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ABSTRACT

Large Multimodal Models (LMMs) such as LLaVA have shown strong performance
in visual-linguistic reasoning. These models first embed images into a fixed
large number of visual tokens and then feed them into a Large Language Model
(LLM). However, this design causes an excessive number of tokens for dense visual
scenarios such as high-resolution images and videos, leading to great inefficiency.
While token pruning and merging methods exist, they produce a single-length
output for each image and cannot afford flexibility in trading off information
density v.s. efficiency. Inspired by the concept of Matryoshka Dolls, we propose
M3: Matryoshka Multimodal Models, which learns to represent visual content as
nested sets of visual tokens that capture information across multiple coarse-to-fine
granularities. Our approach offers several unique benefits for LMMs: (1) One
can explicitly control the visual granularity per test instance during inference,
e.g., adjusting the number of tokens used to represent an image based on the
anticipated complexity or simplicity of the content; (2) M3 provides a framework
for analyzing the granularity needed for existing datasets, where we find that
COCO-style benchmarks only need around 9 visual tokens to obtain an accuracy
similar to that of using all 576 tokens; (3) Our approach provides a foundation
to explore the best trade-off between performance and visual token length at the
sample level, where our investigation reveals that a large gap exists between the
oracle upper bound and current fixed-scale representations.

1 INTRODUCTION

Large Multimodal models (LMMs) (OpenAI, 2023a; Liu et al., 2023a; Zhu et al., 2024; Liu et al.,
2024b;a; Wang et al., 2023; Bai et al., 2023) have shown strong performance in visual-linguistic
understanding and reasoning. Models such as LLaVA (Liu et al., 2023a; 2024a;b) first embed the
input image with a fixed number of visual tokens, and then feed them as prefix tokens to a Large
Language Model (LLM) (Vicuna, 2023; Meta, 2024) to reason about the input image. Similar model
designs are borrowed in video LMMs (Lin et al., 2023b; Zhang et al., 2023a), where each frame
contributes a fixed number of tokens to form the final video representation.

In reality, the number of visual tokens can be prohibitively large in the case of high-resolution images,
and even more so for long videos. Existing works (Lin et al., 2023b; Liu et al., 2024b; Zhang et al.,
2024b; Team, 2024) mainly tackle this issue by increasing the input context length and consequently,
feeding a large number e.g., 3-8k of visual tokens into the LLM. This approach has a couple of
significant drawbacks: (1) the extremely long context makes both training and inference inefficient;
(2) an excessive number of visual tokens can actually harm the LMM’s performance, distracting it
from attending to the relevant information, as we show in Sec. 4.3. Several recent works (Bolya et al.,
2023; Chen et al., 2024; Shang et al., 2024) use heuristics to prune and merge visual tokens to reduce
the sequence length. However, they produce a single-length output and do not afford control over
the final sequence length, which could be useful to trade information density versus efficiency while
accounting for resource constraints in the deployment phase.

Images and videos naturally exhibit a hierarchical structure from coarse to fine details, and our human
visual system has evolved to recognize visual information in this coarse to fine manner, as shown
by biologists and psychologists decades ago (Harris & Giachritsis, 2000; Hegdé, 2008). Can we
create a similar structure for LMMs, where within one suite of model weights, the visual content
tokens are organized into different scales of granularities? Conceptually, our goal is to learn the visual
tokens to have a nested structure, similar to the Matryoshka Doll (Kusupati et al., 2022). Matryoshka
Representation Learning (MRL) (Kusupati et al., 2022) builds the Matryoshka mechanism over a
neural network’s representation vector, where each of the segments with various feature dimensions
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M3

…

In the heart of a bustling restaurant, a young girl finds solace at a 
table…

In the heart of a bustling restaurant, a young girl with vibrant hair is 
seated at a wooden table, her attention captivated by the camera…

In the heart of a bustling restaurant, a young girl with long, dark hair is 
the center of attention. She's dressed in a blue and white striped 
sweater,. … The table is adorned with a white paper bag, perhaps 
holding her meal. A blue Pepsi cup rests on the table …

X!!

X!"

X!#

Describe this image for me.

Figure 1: Matryoshka Multimodal Models. We enforce the coarser set of visual tokens XSi−1 to be
derived from the finer level of visual tokens XSi . As a result, the granularity of Matryoshka visual
tokens gradually changes in a controllable manner. The image is from MSCOCO (Lin et al., 2014)
validation set and the captions are generated given 1, 9, and 576 tokens, respectively.

is capable of handling tasks like classification or retrieval. However, for LMMs, the inefficiency
mainly comes from the number of tokens. Thus, inspired by, but different from MRL, our work is
motivated to build Matryoshka Multimodal Models upon the token length dimension, so that we can
flexibly adjust it.

Figure 2: MMBench evaluation results under M3,
oracle under LLaVA-1.5-M3, LLaVA-1.5 with av-
erage pooling at inference time, LLaVA-1.5 sep-
arately trained for each specific scale, and other
methods. M3 shows as least as good performance
as LLaVA trained for each specific scale. A large
gap exists between the oracle upperbound and
model’s actual performance on a specific scale.

Specifically, we propose M3: Matryoshka Multi-
modal Models, which enforces an LMM to learn
a hierarchy of visual representation granulari-
ties at the token sequence level, instead of the
feature dimension level as in MRL (Kusupati
et al., 2022). With this representation, at infer-
ence time, the visual granularity can be flexibly
controlled based on specific requirements, e.g.,
to account for the input image’s information den-
sity and efficiency constraints. Our training pro-
cess is simple and straightforward. During train-
ing, we encode the image into M sets of visual
tokens from coarse to fine, XSi

, i = 1, · · · ,M ,
where the number of visual tokens gradually
increases, i.e., |XSi−1

| < |XSi
|. And impor-

tantly, the visual tokens in a coarser level are
derived from the visual tokens in a finer level,
i.e., XSi−1 ⊂ XSi , ∀i. In this way, the visual
information in [XS1 ,XS2 , · · · ,XSM

] gradually
includes more fine-grained details. For exam-
ple, given a natural image as shown in Figure 1,
XS1

includes high-level semantics such as the
restaurant and girl, while XSM

includes more
details such as the Pepsi cup and white paper

bag. All other training settings, such as the loss function and model architecture, are kept the same as
LLaVA (Liu et al., 2023a; 2024a;b).

Our approach, M3, introduces several novel properties and benefits for LMMs. First, our approach can
efficiently represent visual content where users can flexibly choose the visual token scale at inference
time. Under one suite of weights, it generates multiple nested sets of visual tokens with different
granualarities in information density. This enables flexibility in the number of visual tokens used for
any image during inference, enabling control over the best tradeoff between cost and performance
based on the image or video content. For example, one can use all visual tokens for images with dense
details and use just a few tokens for simpler images. This flexibility can be particularly significant
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when handling very long visual sequences, such as videos. For instance, given a fixed budget of 2880
visual tokens, a user could represent a video of 2880 frames each with one token or represent the
same video by sampling 5 frames each with 576 tokens.

Second, our method can be used as a general framework to evaluate the visual complexity of vision-
language benchmarks, i.e., which level of granularity is needed in order to perform the given task
correctly. Surprisingly, we find that most benchmarks, especially those mainly crafted from natural
scenes (such as COCO) (Goyal et al., 2017; Li et al., 2023c; Liu et al., 2023b), can be handled
well with only ∼ 9 tokens per image. In contrast, dense visual perception tasks such as document
understanding or OCR (Singh et al., 2019; Masry et al., 2022) require a greater amount of tokens
(144− 576 tokens) per image to handle the task well. The detailed findings are presented in Sec. 4.2.

Finally, our approach provides a foundation to tackle a critical task in LMMs: How to use the least
amount of visual tokens while answering the visual questions correctly?. Based on the model’s
predictions on the test set, we find that compared to full visual tokens, the oracle can use far fewer
tokens while performing much better. For example, under six common LMM benchmarks used in
LLaVA-NeXT (Liu et al., 2024b), the oracle with the trained M3 model can use as few as 8.9 visual
tokens on average to achieve performance that is 8% points better than LLaVA-NeXT which uses
576 tokens per image grid. This indicates that there is a large room for improvement compared to the
oracle upperbound, as we show in Sec. 4.2.

To enable further research on adaptive LMMs that learn diverse information granularities, we publicly
release our code and models.

2 RELATED WORK

Large Multimodal Models. Large Language Models (LLMs) like ChatGPT (OpenAI, 2023b),
GPT-4 (OpenAI, 2023c), and LLaMA (Touvron et al., 2023) have demonstrated impressive reasoning
and generalization capabilities for text. The LLM landscape has been significantly transformed
by the introduction of models that also incorporate visual information e.g., GPT-4V (OpenAI,
2023a). Building upon open-source LLMs (Touvron et al., 2023; Vicuna, 2023), a plethora of
multimodal models have made significant strides, spearheaded by models like LLaVA (Liu et al.,
2023a; 2024a) and MiniGPT-4 (Zhu et al., 2024), which combine LLaMA’s (Touvron et al., 2023)
language capabilities with a CLIP (Radford et al., 2021) image encoder. Recently, LMMs on more
tasks and modalities have emerged, such as region level LMMs (Cai et al., 2024; Zhang et al., 2023c;
Chen et al., 2023; Peng et al., 2023; Zhang et al., 2023b), 3D LMMs (Hong et al., 2023), and video
LMMs (Lin et al., 2023b; Zhang et al., 2023a; 2024b). However, existing LMMs typically represent
the visual content with a large, fixed number of tokens, making it challenging to scale to very long
visual sequences such as high-resolution images or long-form videos. In this work, we propose to
efficiently represent the visual content by learning multiple nested sets of visual tokens, providing
flexibility in the number of visual tokens used for any image during inference.

Matryoshka Representation Learning. Matryoshka Representation Learning (MRL) (Kusupati
et al., 2022) addresses the need for flexible representations that can adapt to multiple downstream tasks
with varying computational resources. This approach, inspired by the nested nature of Matryoshka
dolls, encodes information at different granularities within the same high-dimensional feature vector
produced by a neural network. The adaptability of MRL extends across different modalities, including
vision (ResNet (He et al., 2016), ViT (Dosovitskiy et al., 2021)), vision + language (ALIGN (Jia
et al., 2021)), and language (BERT (Devlin et al., 2018)), demonstrating its versatility and efficiency.
Recent work (Li et al., 2024) extends MRL to both the text embedding space and the Transformer
layers space. Our approach is inspired by MRL, but instead of learning multiple nested embeddings
for a high-dimensional feature vector, we learn nested visual tokens along the token length dimension
for the visual input. We are the first to show that the idea of Matryosha learning can enable explicit
control over the visual granularity of the visual content that an LMM processes.

Token Reduction. One of the main causes of inefficiency in recent LMMs is their large number of
prefix visual tokens that are fed into the LLM (Liu et al., 2023a; Zhu et al., 2024). The quadratic
complexity in Transformers (Vaswani et al., 2017) is the key issue in scaling the input sequence length
for Transformers. Token reduction serves as an effective technique to reduce computational costs in
Transformers. Sparse attention methods such as Linformer (Wang et al., 2020) and ReFormer (Kitaev
et al., 2020) conduct attention operations within local windows rather than the full context, thereby
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X!!

X!"

X!#

Text Prompt
: Describe the 
scene for me. 

Large Language Model

: There are a group of people standing in the ski facility, 
some of them are holding a green flag while other are … 

Matryoshka Multimodal Models

CLIP Image 
Encoder

Granularity 
Controller

Figure 3: Architecture of our proposed Matryoshka Multimodal Models. The visual features
from CLIP are represented as several groups of coarse-to-fine visual tokens. At test time, users can
explicitly control the granularity of the visual features.

reducing the quadratic complexity of the vanilla attention operation. Another notable method is Token
Merging (ToMe) (Bolya et al., 2023), which utilizes full attention but gradually reduces the number
of tokens in each transformer block by selecting the most representative tokens through bipartite
matching for the Vision Transformer (ViT). A recent work (Haurum et al., 2023) further studies
different families of token reduction methods for ViT. However, prior approaches produce a single
length output per input image and do not offer multiple granularities over the reduced token sequence.
Our M3 approach instead learns a multi-granularity, coarse-to-fine token representation within the
same model architecture and weights, enabling it to easily be adjusted to various computational or
memory constraints.

A concurrent work (Hu et al., 2024) shares a similar spirit with our approach, representing an image
with varying numbers of visual tokens using a single set of model weights. While their method
reformats the visual tokens into a sequential list via transformation layers, we use average pooling to
preserve the spatial structure of the visual tokens, demonstrating effectiveness in our experiments.

3 M3: MATRYOSHKA MULTIMODAL MODELS

Our goal is to learn a Large Multimodal Model (LMM) that represents visual content as nested sets
of visual tokens capturing information across multiple coarse-to-fine granularities, so that one can
explicitly control the visual granularity per test instance during inference. Here we introduce how we
learn a Matryoshka doll-like token sequence.

LMMs such as LLaVA (Liu et al., 2023a) typically input a sequence of visual tokens as prefix tokens to
the LLM for visual-linguistic reasoning. The visual encoder from pretrained vision-language models,
such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023), is typically utilized to project
the images into the set of visual tokens. In particular, the CLIP visual encoder represents an input
image I as an H ×W grid of visual tokens XH×W , where each Xi ∈ RC is a C dimensional feature
vector. Our goal is to learn nested sets of visual tokens [XS1

,XS2
, · · · ,XSM

] which encode the
visual information in a coarse-to-fine manner. To this end, we enforce XSi ⊂ XSi+1 ,∀i. Importantly,
we do not introduce any new learnable parameters to the LMM. We instead optimize the CLIP visual
encoder to learn the nested visual representation directly, and train the ensuing LLM to adapt to the
learned nested set of tokens.

For ease of exposition, we consider CLIP-ViT-L-336 (Radford et al., 2021) as the visual encoder,
where an image is encoded as 24 × 24 visual tokens (576 total). We create M sets of tokens e.g.,
|Si| ∈ {1, 9, 36, 144, 576}, in which the visual tokens at the coarser level are derived directly from
those at the finer level. Specifically, given the initial 24×24 visual tokens, We sequentially apply 2×2
pooling with a stride 2, resulting in 12× 12, 6× 6, and 3× 3 visual tokens. Finally, we apply 3× 3
pooling and get the most condensed single visual token. In this way, the sets of Matryoshka visual
tokens can gradually preserve the spatial information in the original tokens while simultaneously
forming a coarse-to-fine nested representation.

We train M3 by averaging the autoregressive next token prediction loss for each scale Si for each
image Ii. Specifically, given a Matryoshka visual representation XSi for scale Si, we maximize the
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likelihood of the predicted tokens matching the ground-truth answer Xa:

P (Xa | XSi
,Xq) =

L∏
j=1

Pθ(xj | XSi
,Xq,Xa,<j), (3.1)

where θ is the trainable parameters of the model, which includes both the CLIP visual encoder and
the ensuing LLM. Xq denotes the question in text format, L denotes the token length of the ground
truth answer Xa, and Xa,<j denotes all the ground truth answer tokens before the current prediction
token xj , where j denotes the token index during text token generation. We omit system messages
for clarity, though they are part of the conditioning. Figure 3 shows our model architecture.

The final objective averages over all M visual token scales:

min
θ

1

M

M∑
i=1

− logP (Xa | XSi
,Xq). (3.2)

With this objective function, M3 learns nested sets of visual tokens that gradually include more details
with increasing scale. For example, in Figure 1, the smaller set of visual tokens describes the whole
scene at a high level while the larger set of visual tokens includes more details such as the Pepsi cup.
Our training objective affords our model to conduct visual question answering under any granularity
during inference. This can be particularly useful in resource constrained applications; e.g., the visual
granularity can be flexibly adjusted based on the anticipated simplicity or complexity of the visual
content while taking into account compute and memory constraints.

Discussion. Given the diverse question-answering training data across multiple domains and
sources, the intermediate visual representation in M3 will be forced to represent the visual input to
make the prediction be as accurate as possible. Given a small budget such as one token, the model
will automatically represent the most salient image attributes in an unsupervised manner.

At a high level, the aforementioned learning mechanism is analogous to that in autoencoder (Hinton
& Salakhutdinov, 2006; Coates et al., 2011), which reconstructs the input from the compressed latent
code in an unsupervised manner. If the autoencoder has a small/large dimensional latent space, then
it will produce a blurrier/sharper reconstruction. But in either case, the learned bottleneck will still
try to compress the important information in the input, just to varying degrees.

This is also demonstrated in the prior work Matryoshka Representation Learning (MRL) (Kusupati
et al., 2022), where the model can learn the correct granularity even when the supervision signals
come from the same single ground-truth target. As mentioned in MRL, the coarse-to-fine granularity
is achieved by explicitly optimizing O(log(d)) lower-dimensional vectors in a nested manner, which
is analogous to our nested token learning. Empirically, this is further validated by our hallucination
analysis on POPE and RefCOCO in Sec. 4.4.

Finally, we argue that it would be fundamentally ill-posed to curate different ground-truth targets
for different granularities, as we do not know the criterion of how the different targets should differ.
Therefore, we choose to let the multimodal model learn the granularity in an “unsupervised” manner.

4 EXPERIMENTS

In this section, we first detail the experiment settings in Sec 4.1. Then we show the performance of
M3 on both image-level benchmarks 4.2 and video-level benchmarks 4.3. Finally, we analyze the
behavior of Matryoshka Multimodal Models and provide ablations in Sec 4.4 and 4.5.

4.1 EXPERIMENT SETTINGS

Model We use LLaVA-1.5 (Liu et al., 2024a) and LLaVA-NeXT (Liu et al., 2024b) as the base
LMMs, both with Vicuna 7B as the language model backbone. We finetune the whole model using
the exact visual instruction data from LLaVA-1.5 and LLaVA-NeXT, respectively. The learning rate
of LLM is 2 × 10−5 and 1 × 10−5, respectively for LLaVA-1.5 and LLaVA-NeXT. The learning
rate for the visual encoder is 2× 10−5 for both models. We train both models for 1 epoch using 8
NVIDIA H100 GPUs.
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Table 1: Comparison between LLaVA-1.5-M3 across various benchmarks under image understanding
benchmarks. LLaVA-1.5-M3 maintains the performance of LLaVA-1.5 while outperforming Qwen-
VL and InstructBLIP with fewer tokens.

Approach # Tokens MMBench GQA POPE VizWiz SEEDBench

Qwen-VL (Bai et al., 2023) 256 38.2 59.3 - 35.2 56.3
Qwen-VL-Chat (Bai et al., 2023) 256 60.6 57.5 - 38.9 58.2

InstructBLIP-7B (Dai et al., 2023) 32 36.0 49.2 - 34.5 53.4
InstructBLIP-13B (Dai et al., 2023) 32 - 49.5 78.9 33.4 -

LLaVA-1.5-7B 576 64.8 62.0 85.9 54.4 60.5

LLaVA-1.5-M3

576 65.9 61.9 87.4 54.9 60.6
144 66.4 61.3 87.0 53.1 59.7
36 64.8 60.3 85.5 52.8 58.0
9 63.1 58.0 83.4 51.9 55.4
1 59.5 52.6 78.4 49.4 50.1

Instead of training the language model from scratch, we initialize the language model weights
from pre-trained LLaVA-1.5 and LLaVA-NeXT, which we empirically works better. We name our
Matryoshka Multimodal Models LLaVA-1.5-M3 and LLaVA-NeXT-M3.

Visual Token Scales We design 5 scales for the visual tokens. LLaVA-1.5 (Liu et al., 2024a) and
LLaVA-NeXT (Liu et al., 2024b) both leverage CLIP-ViT-L-336 (Radford et al., 2021) as the visual
encoder, where an image is embedded into 24× 24 visual tokens. We gradually apply 2× 2 pooling
with stride 2, resulting in 12 × 12, 6 × 6, and 3 × 3 visual tokens, where we finally apply a 3 × 3
pooling to get the final single visual token. Therefore, the size of Matryoshka visual token sets are
S ∈ {1, 9, 36, 144, 576}, following a nested manner. The efficiency anlaysis on the system level is
shown in Appendix B, where M3 boosts the speed of the LMM prefill process through diminished
floating-point operations (FLOPs) and lessens computational memory requirements.

Evaluations. For image understanding, we evaluate LLaVA-1.5 and LLaVA-NeXT on (a) diverse
multimodal benchmarks: POPE (Li et al., 2023c), GQA (Hudson & Manning, 2019), MMBench (Liu
et al., 2023b), VizWiz (Gurari et al., 2018), SEEDBench (Li et al., 2023a), ScienceQA (Lu et al., 2022),
MMMU (Yue et al., 2024), and (b) document understanding/Optical character recognition (OCR)
benchmarks: DocVQA (Mathew et al., 2021), ChartQA (Masry et al., 2022), AI2D (Kembhavi et al.,
2016) and TextVQA (Singh et al., 2019).

For video understanding, we use both (a) open ended video question answering benchmarks
evaluated by GPT-3.5: MSVD-QA (Xu et al., 2017), MSRVTT-QA (Xu et al., 2017) and ActivityNet-
QA (Yu et al., 2019); and (b) multi-choice video question answering benchmarks: NExT-QA (Xiao
et al., 2021), IntentQA (Li et al., 2023b), and EgoSchema (Mangalam et al., 2024).

4.2 IMAGE UNDERSTANDING

LLaVA-1.5-M3 We evaluate LLaVA-1.5-M3 on the common multimodal understanding and rea-
soning benchmarks. Results are shown in Table 1. LLaVA-1.5-M3 with full tokens maintains the
performance of LLaVA-1.5 across diverse benchmarks. More importantly, our approach shows strong
performance even with 1 or 9 tokens. Specifically, in MMBench, a comprehensive multimodal under-
standing benchmark, LLaVA-1.5-M3 with 9 tokens surpasses Qwen-VL-Chat with 256 tokens, and
achieves similar performance as Qwen-VL-Chat with even 1 token. Compared with InstructBLIP (Dai
et al., 2023), LLaVA-1.5M3 with 9 tokens surpasses InstructBLIP-7B and InstructBLIP-13B across all
benchmarks. This demonstrates that our model has both flexibility and strong empirical performance
under diverse number of visual tokens.

LLaVA-NeXT-M3 We use the proposed Matryoshka Multimodal Models to finetune LLaVA-
NeXT, and compare LLaVA-NeXT-M3 with SS, which denotes the setting where the LLaVA-NeXT
is trained under a Specific Scale of visual tokens also for 1 epoch. We also include the oracle
upperbound performance: ‘Oracle’ denotes the case where the best tradeoff between visual tokens
and performance is picked for each test instance; i.e., for each test instance, we select the scale with
the fewest amount of tokens but can answer the question correctly. Table 2 shows that our approach,
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Table 2: Comparison of approaches with the SS baseline and M3 across various benchmarks under
LLaVA-NeXT (Liu et al., 2024b). Here # Tokens denotes the number of visual tokens per image grid
in LLaVA-NeXT. SS denotes the baseline model trained with a Specific Scale of visual tokens. M3 is
at least as good as SS, while performing better on tasks such as TextVQA, ChartQA, and MMBench.
Oracle denotes the case where the best tradeoff between visual tokens and performance is picked.

# Tokens Per
Grid Approach TextVQA AI2D ChartQA DocVQA MMBench POPE ScienceQA MMMU

576 SS 64.53 64.83 59.28 75.40 66.58 87.02 72.29 34.3
M3 63.13 66.71 58.96 72.61 67.96 87.20 72.46 34.0

144 SS 62.16 65.77 55.28 67.69 67.78 87.66 72.15 36.4
M3 62.61 68.07 57.04 66.48 69.50 87.67 72.32 36.1

36 SS 58.15 65.90 45.40 56.89 67.01 86.75 71.87 36.2
M3 58.71 67.36 50.24 55.94 68.56 87.29 72.11 36.8

9 SS 50.95 65.06 37.76 44.21 65.29 85.62 72.37 36.8
M3 51.97 66.77 42.00 43.52 67.35 86.17 71.85 35.2

1 SS 38.39 63.76 28.96 33.11 61.43 82.83 72.32 35.3
M3 38.92 64.57 31.04 31.63 62.97 83.38 71.19 34.8

Oracle # Tokens 31.39 11.54 41.78 64.09 8.90 6.08 7.43 22.85
Performance 70.51 76.36 70.76 81.73 74.35 94.29 76.07 50.44

Table 3: Overall accuracy of LLaVA-NeXT-M3 and recent video LMMs on various video understand-
ing benchmarks. Here # Tokens denotes the overall number of visual tokens across all frames.

Approach # Tokens MSVD MSRVTT ActivityNet NextQA IntentQA EgoSchema

Video-LLaMA (Zhang et al., 2023a) - 51.6 29.6 12.4 - - -
LLaMA-Adapter (Zhang et al., 2024a) - 54.9 43.8 34.2 - - -

Video-ChatGPT (Maaz et al., 2023) - 64.9 49.3 35.2 - - -
Video-LLaVA (Lin et al., 2023a) 2048 70.7 59.2 45.3 - - -
InternVideo (Wang et al., 2022) - - - - 59.1 - 32.1

LLaVA-NeXT-7B (Liu et al., 2024b) 2880 78.8 63.7 54.3 63.1 60.3 35.8

LLaVA-NeXT-7B-M3

2880 78.2 64.5 53.9 63.1 58.8 36.8
720 79.0 64.5 55.0 62.6 59.6 37.2
180 77.9 63.7 55.0 61.4 59.3 37.6
45 75.8 63.0 53.2 59.5 58.7 38.8
5 73.5 62.7 50.8 56.5 56.7 36.2

M3, is at least as good as SS, while performing better on tasks such as document understanding
(TextVQA and ChartQA) and common benchmarks such as MMBench (Liu et al., 2023b).

Our results also show that dataset level biases towards the visual token scales do exist. For example,
ScienceQA maintains consistent performance across all visual token scales. AI2D and MMBench
only encounter a small performance drop for even as few as 9 to 1 tokens. On the other hand, dense
visual perception tasks such as TextVQA and DocVQA show a significant performance drop with
fewer tokens. This analysis shows that M3 could serve as a framework to analyze the granularity that
a benchmark needs.

Furthermore, there is a large gap between the model’s actual performance under full tokens and
the upper-bound oracle. This indicates that using full tokens cannot always result in the optimal
performance for all samples; i.e., there is a large room of improvement towards the oracle point.

4.3 VIDEO UNDERSTANDING

Following IG-VLM (Kim et al., 2024), we directly conduct zero-shot inference on diverse video
benchmarks using LLaVA-NeXT-M3. Specifically, 6 frames are uniformly sampled over the entire
video, then arranged as a collage, which is fed into LLaVA-NeXT along with the question to get the
response. Results under LLaVA-NeXT-M3 and recent video LMMs are show in Table 3.

LLaVA-NeXT-M3 with full visual tokens again shows comparable performance with LLaVA-NeXT.
More interestingly, results indicate that full visual tokens usually do not lead to the best performance
in video understanding tasks. Specifically, on 4 out of 6 benchmarks, full visual tokens show less
desirable performance compared to 720 or 180 visual tokens. We suspect that very long visual context
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Table 4: Comparison between M3and heuristics based sampling baselines (average pooling, spatial
sampling, sequential sampling) at inference time on MMBench with the LLaVA-NeXT architecture.

# Tokens M3 Average Pooling Spatial Sampling Sequential Sampling

576 67.96 67.18 67.18 67.18
144 69.50 61.68 65.81 60.14
36 68.56 50.77 60.05 44.76
9 67.35 45.45 45.45 31.96
1 62.97 19.33 26.29 22.42

Q: what brand is the apricot 
brandy?

Q: how much is a 
polos crazy bike?

Q: what directive is the sign 
giving?

Q: what beer company is a sponsor on 
the score board?

Q: what is the telephone number of 
andrew yates?

1936144576# Tokens
✔✔✔✔✔Correct?

Q: what number is on the 
black and white sign?

1936144576# Tokens
✘✘✔✔✔Correct?

1936144576# Tokens
✘✘✘✘✘Correct?

Figure 5: TextVQA test samples with correct and incorrect predictions upon different scales. Answers
vary with different number of visual tokens. In addition, M3 can serve as a framework to evaluate the
complexity of images.
could bring distraction (e.g., too much focus on potentially irrelevant background) to the model’s
prediction, where a compact representation of the video focusing on the more relevant information
may be more advantageous.

Finally, for most video understanding tasks such as ActivityNet, IntentQA and EgoSchema, with 9
tokens per image grid (45 tokens in total), the accuracy difference compared to full tokens (2880 in
total) is less than 1%. This demonstrates that the video questions in these benchmarks usually require
very sparse visual information, as the source of such video understanding benchmarks mostly comes
from natural scenes, which matches our observation in image understanding benchmarks.

4.4 IN-DEPTH ANALYSIS

(a) Sequential (b) Spatial

Figure 4: Visualization of sequential vs
spatial sampling. Given 24× 24 grids,
visualized cells denote sampled tokens.

M3 shows much stronger performance compared to
heuristics based sampling at test time. A simple way
to reduce the number of visual tokens via a training-free
way is to conduct heuristic token merging or reduction,
which is utilized in works such as Zhang et al. (2024b)
and Rippel et al. (2014). In Table 4, we compare M3 with
three training-free approaches: average pooling, spatial
sampling, and sequential sampling. M3 is much more re-
silient when the number of tokens decreases, while the
heuristic based sampling approaches show dramatic perfor-
mance drop. A visualization of the spatial and sequential
sampling is shown in Figure 4.

M3 serves as a good metric for image complexity. We extract the response from LLaVA-NeXT-M3

in the TextVQA benchmark, and show the samples where using visual tokens across different scales
can answer the question correctly and incorrectly. Shown in Figure 5, the OCR performance aligns
with the complexity of the images, which indicates that M3 can be utilized as a metric towards sample
level complexity.

Large gap between oracle and actual performance. As shown in Table 2, the oracle upper-bound
can use very few (6 ∼ 64) tokens yet achieve at least 10% better performance compared to full visual
tokens. This suggests that a visual token scale predictor, where the model learns to automatically
select the best visual token scale given the input images or both input images and questions, has
potential to achieve a better tradeoff. This would be interesting future work.

Zero-shot generalization to longer visual sequences. Here we extend the length of the visual
tokens at inference time to study the model’s zero-shot generalization behavior. Results under LLaVA-
NeXT are shown in Table 5. Here LLaVA-NeXT-M3 is trained on 2× 2 image grids but evaluated
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Table 5: Performance comparison of different image grid configurations with LLaVA-NeXT-M3.

# Grids # Tokens per grid Overall # Tokens TextVQA AI2D ChartQA DocVQA MMBench POPE ScienceQA

2× 2 144 720 62.61 68.07 57.04 66.48 69.50 87.67 72.32
3× 3 144 1440 64.73 67.75 58.84 70.59 69.50 87.67 72.22

2× 2 576 2880 63.13 66.71 58.96 72.61 67.96 87.20 72.46

Table 6: Accuracy, Precision, and Recall on the
POPE dataset with M3.

# Tokens Accuracy Precision Recall

576 88.08 94.13 81.22
144 88.43 93.84 82.27
36 88.02 88.02 82.24
9 87.03 92.31 80.80
1 83.58 83.58 82.38

Table 7: MMHal-Bench: Score for Adversarial
Type and Overall Hallucination Rate.

# Tokens Score (Adversarial) Hallucination Rate

576 2.00 69%
144 2.08 56%
36 1.92 77%
9 2.00 64%
1 2.08 69%

on 3 × 3 grids. We set the number of visual tokens to be 144 in each image during evaluation.
The model obtains a significant improvement in document understanding by 2.12, 1.80, and 4.11
on TextVQA, ChartQA, and DocVQA, respectively, while maintaining the same performance on
benchmarks mainly composed of natural scene images. 3× 3 image grids with 144 tokens per grid
own 1440 tokens, yet achieve similar performance with the default LLaVA-NeXT 2× 2 image grids
with 2880 total tokens (576 tokens per grid). This indicates it is promising to feed more subimages
while making the number of visual tokens within each subimage much smaller.

Detailed investigation into potential hallucinations. We next investigate potential hallucinations
of M3 on two popular benchmarks: POPE (Li et al., 2023c) and MMHal-Bench (Sun et al., 2023).
Table 6 shows results on POPE. Accuracy reflects the proportion of correctly answered questions,
Precision and Recall reflect the ratios of correctly answering questions whose answers are “Yes”
or “No”, respectively. M3 maintains the same level of recall while showing gradually increasing
precision as the number of tokens is increased. Results for MMHal-Bench (Table 7) reveal similar
trends. Different numbers of visual tokens show similar performance on the “adversarial” type.
Similar to the “No” question type in POPE, here “adversarial” questions ask models about the objects
that do not exist in the image. Thus “adversarial” questions expects models to say “No”. Different
numbers of visual tokens show similar overall hallucination rate. Overall, these results demonstrate
that M3 maintains a similar level of hallucination across different scales of visual tokens.

Effect of object size. For the objects appearing in POPE images, we categorize the objects into
three groups based on the area occupied by the object. With more visual tokens, M3 shows significant
performance boost in small objects compared to the large objects; see Table 8. Visual grounding
results on RefCOCO testA set (ACC@0.5) (Yu et al., 2016) corroborate this finding, where more
visual tokens leads to significant performance boost for understanding small objects compared to
large objects; see Table 9. These results indicate that M3 tends to preserve more coarse-grained
information when the number of tokens are limited. Importantly, both the hallucination experiments
from the previous section and the results here demonstrate that coarse-to-fine granularities can be
learned in an unsupervised manner, using one ground-truth target for all token lengths.

4.5 ABLATION STUDIES

Matryoshka visual token sampling. Here we compare three different ways to select the visual
tokens for Matryoshka Multimodal Models, including average pooling, spatial sampling, and sequen-
tial sampling, which is illustrated in Figure 4. Shown in Table 10, averaging pooling shows better
performance than the two alternatives across diverse benchmarks. In general, sequential sampling
performs the worst. We hypothesize that this is due to the visual tokens having spatial information,
while sequential sampling does not naturally align with the spatial distribution of the visual tokens.

Training the entire LMM vs only training CLIP. Since the nested behavior of Matryoshka visual
tokens is learned within the CLIP visual encoder, we next evaluate whether it is necessary to also
finetune the LLM. Shown in Table 11, training the whole LLM achieves better performance. This
demonstrates that by also training the LLM, the model can better adapt to the patterns of the visual
tokens distributed in the Matryoshka manner.
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Table 8: M3 Performance on different scales with
varying numbers of visual tokens on POPE.

# Tokens Small Medium Large

576 85.20 84.05 88.98
144 86.31 86.11 88.98
36 78.19 82.50 87.96
9 76.39 80.53 85.40
1 78.53 80.02 85.31

Table 9: RefCOCO visual grounding accuracy
for different object sizes.

# Tokens Small Medium Large Average

576 76.2 86.4 88.5 83.7
144 70.3 84.5 87.3 80.7
36 54.8 75.4 85.5 71.9
9 30.5 55.9 75.2 53.9
1 7.8 14.2 28.8 16.9

Table 10: Ablation on Matryoshka visual token sampling including average pooling, sequential
sampling, and spatial sampling with LLaVA-NeXT-M3.

TextVQA MMBench AI2D

Num of Vis Tokens Avg Pooling Sequential Spatial Avg Pooling Sequential Spatial Avg Pooling Sequential Spatial

576 63.13 59.37 60.45 67.96 64.60 64.43 66.71 65.61 64.96
144 62.61 55.80 58.33 69.50 64.18 64.52 68.07 64.90 64.96
36 58.71 52.79 52.39 68.56 63.92 64.69 67.36 64.51 64.02
9 51.97 44.05 44.19 67.35 63.14 62.11 66.77 63.70 63.92
1 38.92 28.03 29.91 62.97 59.36 57.47 64.57 63.21 63.08

Table 11: Performance comparison of training LLaVA-NeXT-M3 with and without training the LLM
across diverse benchmarks. We see a clear drop when freezing the LLM.

Num of Vis Tokens TextVQA MMBench AI2D DocVQA

w/ LLM w/o LLM w/ LLM w/o LLM w/ LLM w/o LLM w/ LLM w/o LLM

576 63.13 61.16 67.96 63.66 66.71 63.92 72.61 69.15
144 62.61 57.79 69.50 65.21 68.07 63.73 66.48 59.77
36 58.71 49.75 68.56 63.92 67.36 62.89 55.94 44.08
9 51.97 36.15 67.35 61.08 66.77 62.05 43.52 28.36
1 38.92 19.72 62.97 51.80 64.57 60.59 31.63 17.37

Table 12: Comparison of performance between average pooling (parameter-free) and learning-based
approaches including Resampler (Alayrac et al., 2022), C-Abstractor (Cha et al., 2024), and D-
Abstractor (Cha et al., 2024) on MMBench and TextVQA with LLaVA-1.5-M3.

MMBench TextVQA

# Tokens Avg Pooling Resampler C-Abstractor D-Abstractor Avg Pooling Resampler C-Abstractor D-Abstractor

576 65.9 65.8 65.4 58.8 57.75 53.50 55.47 48.22
144 66.4 66.0 66.3 56.7 56.76 51.95 54.32 46.69
36 64.8 63.9 64.9 55.8 54.97 48.67 51.87 46.09
9 63.1 59.4 62.8 53.5 53.50 49.83 46.53 45.24
1 59.5 53.2 58.4 49.6 49.49 44.64 46.05 44.12

Comparison with training-based visual token reduction. Results on MMBench and TextVQA
in Table 12 show that average pooling used in M3 overall produces the best performance compared to
three learning based approaches: (a) resampler (Cha et al., 2024), (b) C-Abstractor (Cha et al., 2024),
and (c) D-Abstractor (Cha et al., 2024). This is likely because averaging pooling preserves spatial
details better. Furthermore, average pooling does not require any new learned layers or parameters.

5 CONCLUSION

We introduced M3: Matryoshka Multimodal Models, which learns to represent visual content as
nested sets of visual tokens, capturing information across multiple coarse-to-fine granularities. LMMs
equipped with M3 afford explicit control over the visual granularity per test instance during inference.
We also showed that M3 can serve as an analysis framework to investigate the visual granularity
needed for existing datasets, where we discovered that a large number of multimodal benchmarks
only need as few as 9 visual tokens to obtain accuracy similar to that of using all visual tokens,
especially for video understanding. Furthermore, we disclosed a large performance-efficiency gap
between the oracle upper-bound and the model’s performance. Our work can be naturally extended
to other domains. For example, the long context in a text-only LLM or vision tokens in dense vision
tasks can also be represented as nested sets of tokens in a Matryoshka manner.
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6 REPRODUCIBILITY STATEMENT

We will publicly release our code, data, and pretrained models, so that the community can fully
reproduce, and build-upon, our work.
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APPENDIX

A BROADER IMPACT

The broader impact of M3, a framework with nested visual representations, has potential benefits
and risks associated with its deployment and release. Our model is trained using the exact same
architecture and data of LLaVA-1.5 (Liu et al., 2024a) and LLaVA-NeXT (Liu et al., 2024b). All the
concerns are same as LLaVA. Specifically, as one example, LLaVA conducts instruction tuning using
GPT-4 and GPT-4V generated data. The bias from GPT-4 and GPT-4V would still exist in LLaVA.

B EFFICIENCY ANALYSIS

To illuminate the computational benefits conferred by M3, we employ the roofline-based LLM-Viewer
analysis as detailed in (Yuan et al., 2024). Our analysis is set within a hypothetical context designed
to emphasize the effects of M3 on processing efficiency in LMMs. We study the LLaVA-1.5 case
where a 336× 336 resolution image is processed using a CLIP-ViT image encoder, resulting in 576
visual tokens. Accompanied by a text prompt with an assumed number of 30 tokens, the nested visual
tokens in M3 substantially lowers the visual token count. The consequences of this reduction are
substantial as outlined in Table 13, detailing the computational costs involved in the LMM prefill
process. Notably, M3 not only boosts the speed of the LMM prefill process through diminished
floating-point operations (FLOPs) but also lessens computational memory requirements.

It is crucial to highlight that the advantages of M3 are not limited to just efficiency improvements.
The token reduction approach of M3 can also enhance other LMM acceleration methods, such as
quantization and factorization, as referenced in (Yuan et al., 2023). This complementary relationship
accentuates the broad potential of M3 to contribute to a wider array of efficiency-boosting strategies.

C MORE ABLATION STUDIES: INITIALIZE WEIGHTS FROM LLAVA AND
AVERAGE LOSS UPON ALL TOKEN SCALES

As explained in Sec. 3 and 4.1, we (a) initialize the LLM weights from LLaVA and (b) minimize the
loss averaged upon all visual token scales for each sample during training. An alternative choice is to
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Table 13: Computation Cost Analysis. The development device is Tesla V100 GPU, and time
estimated by the roofline model represents the theoretical performance that the hardware can achieve.

# Tokens FLOPs (T) Prefill Time (ms) Total Memory (GB) Storing Activation (GB)

576 8.0 58.1 21.6 3.8
144 2.2 19.5 15.0 0.7
36 0.9 18.0 13.8 0.3
9 0.5 17.7 13.6 0.2
1 0.4 17.6 13.5 0.1

Table 14: Impact of (a) initializing the LLM weights from LLaVA, and (b) averaging the loss from
all scales vs randomly selecting a scale for each sample during training with LLaVA-NeXT-M3.

Technique TextVQA AI2D

Init LLM weights from LLaVA ✓ ✓ ✓ ✓

Average losses over all scales ✓ ✓ ✓ ✓

576 60.36 62.25 61.01 63.13 62.40 65.06 65.84 66.71
144 59.61 61.02 59.80 62.61 63.67 65.61 65.77 68.07
36 54.86 55.91 55.32 58.71 63.67 65.32 66.68 67.36
9 46.84 47.04 48.80 51.97 63.02 64.83 65.38 66.77
1 33.78 33.68 36.05 38.92 61.53 63.21 63.37 64.57

randomly sample a visual token scale. Shown in Table 14, initializing the LLM weights from LLaVA
and minimizing the losses over all scales shows consistent performance boost compared to using
the vanilla text-only pre-trained LLM weights (Vicuna, 2023) and randomly selecting a visual token
scale. Initializing the LLM weights from LLaVA makes the training process of M3 more stable. By
learning all scales at once, the model is forced to learn the nested behavior for each sample, which
leads to better performance.

D MORE VISUALIZATIONS ON NESTED VISUAL REPRESENTATION

Shown in Figure 6, with more visual tokens, LMMs can discover more details, such as furniture and
human attributes. Besides, LMMs can generate higher quality descriptions with more visual tokens,
as demonstrated by the OCR capability in Figure 6 (b).

E THE BLIND LOWER BOUND PERFORMANCE WITH 0 VISUAL TOKENS

Table 15 shows that 0 visual tokens (i.e., a text-only model) align with the trend shown in our
paper under different numbers of visual tokens. Removing all visual tokens results in significant
performance drop on most benchmarks especially for document understanding such as ChatVQA and
DocVQA. On the other hand, ScienceQA, MMMU, and AI2D show very similar performance when
dropping all visual tokens, demonstrating that language prior plays a much more significant role in
those benchmarks.

F PERFORMANCE OF TOKEN CONCATENATION UNDER M3

An intriguing question is: Can token concatenation under M3 further improve performance? As
shown in Table 16, (1) concatenating all token scales shows slightly better performance but requires
many more visual tokens. (2) concatenating all but the last token scale shows comparable performance
to the largest visual token scale (576 tokens).
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M3

…

This is a black and white photograph capturing a moment from a 
baseball game. In the foreground, there are three individuals…

This is a black and white photograph capturing a moment from a 
baseball game. In the foreground, three baseball players are standing 
on a field. The player on the left is wearing a baseball uniform with 
the name "KIMBLE" on the front, a cap, and a glove..

This is a black and white photograph capturing a moment from a 
baseball game. In the left section, we see a player from the Kimberly 
team. He is dressed in a white baseball uniform with the word 
"KIMBERLY" emblazoned across the chest. He is holding a baseball 
glove, ready for action.

X!!

X!"

X!#

Describe this image for me.

M3

…

The image shows an interior space that appears to be a living room 
or a combined living and dining area ...

The image shows an interior space that appears to be a living room or 
a lobby. The room has a warm color scheme with beige walls and a 
darker brown floor. There is a large, L-shaped sofa…

The image shows an interior space that appears to be a living room or 
a combined living and dining area…There is a large, L-shaped sofa with 
a light-colored upholstery, positioned in the center of the room. In 
front of the sofa, there is a glass-top coffee table with various…

X!!

X!"

X!#

Describe this image for me.

(a)

(b)

Figure 6: More visualization examples. With more visual tokens, LMMs can discover more details,
and generate higher quality descriptions. The images are from MSCOCO (Lin et al., 2014) validation
set.

Table 15: Performance of M3 across various benchmarks under LLaVA-NeXT (Liu et al., 2024b).
Here # Tokens denotes the number of visual tokens per image grid in LLaVA-NeXT, including 0
visual token.

# visual tokens TextVQA AI2D ChartQA DocVQA MMBench POPE ScienceQA MMMU

576 63.13 66.71 58.96 72.61 67.96 87.20 72.46 34.00
144 62.61 68.07 57.04 66.48 69.50 87.67 72.32 36.10
36 58.71 67.36 50.24 55.94 68.56 87.29 72.11 36.80
9 51.97 66.77 42.00 43.52 67.35 86.17 71.85 35.20
1 38.92 64.57 31.04 31.63 62.97 83.38 71.19 34.80

0 10.03 60.43 14.24 11.95 21.48 56.65 70.79 31.20
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Table 16: Performance of M3 across various benchmarks under different numbers of visual tokens
and when (1) all token scales are concatenated or (2) all but the last token scale are concatenated.

# visual tokens MMBench GQA POPE VizWiz SEEDBench

576 65.9 61.9 87.4 54.9 60.6
144 66.4 61.3 87.0 53.1 59.7
36 64.8 60.3 85.5 52.8 58.0
9 63.1 58.0 83.4 51.9 55.4
1 59.5 52.6 78.4 50.1 49.4

144+36+9+1=190 63.8 63.5 86.7 56.1 61.2
576+144+36+9+1=766 62.5 63.7 85.0 56.7 61.4

Table 17: Performance of M3 across various benchmarks under new sets of visual token scales. On
new scales, M3 can still represent the images in a nested manner with strong performance.

# visual
tokens MMBench GQA POPE VizWiz SEEDBench

576 67.4 61.5 87.2 49.5 60.2
144 65.2 59.3 85.3 46.5 57.1
64 64.7 58.4 84.3 46.0 55.1
36 63.2 57.0 83.6 45.9 53.1
16 61.8 54.7 80.9 44.7 50.2
9 58.7 53.3 78.4 42.7 49.1
4 54.0 51.3 77.5 41.4 45.2
1 47.9 47.7 74.6 40.3 43.1

G GENERALIZATION TO MORE TOKEN SCALES

We conduct experiments on a set of new scales. As shown in Table 17, on new scales, M3 can still
represent images in a nested manner with strong performance.

Besides, other Matryoshka sampling strategies can also support a diverse number of visual tokens at
inference time, such as sequential sampling. However, in this paper, we choose average pooling due
to its superior performance, as demonstrated in the ablations in Table 10.

H STUDY ON A MORE STRICT ORACLE PERFORMANCE WITH MULTIPLE RUNS

We run evaluations for 5 times using different seeds with temperature 0.2 to get a more strict oracle.
Then, we take a majority vote for the prediction for each sample in each scale. Shown in Table 18,
with 5 runs, the upper bound performance is similar to that of a single run.

Table 18: Token counts and performance across multiple datasets for 1 run and 5 runs for the oracle
performance of M3.

TextVQA AI2D ChartQA DocVQA MMBench GQA ScienceQA MMMU
1 run # Tokens 31.39 11.54 41.78 64.09 8.90 6.08 7.43 22.85

Oracle Performance 70.51 76.36 70.76 81.73 74.35 94.29 76.07 50.44

5 runs # Tokens 33.24 13.42 44.05 67.54 9.52 6.09 8.05 21.03
Oracle Performance 71.00 75.94 69.44 81.23 76.48 94.27 76.94 50.11

I STUDY ON A MORE STRICT ORACLE PERFORMANCE WITH MULTIPLE RUNS

Our proposed M3 is a plug-and-play methodology that can be generally applied to multimodal models
including both LLaVA-style (treating visual tokens as prompts) and Flamingo-style (Alayrac et al.,
2022) (using cross-attention to fuse visual features into text features). Specifically, Flamingo-style
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MLLMs (i) first extract visual features using the Perceiver Resampler Alayrac et al. (2022), and (ii)
then apply cross attention for multimodal fusion. M3 can be naturally applied between these two
stages to produce the multi-granularity visual representation before the cross attention stage, resulting
in the Flamingo-M3. Therefore, the computation, reflected by measures such as FLOPS, can also be
reduced if a coarse-grained visual representation scale is used.

Specifically, consider nV as the number of visual tokens, n′
V as the number of visual tokens after

passing the perceiver resampler in Flamingo, nL as the number of text tokens, M as the visual token
reduction scale for our proposed M3, dV anddL as the hidden dimension in the vision encoder and
language model, respectively. For simplicity, we omit the multimodal connector (MLP in LLaVA and
Perceiver Resampler in Flamingo), as well as the number of layers in vision encoder and language
decoder since they are in the same scale (24 v.s. 32 layers in LLaVA-1.5-7B). Then the computational
complexity can be expressed in Table 19.

Table 19: The computational complexity of the original model and M3 in LLaVA and Flamingo style
models.

Model Original Complexity Matryoshka Complexity

LLaVA O(n2
V · dV + (nV + nL)

2 · dL) O(n2
V · dV + (nV

M + nL)
2 · dL )

Flamingo O(n2
V · dV + n′

V · nL · dL + n2
L · dL) O(n2

V · dV +
n′
V

M · nL · dL + n2
L · dL)
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