ ✗ ✗
FAIRGAN XU ET AL. (2018) ✓ ✓ ✓ ✗ ✗ ✗

OPPDP CALMON ET AL. (2017) ✓ ✗ ✓ ✗ ✗ ✗
TABFAIRGAN RAJABI & GARIBAY (2022) ✓ ✗ ✓ ✗ ✗ ✗

synthetic data that satisfy group fairness; van Breugel et al. (2021) proposed DECAF, which trains
a graphical causal model using GANs and allows desired fairness constraints imposed via the asso-
ciated causal graphs. Despite the successes of these earlier works, an important question remains
unaddressed: To what extent does the fair synthetic data represent the statistical properties of the
original data, preserving its utility for downstream analysis and modeling?

Generally, the task of generating a fair synthetic data that preserves the properties of the original data
creates a tension. On one hand, achieving fairness requires modification of the unfair data, which
may inadvertently impact the faithfulness of the synthetic data to the original data. On the other
hand, the synthetic data should faithfully represent the statistical properties of the original data, in
order to preserve its utility for downstream analysis and modeling. Therefore, achieving fairness
requires sacrificing some level of faithfulness, and vice versa. Due to the inherent competing nature
between these two goals, a trade-off between fairness and faithfulness is necessary characterized
when generating fair synthetic data. In practice, striking the right balance involves careful consider-
ation of the goals, stakeholders’ priorities, and ethical implications in a given application.

Contribution. In this paper, we propose FDA, a Fair synthetic data generation framework through
Data Augmentation. FDA is built upon a joint modeling framework consisting of a fair model Mfair
and a faithful model Mfaithful, coupled with a tuning mechanism to achieve a provable trade-off be-
tween fairness and faithfulness in the generated synthetic data. This allows an explicit quantification
of the extent to which the generated fair synthetic data preserve faithfulness to the original data,
while meeting specific fairness requirement controlled by α ∈ [0, 1], a user specified bias reduction
parameter that quantifies the amount of biases removed from the original unfair data. Theoretically,
setting α = 0, the resulting synthetic data satisfy absolute fairness, with maximum reduction of the
faithfulness to the original data. Conversely, setting α = 1, the resulting synthetic data achieves per-
fect similarity to the original data and is proved to converge to the original data in probability, further
implying convergence in distribution. When setting α ∈ (0, 1), users can achieve an intermediate
level of fairness while maintaining a certain level of faithfulness to the original data, both quantified
by α. Our framework can be combined with GAN-based fair models such as DECAF, to further
improve the data utility of the resulting fair synthetic data in downstream analysis, while achiev-
ing an intermediate level of fairness. In contrast to black-box methods that require time-consuming
training, our FDA framework generates synthetic data directly from the predictive distributions de-
fined by our chosen joint model, which follows simple Gaussian distributions. Furthermore, to guide
users to choose appropriate unfairness reduction parameter α, we provide theoretical analysis on the
fairness of downstream models trained on the generated fair synthetic data. As far as we know, our
FDA is the first method to provide all these desired features, with a comparison of our FDA with
other methods summarized in Table 1.

Notations. For any positive integer K, let [K] = {1, · · · ,K}. For any p ≥ 1, let Mp(R) be the
space of all probability measures on R with finite p-th moment. For any two random variables U
and V , µU |V denotes the conditional distribution of U given V ; µU and µV denote their marginal

distributions respectively. We write U
d
= V when U and V are equal in distribution. For a random

sequence {Ui}∞i=1, we write Un
p→ U (Un

d→ U ) when Un converges in probability (in distribution)
to U as n → ∞. We use ∆K−1 as the probability simplex in RK .
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2 PRELIMINARIES

A sequence of triplets D = {Yi, Xi, Si}ni=1 is observed, where for each i, Yi ∈ R denotes the
outcome, Si ∈ [K] denotes the sensitive attribute, and Xi ∈ Rd denotes other attributes. Assuming
that D is sampled from the distribution PD, which violates certain fairness requirements, rendering
D unfair, our objective is to generate fair synthetic data denoted as D̂ based on D. Specifically,
we want to ensure that D̂ satisfies α-reduction of unfairness (given in Theorem 3.5), for any fixed
α ∈ [0, 1].

As discussed in van Breugel et al. (2021), predictive fairness measures such as equalized odds are
not compatible in the context of fair data, as the aim is to ensure the fairness in the synthetic data
distribution, rather than achieving fair algorithmic predictions. Consequently, we follow van Breugel
et al. (2021) to focus on Demographic Parity (DP) and formally extend it to the context of fair data.
Definition 2.1 (Demographic parity). The distribution PD, from which D is sampled, is said to
satisfy demographic parity (DP), if it satisfies (Y |S = s1)

d
= (Y |S = s2), for any s1, s2 ∈ [K]. In

other words, for any T ⊆ R, P(Y ∈ T |S = s1) = P(Y ∈ T |S = s2).

Then, any discrepancy between the distribution of Y |S = s1 and that of Y |S = s2, for any
s1, s2 ∈ [K] indicates violation of DP. Note, our proposed framework can be applied to the condi-
tional fairness notion (Barocas et al., 2023) (see Remark 3.2). As discussed in Chzhen & Schreuder
(2022), various distance measures, e.g., Wasserstein distance, total variation and Kolmogorov-
Smirnov distance, have been used to evaluate this discrepancy empirically and thereby quantify
the violation of DP. In this paper, we follow Chzhen & Schreuder (2022) and others (Gouic et al.,
2020; Chzhen et al., 2020; Jiang et al., 2020; Gaucher et al., 2022; Xian et al., 2022) to use Wasser-
stein distance due to its effectiveness to explicitly quantify unfairness measurement, faithfulness to
the original data as well as data utility in downstream models using the same unit measurements
comparing to other distance measures. Specifically, we define the unfairness measure of the original
distribution of D as the sum of the weighted distances between {µY |S=s}s∈[K] and their com-
mon barycenter (Villani, 2021; Santambrogio, 2015), w.r.t. the Wasserstein-2 distance1, denoted by
W2(µY |S=s, ·), as defined below.
Definition 2.2 (Unfairness measure). We define the unfairness of the distribution PD, from which
the dataset D is sampled, as follows 2

UF(PD) := min
ν∈M2(R)

K∑
s=1

ωsW2(µY |S=s, ν) , (1)

for any given weights3 (ω1, · · · , ωK) ∈ ∆K−1.

It is easy to see that UF(PD) = 0 if and only if there is a minimizer ν in equation 1 such that
µY |S=s = ν for all s ∈ [K], that is, it satisfies the DP constraint: (Y |S = s1)

d
= (Y |S = s2) for

all s1, s2 ∈ [K]. Conversely, a larger value of this measure4 indicates a more severe violation of DP
constraint.

Problem statement. For any biased dataset D, and a user-specified bias reduction factor α ∈ [0, 1],
we substitute the observed Yi values with their synthetic counterparts to produce fair synthetic data,
denoted as D̂ = {Ŷi, Xi, Si}ni=1. Here D̂ satisfies the following bias reduction guarantee:

• UF(PD̂) = αUF(PD) (Theorem 3.5). where PD̂ denotes the distribution of D̂.

In the meanwhile, we can assess the loss of faithfulness between the synthetic data D̂ and the original
data D by calculating Wasserstein-2 distance between µŶ and µY , which is a closed-form function
of α (Theorem 3.6). These findings enable users to choose an appropriate α by considering the
explicit trade-off between fairness and faithfulness.

1See Section A.1 for a formal definition of Wasserstein-p distance.
2One may use W 2

2 (µY |S=s, ν) when defining UF(PD); then α needs to be replaced by α2.
3See Appendix A.3 for a discussion on how to select the weights.
4See Section A.2 for a discussion on how to evaluate this unfairness measure empirically.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Importantly, under our FDA framework, we can generate high quality synthetic data with a theoreti-
cal guarantee that as α approaches 1, the synthetic Ŷ converges to the original Y in probability (and
consequently in distribution) conditional on the features X,S.

The joint MFDA for (Y,Z) given (X,S)

Draw fair Ŷ from the predictive distribution
p
(
Y |Z,X, S; β̂, η̂, σ̂2

)
∝ p(Y |X,S; β̂, η̂2)︸ ︷︷ ︸

Mfair

p(Z|Y ; σ̂2)︸ ︷︷ ︸
Mfaithful

Mfaithful : Z ∼ p
(
Z|Y, σ2

)
Mfair : p(Y |X,S, β, η)

Figure 1: A graphical representation of our FDA synthetic data generation framework.

3 THE PROPOSED FDA METHOD

Overview. The main idea is to simulate synthetic data from the predictive distribution defined under
a joint model, denoted as MFDA, using both observed D and additionally augmented data. A similar
approach was previously considered in Jiang et al. (2022) to generate privacy preserving synthetic
data. In this work, we build upon their method to address the challenge of generating fair synthetic
data, providing provable theoretical guarantees on the trade-off between fairness and utility, as well
as the convergence of the synthetic data to the original data in both probability and distribution.

Specifically, MFDA consists of two sub-models: (i) a fair model (see equation 2), denoted as Mfair,
which specifies certain relationship between Yi and the feature vector Xi and the sensitive attribute
Si, such that it imposes exact fairness constraint; and (ii) a faithful model, Mfaithful, which generates
Zi (see equation 3 for details) given Yi, for each i ∈ [n], such that Zi are noisy copies of Yi with
accuracy level controlled by tuning parameters. The fair synthetic data are then generated as samples
from the corresponding predictive distributions that are defined by the model MFDA.

By design, these Zi contain information about Yi so that Mfaithful plays the role of enforcing the
resulting synthetic data to be close (and thus faithful) to the original data. In contrast, Mfair plays
the role of imposing the desired fairness requirement, e.g., the DP constraint. Under such a frame-
work, both models Mfaithful and Mfair influence the resulting synthetic data, with their respective
contributions determined by the values of the tuning parameters introduced in Mfaithful (can be seen
in equation 3 and discussed thereafter). As a result, the tuning parameters control the relative in-
fluence from Mfaithful and Mfair, and thus balance between the two competing goals, fairness and
faithfulness to the original data. Given the proposed framework is general, the data considered can
be any type and need not to be limited to be binary or discrete as considered by many others. Next,
we present details of Mfaithful and Mfair when Yi’s are continuous; the discussion on how to use the
proposed framework when Yi’s are categorical is given in Remark 3.4.

Fair model. The fair model Mfair can be written in the following general form:

Mfair : Yi = f(Xi, Si, β) + εi, εi
iid∼ N (0, η2) , (2)

where f can be any fair predictor, under which Yi satisfies the DP constraint, and β is the associated
model parameter. Notably, the simplest choice of Mfair is a constant mean model (CMM) with
f = β0 being a constant function. Alternatively, one could also choose f to be a GAN-based fair
predictor, e.g., DECAF (discussed in Remark 3.3).

However, since many dependencies among the variables in the original data D are intentionally
omitted in Mfair to fulfill the fairness requirement, loss of information and utility is inevitable.
In other words, generating synthetic data solely from Mfair could result in considerable loss of
faithfulness to the original data. As pointed out by many others (Feldman et al., 2015a; Xu et al.,
2018; Chzhen & Schreuder, 2022; Zhao & Gordon, 2022; Tran et al., 2022), a sustainable solution
would be to accept some degree of compromise on fairness in order to preserve the utility of the
original data in the downstream analysis. We achieve this goal by introducing a faithful model as a
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submodel in our joint modeling framework, which plays the role of mitigating loss of information
about the original data.

Faithful model. The faithful model Mfaithful takes the following form:

Mfaithful : Zim = Yi + eim, eim
iid∼ N (0, σ2) , (3)

for m ∈ [M ]. The specification of this model allows us to generate noisy copies of Yi, i.e., Zi =
(Zi1, · · · , ZiM )⊤, so that Zi contains information about Yi with their faithfulness to the original
Yi controlled by the tuning parameters σ2 and M . By increasing the number of copies, M and/or
decreasing the additive noise variance σ2, the generated Zi contains more information about Yi. In
practice, one can fix the value of M and adjust the value of σ2, or vice versa. As discussed next in
Remark 3.1, the ratio σ2/M determines both the levels of fairness in the generated synthetic data as
well as its faithfulness to the original data.

With Mfair and Mfaithful chosen, we create our augmented dataset DDA = {D, {Zi}ni=1} given the
simulated Zi’s, and fit our joint model MFDA given below,

p(Y, Z | X,S;β, η2, σ2)︸ ︷︷ ︸
MFDA

= p(Y | X,S;β, η2)︸ ︷︷ ︸
Mfair

p(Z | Y ;σ2)︸ ︷︷ ︸
Mfaithful

. (4)

Note, under the model Mfaithful, where Z depends solely on Y , the conditional independence of Z
on X and S given Y implies that p(Z | Y,X, S) = p(Z | Y ).

Followed by the joint model in equation 4, the synthetic values of Yi, denoted as Ŷi for i ∈ [n], are
then drawn from the corresponding predictive distribution as follows:

Ŷi ∼ p
(
Yi|Zi, Xi, Si; β̂, η̂

2, σ̂2
)

∝ p(Yi, Zi | Xi, Si; β̂, η̂
2, σ̂2)︸ ︷︷ ︸

MFDA

= p(Yi | Xi, Si; β̂, η̂
2)︸ ︷︷ ︸

Mfair

p(Zi | Yi; σ̂
2)︸ ︷︷ ︸

Mfaithful

, (5)

where β̂, η̂2, σ̂2 are the estimates of model parameters β, η2, σ2, respectively. Figure 2 presents a
graphical representation of our data augmented joint modeling framework and fair synthetic data
generation process.

With the intentional choice of Gaussian models for both Mfair and Mfaithful, it can be easily shown
that the predictive distribution in equation 5 corresponds to the following Gaussian distribution (the
proof is given in Appendix B.1):

N

 σ̂2

M f(Xi, Si, β̂) +
∑M

j=1 Zij

M η̂2

σ̂2

M + η̂2
,

σ̂2

M η̂2

σ̂2

M + η̂2

 . (6)

In summary, given the estimates of the model parameters for both Mfair and Mfaithful, i.e., β̂, η̂2, σ̂2,
our synthetic dataset D̂ = {Ŷi, Xi, Si}ni=1 can be conveniently obtained by generating Ŷi, for i ∈ [n]
from the corresponding predictive distribution given in equation 6. Algorithm 1 summarizes the key
steps using our FDA framework.

As shown in equation 6, it is clear that both Mfair and Mfaithful contribute information to the synthetic
values of Yi’s. At one extreme, when M = 0 or/and σ2 = ∞, the Gaussian distribution in equation 6
reduces to N

(
f(Xi, Si, β̂), η̂

2
)

; that is, the synthetic data Ŷi will be generated based on the fair

model Mfair alone, resulting in synthetic data D̂ that satisfies exact DP constraint. At the other
extreme, when M = ∞ or/and σ2 = 0, the Gaussian distribution in equation 6 degenerates to a
point mass at Yi with Z̄i =

1
M

∑M
l=1 Zil

d
= Yi; that is, the information in Mfaithful will completely

override that of Mfair, resulting in Ŷi = Yi. Thus, when M,σ2 ∈ (0,∞), an intermediate level of
fairness and faithfulness to the original data will be achieved.
Remark 3.1 (Choosing tuning parameters in practice). To enhance the practical utility of our FDA
framework, we further introduce a bias reduction factor, denoted as α = η2

η2+λ with λ = σ2/M .
This allows us to express the unfairness measure in the synthetic dataset, UF(PD̂), in closed form

5
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Algorithm 1 FDA fair synthetic data generation algorithm
Input: original dataset D = {Xi, Yi, Si}ni=1 and user specified λ.
1. Generate noisy copies {Zi}ni=1 of Yi under the chosen faithful model Mfaithful.
2. Given the augmented data DDA = {D, {Zi}ni=1},
(2a). Fit the joint model defined in equation 4 and obtain the parameter estimates η̂2, β̂ and σ̂2;
(2b). Sample random draws Ŷi from (6) for each i ∈ [n].
3. Output fair synthetic datasets D̂ = {Ŷi, Xi, Si}ni=1 .

as a function of this bias reduction factor. At the same time, we can quantify the Wasserstein-2
distance between the distribution of Yi’s in the original dataset D and that of Ŷi’s in the synthetic
dataset D̂ as a function of α. By balancing the reduction of unfairness with the preservation of
faithfulness to the original data, users can select an appropriate value of α, which in turns can
determine the values of the tuning parameters M and σ2 in the faithful model Mfaithful given the
relationship λ = σ2/M = (1−α)η2

η2 . Further details are provided in Theorem 3.5, Theorem 3.6, and
the subsequent discussions following these theorems.

Remark 3.2 (FDA beyond DP fairness). The FDA framework can be applied to generate fair syn-
thetic data to satisfy the conditional statistical fairness (see Appendix A.4). In this case, one simply
needs to choose Mfair such that it satisfies the conditional fairness criterion. For example, the con-
stant mean model for Mfair mentioned earlier (i.e., CMM) naturally satisfies this fairness notion.
Remark 3.3 (FDA when combined with GAN-based fair models). We can let Mfair be a GAN-based
fair data generator, e.g., DECAF. In this case, the generated synthetic data are guaranteed to achieve
a higher level of fidelity to the original data compared to using DECAF alone (see Theorem 3.7).
Remark 3.4 (FDA framework when Yi’s are categorical). In the case of categorical labels, a sample
drawn from equation 6 is continuous. Then we need to map these continuous values back to discrete
categories. One option is to round the continuous value to the nearest integer, or alternatively, one
could define specific ranges for each category and map the continuous value to a category based on
these predefined ranges. For example, when Y ∈ {0, 1}, one can use a threshold value 0.5 as a
cutoff to distinguish the two categories.

3.1 THEORETICAL ANALYSIS OF THE RESULTING SYNTHETIC DATA

Quantifying the fairness and faithfulness of synthetic data relative to the original data has been
a longstanding challenge in previous fairness studies. While some prior works provide analytic
bounds to characterize these properties, our work is the first to offer a closed-form solution, enabling
an exact quantification of the trade-off between fairness and faithfulness. In this section, we proide
a detailed discussion on how the synthetic data D̂ generated by our FDA framework achieves an
α-reduction in unfairness, where α is the bias reduction factor introduced in Remark 3.1, and how
its faithfulness to the original data can be explicitly expressed as a function of α.

Theorem 3.5 (Unfairness reduction guarantee). With the bias reduction factor α = η2

η2+λ , where η2

is determined by Mfair and λ = σ2/M , determined by the tuning parameters σ2 and M in Mfaithful,
the distribution of the synthetic data D̂ generated by our FDA framework achieves the α-reduction
of unfairness as follows,

UF(PD̂) = αUF(PD) . (7)

where PD̂ and PD represent the distributions, from which the synthetic data D̂ and the original data
D are sampled, respectively.

By selecting the tuning parameters σ2 and M to achieve the desired value of α, Theorem 3.5 guaran-
tees the α-reduction of unfairness on PD̂ for the resulting synthetic data D̂ (see proof in Appendix
B.4). In practice, when η is unknown, an estimate of η, denoted as η̂, can be obtained by fit-
ting the assumed Mfair first. Then, the values of σ2 and M can be chosen such that their ratio
λ = η̂2(1−α)/α. Meanwhile, the following theorem quantifies the Wasserstein-2 distance between
the conditional distribution of Ŷi’s in D̂ and that of the original Yi’s in D, when the synthetic data
meets the desired fairness requirement characterized by any user-specified α.

6
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Theorem 3.6 (Faithfulness quantification). For the synthetic data D̂ such that its distribution PD̂
satisfies the α-reduction of unfairness, the Wasserstein-2 distance between µŶ |X,S and µY |X,S is
given by

W2(µŶ |X,S , µY |X,S) =

√
(1− α)2E

[
(Y − f(X,S, β))

2 |X,S
]
+ (1− α2) η2 . (8)

where µŶ |X,S and µY |X,S denote the conditional distribution of Ŷ ’s given X,S in D̂ and that of
Yi’s in D, respectively. Particularly, when M → ∞, and/or σ2 → 0, we have

Ŷ |X,S
p→ Y |X,S, and consequently, Ŷ |X,S

d→ Y |X,S, (9)

for any choice of Mfair.

Theorem 3.6 (see proof in Appendix B.2) quantifies the closeness of the generated synthetic val-
ues Ŷi’s to the original values Yi’s with respect to the user-specified unfairness reduction factor
α. When λ = 0 (i.e., M = ∞ or σ2 = 0), α = 1 and Ŷ is identical to Y ; that is, D̂ = D
and PD̂ is as unfair as PD. Conversely, when λ = ∞ (i.e., M = 0 and/or σ2 = ∞), α = 0

and the maximal discrepancy between Ŷ and Y is achieved, i.e., equation 8 attains it maximum√
E
[
(Y − f(X,S, β))

2 |X,S
]
+ η2, resulting in exact DP for PD̂ at the cost of faithfulness.

Theorem 3.6 and Theorem 3.5 together quantify the compromise one must make in order to meet
the desired fairness requirement with respect to α. Given a specific choice of Mfair, a larger value
of α results in fairer synthetic data D̂ but a greater discrepancy between the distributions of Ŷi’s
and Yi’s conditional on features. In practice, one can select a suitable α by balancing between the
goals of reducing the unfairness and enhancing faithfulness. Importantly, achieving this goal can
be facilitated by choosing appropriate values of the tuning parameters σ2 and M in Mfaithful. It
is worth noting that the faithfulness in D̂ does depend on the predictor f in the fair model Mfair.
Ideally, if one can find a fair predictor f in Mfair that satisfies the DP constraint with minimal loss
of faithfulness, then the generated synthetic data obtained using our FDA framework achieve the
highest level of faithfulness to the original data while simultaneously meeting the desired fairness
requirement with respect to α.

Next, we demonstrate that the introduction of our faithful model Mfaithful within our joint FDA
framework ensures that the generated synthetic data are guaranteed to be more faithful to the original
data compared to using the fair model Mfair alone.

Theorem 3.7 (Faithfulness improvement guarantee). For the synthetic data D̃ := {Ỹi, Xi, Si}ni=1
generated from the fair model Mfair alone (hence satisfying the exact DP constraint), the
Wasserstein-2 distance between µỸ |X,S and µY |X,S is given by,

W2(µỸ |X,S , µY |X,S) =

√
E
[
(Y − f(X,S, β))

2 |X,S
]
+ η2 . (10)

Comparing equation 8 and equation 10, it is easy to see that,

W2(µŶ |X,S , µY |X,S) < W2(µỸ |X,S , µY |X,S) (11)

for any fixed M > 0 and σ2 > 0, where µŶ |X,S denotes the conditional distribution of the synthetic

Ŷi’s generated by our joint FAD framework using both Mfair and Mfaithful.

Theorem 3.7 (see proof in Appendix B.3) proves that the synthetic values Ŷi’s obtained using FDA
are closer to the original values Yi’s than the synthetic values Ỹi’s obtained from using Mfair alone.
This finding provides provable guarantee that our joint FDA framework can be combined with any
existing fair data generation model to further improve the faithfulness of the generated synthetic
data. As we have discussed in the introduction, the generated synthetic dataset D̂ is used as the
training dataset to train downstream models. For any trained downstream model g(X,S) to predict
Y , the model error could affect the downstream fairness. Theoretically, the upper bound of the
fairness violation of the downstream model is given by the following proposition.

7
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Proposition 3.8. For any downstream model g(X,S) to predict Y , if W2(µg(X,S)|s, µŶ |s) ≤ δ for
all s ∈ [K], we have

min
ν∈Pp(R)

K∑
s=1

ωsW2(µg(X,S)|s, ν) ≤ αUF(PD) + δ , (12)

for any given weights (ω1, · · · , ωK) ∈ ∆K−1.

Proposition 3.8 (see proof in Appendix B.5) establishes a uniform upper bound on fairness viola-
tions in the downstream models trained on the generated synthetic dataset. This upper bound can
help users to select an appropriate α to ensure the desired level of downstream model fairness. Ad-
ditionally, Proposition 3.8 suggests that the downstream model error, which is captured by δ, can
negatively affect the downstream model’s fairness: a smaller error in the downstream model corre-
sponds to improved fairness guarantees in the downstream models.

4 EXPERIMENTS

We demonstrate the novel features of our FDA framework in generating fair synthetic data and
compare them with the baseline methods listed in Table 1 based on real data experiments. Further,
we show that how our FDA framework can be combined with DECAF, a GAN-based fair data
generator to improve the utility in downstream models trained on the resulting fair synthetic data.

All the baseline methods in Table 1 require intensive training and are extremely sensitive to the
architecture and hyperparameters of the models. For example, different constructed causal graphs
used by DECAF lead to varying utility in the resulting synthetic data. Therefore, to ensure a fair
comparison, we run experiments on the UCI Adult dataset (Dua & Graff, 2020), which is the only
dataset used by all the baseline methods. We also use the same model specifications as in the
original code provided by the authors to maintain consistency in our comparison. The UCI Adult
dataset contains over 65,000 samples with 11 attributes. It is known to exhibit bias between gender
and income (Feldman et al., 2015b; Zhang et al., 2017a). Thus, we treat gender as the sensitive
attribute and income as the binary target variable representing whether an adult’s income is over
$50K or not. Additional important details regarding the experimental setup, including the dataset
split, the architecture of the downstream model, and its training process, are provided in Appendix
C. Note that, we also conducted experiments on the COMPAS dataset using our FDA method. Due
to space limitations, these results are included in Appendix D.

4.1 ACHIEVING TRADE-OFF BETWEEN FAIRNESS AND FAITHFULNESS IN DEBIASED
SYNTHETIC DATA BY FDA

In this section, we show how our FDA framework facilitates the trade-off between absolute fair-
ness (α = 0) and perfect data faithfulness (α = 1) by varying the bias reduction factor α within
(0, 1). Specifically, synthetic Adult datasets are generated using the baseline methods and our FDA
under different values of α. We repeat the experiments 10 times for each method. Figure 2 shows
(1) the estimated Wasserstein-2 distance between the synthetic and original data distributions, de-
noted by Ŵ2(µŶ , µY ), and (2) the estimated unfairness measure in the synthetic dataset, denoted
by ÛF(PD̂), obtained by each method, where the solid line represents the average of the 10 exper-
iments and shadowed areas indicates variation5. As expected, when α → 0, ÛF(PD̂) → 0. This
is when synthetic data achieves perfect fairness but the worst faithfulness to the original data, with
Ŵ2(µŶ , µY ) far away from 0. Conversely, when α → 1, Ŵ2(µŶ , µY ) → 0. This is when the
synthetic data distribution converges to the original data distribution, achieving perfect data faithful-
ness; in the meanwhile, the synthetic data achieves zero reduction of biases compared to the original
data. None of the baseline methods offer this tuning mechanism, highlighting a unique advantage of
our approach. It is also worth noting that, unlike other methods, our FDA shows very small variation
that it is almost invisible on the plots, showing the stability of our FDA method.

5We observe similar patterns with the total variation-based unfairness measure detailed in the Appendix
C.2, experiments on COMPAS dataset is given in Appendix D.
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Figure 2: Faithfulness and fairness of the synthetic datasets by FairGAN, OPPDP, TabFairGAN,
DECAF and FDA under varying values of α: Ŵ2(µŶ , µY ) (↓ more faithful), ÛF(PD̂) (↓ more
fair). The shadowed areas along each line represent the variations on 10 repetitions of experiments.

4.2 IMPROVING DATA FAITHFULNESS AND DOWNSTREAM UTILITY USING FDA

In this section, we conduct experiments on the Adult dataset to demonstrate how our FDA framework
when combined with DECAF, can enhance the faithfulness of synthetic data to the original data
and thereby enhances the performance of downstream models trained on the synthetic data while
achieving an intermediate level of fairness.

Specifically, in our FDA framework, we let Mfair be the GAN-based model DECAF (van Breugel
et al., 2021) (we term the corresponding model FDA-DECAF). To emphasize that, in our origi-
nal FDA framework, Mfair is a constant mean model, namely CMM, we term the corresponding
model FDA-CMM. We generate debiased synthetic data using DECAF, FDA-DECAF and FDA-
CMM under different values of α and afterwards evaluate the utility and fairness of a downstream
model trained on the resulting debiased synthetic datasets using these methods. Again, to ensure
fair comparisons, we follow van Breugel et al. (2021) and focus on the same downstream MLP
model. When evaluating the utility and fairness of the downstream model trained on the debiased
synthetic data, we focus on the same metrics: (1) utility: we evaluate the predictive performance
of the model using accuracy, precision, recall, and AUROC; (2) fairness: we assess the fairness of
the downstream model trained on the synthetic data using the total variation distance based measure
|P(Ŷ |S = 1)− P(Ŷ |S = 0)|.
Figure 3 shows the results6 of our experiments, repeated 10 times. As expected, FDA-DECAF leads
to consistently better utility in the downstream prediction for any α ∈ (0, 1) when compared with
DECAF. This finding is supported by our theoretical result given in Theorem 3.7. By introducing
a joint modeling approach (including Mfair and Mfaithful), coupled with the tuning mechanism to
allow for an intermediate level of fairness, our FDA framework enables the resulting synthetic data
to maintain a certain level of faithfulness to the original data, thereby enhancing the downstream
prediction performance. When α → 1, our FDA framework allows the utility of the downstream
model trained on the resulting synthetic data to fully recover the utility using the original data. In
contrast, DECAF enforces exact fairness in the synthetic data, which can lead to significant loss of
utility in the downstream model as shown in Figure 3.

It is also worth noting that, despite the greater efforts required to implement the FDA-DECAF
method, which involves constructing causal graphs and intensive model tuning, FDA-DECAF does
not perform better than our FDA-CMM, which only involves sampling from Gaussian distributions.
When achieving similar utility-fairness trade-off, our FDA-CMM method offers significant advan-
tages in terms of computational efficiency, ease of implementation, stability and interpretability.

5 DISCUSSION

In this paper, we introduce the FDA framework to generate debiased synthetic data, aiming to
achieve intermediate levels of fairness and faithfulness as controlled by a user-specified unfairness

6See Appendix C.3 for more implementation details.
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Figure 3: Utility and fairness of the downstream models trained on the synthetic datasets obtained
by DECAF, FDA-DECAF and FDA-CMM under varying values of α: DP↓ (top left), Precision↑
(top right), Recall↑ (bottom left), AUROC↑ (bottom right). The shadowed areas along each line
represent the variations across 10 repeated experiments.

reduction factor (α). This is the first work to offer a provable trade-off characterization between
these two competing objectives. Our experimental results demonstrate the effectiveness of FDA in
achieving this trade-off, and validate our theoretical guarantees: achieving perfect data faithfulness
when setting α = 1, which is an important feature not present in other methods, and absolute fair-
ness when setting α = 0. Moreover, our FDA framework improves the faithfulness of synthetic data
when integrated with DECAF, a GAN-based fair data generator, as both proven theoretically and
demonstrated empirically in our experiments. This enhancement in faithfulness, in turn, boosts the
utility of downstream models trained on the resulting synthetic data.

Social implications. Setting α at different values allows users to balance the trade-off between abso-
lute fairness and perfect data faithfulness, adapting to the specific needs and priorities of various ap-
plications. This capability is crucial, as it enables decision-makers to make informed choices about
this trade-off without having to sacrifice one aspect for the other. Our FDA framework represents
a significant advancement in synthetic data generation, offering a transparent and robust approach
that involves only sampling from Gaussian distributions shown in Equation equation 6 and relies on
no assumptions. Such simplicity contrasts sharply with the labor-intensive and frequently unstable
training processes of complex black-box methods. These features of our FDA framework make it
more accessible, allowing a broader range of practitioners to adopt it without requiring specialized
training. This could potentially transform how data is managed to ensure equity and fairness.

Future work. The current FDA framework addresses the generation of fair synthetic data for one-
dimensional labels. Extending this framework to multi-dimensional labels, including mixed labels
of continuous and categorical types, is computationally straightforward; however, the challenge lies
in the theoretical analysis required to establish the relationship between fairness and faithfulness in
this context. Addressing this challenge will be the focus of our future work.
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A DEFINITIONS AND NOTIONS

A.1 P-WASSERSTEIN DISTANCE

Definition A.1 (p-Wasserstein distance). Let µ and ν be two probability measures on R. For p ≥ 1,
the p-Wasserstein distance between µ and ν is defined as

Wp(µ, ν) =

[
inf

γ∈Γ(µ,ν)

∫
|x− y|pdγ(x, y)

] 1
p

,

where Γ(µ, ν) is the set of joint probability measures on R×R with marginals are µ and ν. Namely,
for all measurable sets A,B ⊆ R, it holds that γ(A× R) = µ(A) and γ(R×B) = ν(B).

A.2 EVALUATION OF THE UNFAIRNESS MEASURE UF(PD)

The closed-form computation of UF(PD) for any PD is not easy due to the complex computation
of Wasserstein-2 distance in equation 1. In the following example, we present one example when
UF(PD) can be explicitly computed.

Consider the case when µY |s = N (bs, σ
2
s) is a normal distribution, then it is known the minimizer

(Agueh & Carlier, 2011) of equation 1 is ν = N
(∑K

s=1 ωsbs,
(∑K

s=1 ωsσs

)2)
. Therefore, one

can compute UF(PD) (Dowson & Landau, 1982) as

UF(PD) =

K∑
s=1

ωs

(bs − K∑
s=1

ωsbs

)2

+

(
σs −

K∑
s=1

ωsσs

)2
 1

2

.

In practice, the unfairness measure can be estimated by replacing the Wasserstein-2 distance in
equation 1 with its estimator. There are many well studied estimators of Wasserstein-2 distance, for
example, the plug-in estimator (Sommerfeld & Munk, 2018; Tameling et al., 2019; Dvurechensky
et al., 2018), the estimation based on Sinkhorn divergence (Chizat et al., 2020).

A.3 INTERPRETATION OF THE WEIGHTS IN EQUATION 1

The unfairness measure provides flexibility in choosing different weights (ω1, · · · , ωK) to accom-
modate various purposes, particularly when there are majority and/or minority groups with respect to
the sensitive attribute S. For example, the majority group (with respect to smajority) can be identified
when P(S = smajority) ≫ P(S = s) for all s ∈ [K] \ {smajority}.

In general, for any s ∈ [K], the larger the ωs, the closer the µY |X is to the optimal ν (the minimizer
in equation 1). This leads to some natural choices of (ω1, · · · , ωK), including ωs = P(S = s)
and ωs ∝ 1/P(S = s). When using the former, the optimal ν will be closer to the conditional
distribution of Y for the majority group; when using the latter, the optimal ν will be closer to the
conditional distribution of Y for the minority group. Alternatively, one could use equal weights by
letting ωs =

1
K , when all groups are similar in size.

A.4 FAIRNESS NOTIONS

Definition A.2 (Conditional Fairness). Let X = (X̃, F ), PD is said to satisfy conditional fairness
with respect to , if (Y |S = s1, F = f)

d
= (Y |S = s2, F = f ), for any s1, s2 ∈ [K]. That is to say,

P(Y ∈ T |S = s1, F = f) = P(Y ∈ T |S = s2, F = f) for any T ⊆ R.

B PROOFS FOR MAIN RESULTS IN SECTION 3

The detailed proofs of the results in the main paper are included in this appendix.
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B.1 PROOF OF EQUATION EQUATION 6

Proof. As discussed in the main paper, given the estimates of the model parameters (β̂, η̂2, σ̂2), we
draw the synthetic Ŷi from the following predictive distribution defined under MFDA:

p(Yi|Zi, Xi, Si; β̂, η̂
2, σ̂2) ∝ p(Yi|Xi, Si; η̂

2, β̂)︸ ︷︷ ︸
Mfair

p(Zi|Yi; σ̂
2)︸ ︷︷ ︸

Mfaithful

. (13)

Under the fair model Mfair defined in equation 2, we have

p(Yi|Xi, Si; η̂
2, β̂) = N

(
f(Xi, Si, β̂), η̂

2
)
,

and under the faithful model Mfair defined in equation 3, we have

p(Zi|Yi; σ̂
2) =

M∏
m=1

N
(
Yi, σ̂

2
)
.

That is,

p(Yi|Xi, Si; β̂, η̂
2) ∝ exp

−

(
Yi − f

(
Xi, Si, β̂

))2
2η̂2


and

p(Zi|Yi; σ̂
2) ∝

M∏
m=1

exp

{
− (Yi − Zim)2

2σ̂2

}
Then, realizing that

exp

−

(
Yi − f

(
Xi, Si, β̂

))2
2η̂2


M∏

m=1

exp

{
− (Yi − Zim)2

2σ̂2

}

∝ exp

−1

2

(
σ̂2

M η̂2

σ̂2

M + η̂2

)−1
Ŷi −

σ̂2

M f
(
Xi, Si, β̂

)
+

∑M
m=1 Zim

M η̂2

σ̂2

M + η̂2

2
 ,

which corresponds to the kernel of the Gaussian distribution as defined in equation 6:

N

 σ̂2

M f
(
Xi, Si, β̂

)
+

∑M
m=1 Zim

M η̂2

σ̂2

M + η̂2
,

σ̂2

M η̂2

σ̂2

M + η̂2

 .

This concludes the proof of equation 6.

For clarity and ease of reading, we present the proof of Theorem 3.6 before Theorem 3.5.

B.2 PROOF OF THEOREM 3.6

Proof. To determine the Wasserstein distance between µŶ |X,S and µY |X,S , it is convenient to
rewrite the generating model as

Ŷ =
σ2

M f(X,S, β)
σ2

M + η2
+

∑M
j=1 Zj

M η2

σ2

M + η2
+

√
σ2

M η2

σ2

M + η2
N1 ,

Zj = Y + σN2 , for j = 1, · · · ,M ,

where N1 and N2 are independent standard normal random variables that is independent of Y ,
{Zj}Mj=1 are M noisy copies of Y (we omit the individual index i for simplicity). Thus,

Ŷ =
σ2

M f(X,S, β)
σ2

M + η2
+

Y η2

σ2

M + η2
+

√
σ2

M η2

σ2

M + η2
N1 +

η2

σ2

M + η2

√
σ2

M
N2 .
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Followed by Ŷ − Y =
σ2

M f(X,S,β)
σ2

M +η2
− Y σ2

M
σ2

M +η2
+

√
σ2

M η2

σ2

M +η2
N1 +

η2

σ2

M +η2

√
σ2

M N2, one has

W 2
2 (µŶ |X,S , µY |X,S) = inf

γ∈Γ(µŶ |X,S ,µY |X,S)

∫
(ŷ − y)2dγ(ŷ, y)

= E

( σ2

M f(X,S, β)
σ2

M + η2
−

Y σ2

M
σ2

M + η2
+

√
σ2

M η2

σ2

M + η2
N1 +

η2

σ2

M + η2

√
σ2

M
N2

)2 ∣∣∣∣X,S


=

(
σ2

σ2 +Mη2

)2

E
[
(Y − f(X,S, β))

2 |X,S
]
+

σ2η2

σ2 +Mη2
+

Mη4σ2

(σ2 +Mη2)
2 ,

where the last equation is a direct computation by taking the expectation of the squared form. The
proof is competed by the relationships λη2

λ+η2 + η4λ
(λ+η2)2

= (1− α)η2 + α(1− α)η2 = (1− α2)η2.

To see the asymptotic result when M → ∞ or/and σ2 → 0, we shall check the moments of Ŷ − Y .

E
[
(Ŷ − Y )2|X,S

]
(14)

= E

( σ2

M f(X,S, β)
σ2

M + η2
−

Y σ2

M
σ2

M + η2
+

√
σ2

M η2

σ2

M + η2
N1 +

η2

σ2

M + η2

√
σ2

M
N2

)2 ∣∣∣∣X,S


=

(
σ2

σ2 +Mη2

)2

E
[
(Y − f(X,S, β))

2 |X,S
]
+

σ2η2

σ2 +Mη2
+

Mη4σ2

(σ2 +Mη2)
2 . (15)

It is trivial to see from equation 15 converges to 0 when M → ∞ or/and σ2 → 0.

By Markov’s inequality, for any ϵ > 0,

P(|Ŷ − Y | > ϵ|X,S) ≤
E
[
(Ŷ − Y )2|X,S

]
ϵ2

, (16)

where the right hand side converges to 0 when M → ∞ or/and σ2 → 0. Therefore, we have
Ŷ |X,S → Y |X,S in probability.

B.3 PROOF OF THEOREM 3.7

The proof of Theorem 3.7 follows directly from the result in Theorem 3.6. The detail is given as
follows.

Proof. If D̃ is only generated from the fair model Mfair, we have

Ỹ − Y = f(X,S, β)− Y + ηN1 ,

where N1 is a standard normal random variable that is independent of Y . Thus,

W 2
2 (µỸ |X,S , µY |X,S) = inf

γ∈Γ(µỸ ,µY )

∫
(ỹ − y)2dγ(ỹ, y)

= E
[
(f(X,S, β)− Y + ηN1)

2 |X,S
]

= E
[
(f(X,S, β)− Y )

2 |X,S
]
+ η2 .

To obtain the inequality W 2
2 (µŶ |X,S , µY |X,S) ≤ W 2

2 (µỸ |X,S , µY |X,S), one can use the following
results.
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For any σ2 and M > 0, we always have
(

σ2

σ2+Mη2

)2
≤ 1, where the quality holds only when

M → 0 or/and σ2 → ∞.

On the other hand, it is trivial to obtain the following inequality.

σ2η2

σ2 +Mη2
+

Mη4σ2

(σ2 +Mη2)
2 = η2

(
1− M2η4

(σ2 +Mη2)
2

)
≤ η2 ,

where the equality of the last inequality holds only when M → 0 or/and σ2 → ∞.

Thus, the inequality in Remark 3.7 is obtained immediately.

B.4 PROOF OF THEOREM 3.5

Proof. First, due to the scaling law of Wasserstein-2 distance and its corresponding barycenter (San-
tambrogio, 2015; Panaretos & Zemel, 2019; Chzhen & Schreuder, 2022; Villani, 2021), we have

min
ν∈P2(R)

K∑
s=1

ωsWp(µcY |s, ν) = c min
ν∈P2(R)

K∑
s=1

ωsWp(µY |s, ν) , (17)

for any c ≥ 0.

Secondly, by the translation invariant property of Wasserstein-2 distance (Santambrogio, 2015;
Panaretos & Zemel, 2019; Villani, 2021), one has

W2(µY+Z+a, µX+Z+a) = W2(µY , µX) ,

for any constant a and random variable Z that is independent of Y and X . Thus,

min
ν∈P2(R)

K∑
s=1

ωsW2(µY+Z+a|s, ν) = min
ν∈P2(R)

K∑
s=1

ωsW2(µY |s, ν) . (18)

Based on the generating model of Ŷ , we have

Ŷ =
σ2

M f(X,S, β)
σ2

M + η2
+

Y η2

σ2

M + η2
+

√
σ2

M η2

σ2

M + η2
N1 +

η2

σ2

M + η2

√
σ2

M
N2 ,

where N1 and N2 are independent standard normal random variables that are independent of Y . A
direct application of equation 17 and equation 18 implies UF(PD̂) =

η2

σ2

M +η2
UF(PD) = αUF(PD)

for any given weights (ω1, · · · , ωK) ∈ ∆K−1.

B.5 PROOF OF PROPOSITION 3.8

Proof. Assume ν0 = argminν∈P2(R)
∑K

s=1 ωsW2(µŶ |s, ν), by Theorem 3.5 we have

K∑
s=1

ωsW2(µŶ |s, ν0) = αUF(PD).

By triangle inequality, we have
K∑
s=1

ωsW2(µg(X,S)|s, ν0) ≤
K∑
s=1

ωsW2(µŶ |s, ν0) +

K∑
s=1

ωsW2(µg(X,S)|s, µŶ |s) (19)

≤ αUF(PD) + δ , (20)

for any given (ω1, · · · , ωK). It follows that

min
ν∈P2(R)

K∑
s=1

ωsW2(µg(X,S)|s, ν) ≤
K∑
s=1

ωsW2(µg(X,S)|s, ν0) ≤ αUF(PD) + δ .
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C ADDITIONAL EXPERIMENTS ON UCI ADULT DATASET

C.1 COMPUTATION DETAILS OF OUR EXPERIMENTS

Data split: The UCI Adult dataset is randomly split into two sets: a training set with 63, 000 data
points and a testing set with data size 2, 000 data points.

Model training: The model parameter β depends on the specific choice of Mfair, for example,
β̂ = Ȳ if Mfair is CMM. Here, we estimate the parameters using their sample versions. That is, for
the CMM model, β̂ = Ȳ and η̂ = 1

n−1

∑n
i=1(Yi − Ȳ )2. Additionally, since the hyperparameter σ2

is tuned by the user, its estimation is not necessary and its true value is used. The average time spent
for the training process to obtain one synthetic dataset is around 1.3 seconds on the Adult dataset
with n = 63, 000 in the training set. The simulations were performed using Python 3.8.8 on a PC
with a 12th Gen intel Core i5-12600K CPU with 32 GB of RAM running Windows 11.

Downstream model: To evaluate the fairness and utility of downstream models, we train Multi-
layer Perceptron (MLP) models on the generated synthetic datasets based on different fair data
generation models. For instance, MLP models are trained using MLPclassifier function from
sklearn module with all default parameters.

C.2 ADDITIONAL FAIRNESS EVALUATION ON SYNTHETIC DATA BY FDA

In this section, we run experiments on the UCI Adult dataset D. Synthetic dataset D̂ is generated
under FDA framework with different choices of α. In addition to the unfairness measure UF(D̂) in
Definition 2.2, we also assess the commonly used unfairness measure |P(Ŷ = 1|S = 1) − P(Ŷ =
1|S = 0)| with respect to the bias reduction parameter α and illustrate in Figure 4. Still, the result
of FDA is compared with those of DECAF (van Breugel et al., 2021), FairGAN (Xu et al., 2018),
OPPDP(Calmon et al., 2017), TabFairGAN(Rajabi & Garibay, 2022). Each experiment is repeated
10 times, the average performances are reported in solid lines with shadowed variation areas in
Figure 4. It is clear that, FDA still shows a clear tuning mechanism on faithfulness and fairness with
respect to the bias reduction parameter α, and the tuning trend is the same as using the unfairness
measurement UF(PD̂). This further emphasises FDA does facilitate the trade-off between absolute
fairness and perfect data faithfulness by varying the bias reduction factor α.

Figure 4: Fairness of the generated synthetic dataset by FDA, FairGAN, OPPDP, DECAF with
respect to α: |P(Ŷ = 1|S = 1) − P(Ŷ = 1|S = 0)| (↓ more fair). The shadowed areas along each
line represent the variations on 10 repeat ions of experiments.
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Table 2: Data utility and fairness of the downstream MLP model trained on generated synthetic data
by FDA-DECAF model with different tuning ratio λ.

FDA-DECAF DATA UTILITY FAIRNESS

MFAIR : DECAF PRECISION ↑ RECALL↑ AUROC↑ DP↓ FTU↓
ORIGINAL DATASET 0.879± 0.012 0.933± 0.012 0.773± 0.021 0.182± 0.019 0.028± 0.013

λ = 0.25 0.846± 0.012 0.962± 0.001 0.717± 0.023 0.142± 0.023 0.050± 0.024
λ = 0.5 0.846± 0.001 0.958± 0.011 0.716± 0.019 0.141± 0.025 0.065± 0.028
λ = 1 0.800± 0.006 0.989± 0.005 0.622± 0.015 0.071± 0.017 0.028± 0.018
λ = 2 0.754± 0.001 1.000± 0.000 0.507± 0.002 0.002± 0.002 0.003± 0.002
λ = 4 0.751± 0.000 1.000± 0.000 0.500± 0.000 0.000± 0.001 0.000± 0.000

DECAF 0.753± 0.000 0.989± 0.000 0.505± 0.000 0.006± 0.000 0.006± 0.000

Table 3: Data utility and fairness of the downstream MLP model trained on generated synthetic data
by FDA-CMM model with different tuning ratio λ.

FDA-CMM DATA UTILITY FAIRNESS

MFAIR : CMM PRECISION ↑ RECALL↑ AUROC↑ DP↓ FTU↓
ORIGINAL DATASET 0.877± 0.009 0.934± 0.009 0.768± 0.016 0.169± 0.022 0.031± 0.026

λ = 0.25 0.931± 0.014 0.781± 0.037 0.803± 0.008 0.287± 0.031 0.079± 0.044
λ = 0.5 0.861± 0.007 0.928± 0.019 0.738± 0.009 0.155± 0.041 0.079± 0.039
λ = 1 0.751± 0.000 1.000± 0.000 0.501± 0.001 0.001± 0.001 0.000± 0.001
λ = 2 0.751± 0.000 1.000± 0.000 0.500± 0.000 0.000± 0.000 0.000± 0.000
λ = 4 0.751± 0.000 1.000± 0.000 0.500± 0.000 0.000± 0.000 0.000± 0.000

C.3 IMPROVING DATA FAITHFULNESS AND DOWNSTREAM UTILITY USING FDA BASED ON
TUNING RATIO λ

We generate synthetic fair dataset by FDA-DECAF model and by FDA with different choices of λ,
the evaluation of downstream faithfulness and fairness are presented and compared with DECAF in
Table 2 and 3, respectively. As expected, It clearly shows the downstream faithfulness is decreasing
when λ is increasing, while the fairness is increasing simultaneously. This scenario coincides with
the theoretical findings in Section 3.1. In addition to DP fairness, we also evaluate a different fair-
ness notion: Fairness Through Unawareness (FTU), which is the difference between the predicted
variables of a downstream classifier for setting S = 1 and S = 0, respectively, while giving the
same feature. FTU is evaluated by the metric as |PS=1(Ŷ |X)− PS=0(Ŷ |X)|.
Comparing results in Table 2 for FDA-DECAF and Table 3 for FDA-CMM, it is interesting to
see when the tuning ratio λ is large (i.e., λ ≥ 2) the data utility and fairness performances for
FDA-DECAF and FDA-CMM coincide. That is to say, when high level of fairness is required,
one can either use FDA-DECAF or FDA-CMM. However, it is clear that, not like FDA-DECAF
(prior causal relationships knowledge is required), FDA-CMM is a very simple model with no prior
knowledge requirement. FDA-CMM is very recommended due to its computation simplicity and
less assumptions requirement. This scenario coincides the interpretation in Section 4.2 and its reason
is when λ is large, the information from Mfaithful will significantly override the information from
Mfair, leading high fairness level of the synthetic dataset from FDA joint model.

D ADDITIONAL EXPERIMENTS ON COMPAS DATASET

The proposed FDA framework is very general not only on the capability of using different fair model
Mfair, but also on the stability of its performance on various real data. To show the generalization
of using FDA framework, we run experiments on COMPAS data (Angwin et al., 2016), which is a
dataset contains information about defendants from Broward County, and contains attributes about
defendants such as their ethnicity, language, sex, etc. ,and for each individual a Decile score showing
the likelihood of recidivism (reoffending). It is known there is bias (Calmon et al., 2017; Rajabi
& Garibay, 2022) between ethnicity and Decile score in the sense that Decile score for African-
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American group is more likely to be assigned a higher Decile score indicating higher likelihood
of recidivism. Therefore, in this experiment, ethnicity is the sensitive feature, and we only keep
individuals when the ethnicity is African American and Caucasian. Also, we drop features, such
as FirstName, LastName, MiddleName, CASE ID, and DateOfBirth, as people usually do. We
convert Decile score as binary variable: “Low Chance of recidivism” when Decile score is less than
5; “High chance of recidivism” for the rest. In a word, sensitive attribute S = ethnicity and the
outcome Y = Recidivism Chance.

In what follows, we repeat experiment on COMPAS dataset as we did for Adult dataset in Section
4.1 to show how FDA facilitates the trade-off between fairness (when α = 0) and perfect data
faithfulness (when α = 1) by varying the bias reduction factor α ∈ (0, 1).

We generate fair synthetic data D̂ by using FDA with various choices of α. For different levels of
bias reduction factor α ∈ [0, 1], we report the average of

(1) the empirical estimates of the Wasserstein-2 distance between the synthetic and original
data distributions Ŵ2(µŶ , µY )) in Figure 5,

(2) the empirical estimates of the unfairness measure UF(D̂) in the debiased synthetic data in
in Figure 6,

(3) the commonly used unfairness measure |P(Ŷ = 1|S = 1)− P(Ŷ = 1|S = 0)| in Figure 7,

across 10 repetitions of experiments.

As we have seen in Section 4.1, it is clear that FDA provides a tuning mechanism on faithfulness and
fairness with respect to the bias reduction parameter α comparing with other benchmark method.
Furthermore, it is worth noting that the variation of Ŵ2(µŶ , µY ) and ÛF(PD̂) for FDA are very
small, providing stability of FDA framework.

Figure 5: Faithfulness of the generated synthetic dataset by FDA with respect to α: Ŵ2(µŶ , µY )
(↓ more faithful). The shadowed areas along each line represent the variations on 10 repeat ions of
experiments.
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Figure 6: Fairness of the generated synthetic dataset by FDA with respect to α: ÛF(PD̂) (↓ more
fair). The shadowed areas along each line represent the variations on 10 repeat ions of experiments.

Figure 7: Fairness of the generated synthetic dataset by FDA with respect to α: |P(Ŷ = 1|S =

1) − P(Ŷ = 1|S = 0)| (↓ more fair). The shadowed areas along each line represent the variations
on 10 repeat ions of experiments.
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