

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012

# MULTIMODAL CHAIN OF CONTINUOUS THOUGHT FOR LATENT-SPACE REASONING IN VISION-LANGUAGE MODELS

006  
007  
008  
009  
010  
011  
012  
**Anonymous authors**  
Paper under double-blind review

## ABSTRACT

013 Many reasoning techniques for large multimodal models adapt language model approaches,  
014 such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences.  
015 While effective for text, these methods are suboptimal for multimodal contexts, struggling  
016 to align audio, visual, and textual information dynamically. To explore an alternative  
017 paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which  
018 enables reasoning directly in a joint latent space rather than in natural language. In MCOUT,  
019 the reasoning state is represented as a continuous hidden vector, iteratively refined and  
020 aligned with visual and textual embeddings, inspired by human reflective cognition. We  
021 develop two variants: MCOUT-Base, which reuses the language model’s last hidden state  
022 as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates  
023 multimodal latent attention to strengthen cross-modal alignment between visual and textual  
024 features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show  
025 that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy  
026 gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice  
027 and open-ended tasks. These findings highlight latent continuous reasoning as a promising  
028 direction for advancing LMMs beyond language-bound CoT, offering a scalable framework  
029 for human-like reflective multimodal inference.

030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046

## 1 INTRODUCTION

Vision-language models (VLMs) have transformed multimodal tasks, such as visual question answering (VQA), image captioning, and reasoning on benchmarks like ScienceQA (Lu et al., 2022), MMMU (Yue et al., 2024), and IQBench (Pham et al., 2025b), by seamlessly integrating visual and textual data. These models leverage visual models and large language models (LLMs) to process heterogeneous inputs, enabling applications from autonomous systems to interactive assistants. However, achieving robust reasoning in VLMs remains a challenge due to limitations in existing techniques, such as attention mechanism within the transformer decoder (Vaswani et al., 2017), prompting strategies like CoTs (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024), or training methods like reinforcement learning (RL) (Ouyang et al., 2022; Pham & Ngo, 2025). CoT, originally developed for LLMs, prompts models to generate intermediate reasoning steps in natural language, while other approaches, such as fine-tuning with visual-text alignment, aim to enhance multimodal reasoning. These methods often rely on discrete token sequences or static vision features, leading to computational inefficiencies and difficulties in dynamically aligning visual and textual modalities for coherent reasoning, particularly in tasks requiring fine-grained multimodal understanding.

Inspired by human cognition, where reasoning involves generating intermediate thoughts and iteratively validating them against input data, such as revisiting images or documents to ensure coherence, we propose

047 the Multimodal Chain of Continuous Thought (MCOUT), a novel framework for efficient reasoning in VLMs.  
 048 MCOUT operates in a unified latent space, dynamically aligning visual and textual representations to mimic  
 049 reflective human thinking. We introduce two variants: MCOUT-Base, which uses the language model's last  
 050 hidden state as a continuous thought for iterative refinement inspired from COCONUT (Hao et al., 2024), and  
 051 MCOUT-Multi, which enhances cross-modal alignment by combining the hidden state with input embeddings  
 052 via a multimodal latent attention mechanism. By overcoming the limitations of token-based CoT and static  
 053 vision features, MCOUT reduces computational overhead by directly feeding hidden layers, with/without  
 054 input embeddings, into the model as continuous thoughts. Tested on diverse benchmarks, MCOUT achieves  
 055 significant performance gains, positioning it as a pioneering advancement in vision-language reasoning and  
 056 offering a scalable approach for robust multimodal inference.

## 057 2 LITERATURE REVIEW

061 The development of reasoning capabilities in VLMs is critical for tasks like VQA and multimodal reasoning.  
 062 Over the past few years, various techniques have been explored to enhance reasoning in both LLMs and  
 063 VLMs, including attention mechanism, prompting techniques, training methods, and recent latent reasoning  
 064 paradigms. CoT prompting, introduced by Wei et al. (2022), has significantly improved LLM performance  
 065 on arithmetic tasks (e.g., GSM8K) and logical reasoning tasks (e.g., AQUA-RAT) by generating explicit  
 066 intermediate steps. Building on CoT, its variants have emerged to address reasoning limitations. Self-  
 067 consistency (Wang et al., 2022) samples multiple CoT outputs and selects the most consistent answer via  
 068 majority voting, enhancing robustness but increasing computational cost. Tree of Thoughts (ToT) (Yao et al.,  
 069 2023) structures reasoning as a tree search, exploring multiple paths for complex problem-solving, though its  
 070 token-based nature remains computationally intensive. Graph of Thoughts (GoT) (Besta et al., 2024) extends  
 071 ToT by modeling reasoning as a graph, enabling dynamic recombination of thoughts for greater efficiency. In  
 072 the VLM domain, Multimodal CoT (Zhang et al., 2023) generates interleaved text and image reasoning steps,  
 073 improving performance on ScienceQA but struggling with cross-modal alignment due to reliance on static  
 074 vision features and verbose token sequences. These CoT methods, while effective for LLMs, face challenges  
 075 in VLMs, where aligning heterogeneous modalities and minimizing token overhead are critical.

076 Beyond prompting, training techniques have been pivotal in enhancing reasoning for both LLMs and VLMs.  
 077 RL methods, such as those explored by Ouyang et al. (2022), optimize LLMs using human feedback to  
 078 improve reasoning and alignment, as seen in models like InstructGPT. Group relative policy Optimization  
 079 (GRPO) (Shao et al., 2024) refines model outputs by incorporating reward signals, enhancing performance  
 080 on complex tasks. Reasoning functions, such as RARL (Pham & Ngo, 2025), enable models to learn  
 081 structured reasoning patterns through optimization, improving logical consistency. RL-based fine-tuning  
 082 (Shen et al., 2025) has been applied to align visual and textual features, though these methods often rely on  
 083 static embeddings, limiting dynamic reasoning capabilities. These training techniques complement prompting  
 084 but still face challenges in efficiently integrating multimodal data for coherent reasoning.

085 To overcome these limitations, latent reasoning paradigms have shifted reasoning from discrete token  
 086 sequences to continuous latent spaces. COCONUT (Hao et al., 2024) leverages the last hidden state of an  
 087 LLM as a "continuous thought," enabling parallel exploration of reasoning paths via breadth-first search. This  
 088 approach reduces token overhead and outperforms CoT on tasks requiring backtracking. Other latent reasoning  
 089 methods for LLMs include Latent Reasoning Skills (LaRS) (Xu et al., 2023), which uses unsupervised learning  
 090 to create latent representations of rationales, selecting in-context learning examples based on reasoning skills  
 091 and achieving fourfold faster processing than CoT. Similarly, Wang et al. (2025) proposed a recurrent depth  
 092 approach that iteratively refines latent representations, scaling test-time computation to enhance performance  
 093 on complex tasks. These methods demonstrate the efficiency of latent reasoning in LLMs but are primarily  
 designed for text-only contexts, leaving their application to VLMs largely unexplored.

In the VLM domain, latent reasoning is an emerging area with promising developments. Zhang et al. (2023) introduced a multimodal CoT framework that uses diffusion processes to learn a text-image aligned latent space, generating dynamic image features that improve reasoning on ScienceQA and multimodal machine translation. Yang et al. (2025a) developed MMaDA, a diffusion-based VLM that operates in latent spaces for coherent generation and reasoning across text and images, achieving strong performance in tasks like VQA and image captioning. Yang et al. (2025b) proposed the Mirage framework, which augments VLMs with latent visual tokens during decoding, enhancing reasoning efficiency in complex multimodal tasks. Fan & Zhou (2018) introduced stacked latent attention, preserving spatial information in latent spaces to improve reasoning in VQA tasks. Recent efforts, such as multimodal latent language modeling (Sun et al., 2024), employ next-token diffusion for continuous reasoning, while Corvid (Jiang et al., 2025) and Grounded Chain-of-Thought (GCoT) (Wu et al., 2025) address visual hallucination and decision-making accuracy. Despite these advances, most approaches rely on discrete token-based reasoning or static vision features, limiting efficient cross-modal alignment.

Inspired by human cognition and previous work (Hao et al., 2024), where reasoning involves generating intermediate thoughts and iteratively validating them against input data, our MCOUT addresses these gaps by introducing a novel latent reasoning framework for VLMs, specifically for image-based tasks. MCOUT employs two variants: MCOUT-Base, which uses the language model's last hidden state as a continuous thought for iterative refinement, and MCOUT-Multi, which integrates the hidden state with image embeddings via a multimodal latent attention mechanism, enabling dynamic alignment of visual and textual representations. MCOUT mimics human reflective reasoning by iteratively refining thoughts in a continuous latent space, as demonstrated in our implementation, which supports multimodal inputs and has been tested successfully for vision-language reasoning. MCOUT offers a significant advancement, bridging the efficiency of latent reasoning with the complexity of vision-language reasoning, paving the way for robust and scalable VLMs.

### 3 METHODOLOGY

#### 3.1 MODEL ARCHITECTURE

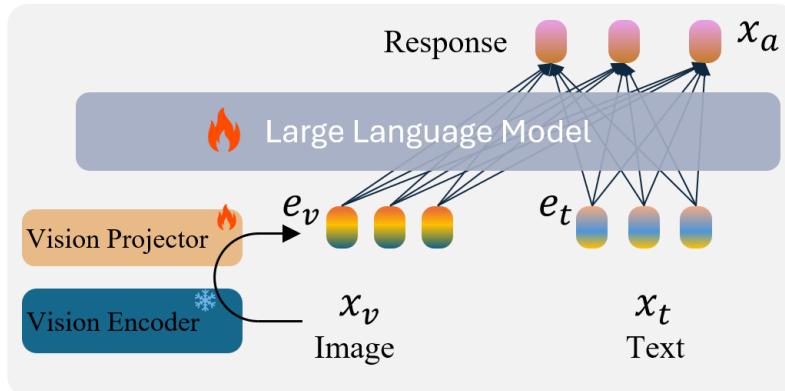


Figure 1: Model architecture.

The MCOUT framework is built upon a vision-language model, SilVar (Pham et al., 2025a), comprising a pre-trained visual encoder  $\mathcal{V}$  and a language model  $\mathcal{L}$ , as illustrated in Figure 1. We use CLIP (Radford et al., 2021) as the visual encoder  $\mathcal{V}$ , which processes input images  $\mathbf{x}_v \in \mathbb{R}^{H \times W \times C}$  to produce visual embeddings  $\mathbf{e}_v \in \mathbb{R}^{S_v \times D}$ , where  $S_v$  is the sequence length of visual tokens and  $D$  is the embedding dimension. For the

language model  $\mathcal{L}$ , we employ Llama 3.2 1B, which processes tokenized text inputs  $\mathbf{x}_t$  to generate contextual embeddings  $\mathbf{e}_t \in \mathbb{R}^{S_t \times D}$ , where  $S_t$  is the sequence length of text tokens. In this study, we use CLIP and Llama 3.2 1B for all experiments because we want to focus on latent reasoning for small VLMs, although our pipeline is compatible with other LLMs.

For MCOUT-Multi, the core component is the multimodal latent attention module, which integrates the language model's last hidden state  $\mathbf{h}_l \in \mathbb{R}^{B \times D}$  for a batch of  $B$  samples with multimodal input embeddings  $\mathbf{e}_m \in \mathbb{R}^{B \times S_m \times D}$  (for images,  $\mathbf{e}_m = \mathbf{e}_v$ ). The module projects  $\mathbf{h}_l$  into a query space, applies multi-head attention with  $N_h = 8$  heads to attend to  $\mathbf{e}_m$ , and normalizes the output to produce a thought embedding:

$$\mathbf{h}_t = \text{Norm}(\text{Proj}_{\text{back}}(\text{MultiHeadAttn}(\text{Proj}(\mathbf{h}_l), \mathbf{e}_m^\top))) \in \mathbb{R}^{B \times 1 \times D}, \quad (1)$$

where  $\text{Proj} : \mathbb{R}^D \rightarrow \mathbb{R}^D$  and  $\text{Proj}_{\text{back}} : \mathbb{R}^D \rightarrow \mathbb{R}^D$  are linear projections, and  $\text{Norm}$  denotes layer normalization. This process enriches  $\mathbf{h}_t$  with visual context for cross-modal alignment. In contrast, MCOUT-Base bypasses this module, directly using the last hidden state as the thought embedding:

$$\mathbf{h}_t = \mathbf{h}_l \in \mathbb{R}^{B \times 1 \times D}. \quad (2)$$

MCOUT-Base relies on the language model's internal state for reasoning, while MCOUT-Multi enhances it through multimodal fusion, mimicking human reflective reasoning by validating thoughts against input embeddings.

### 3.2 MULTIMODAL LATENT REASONING

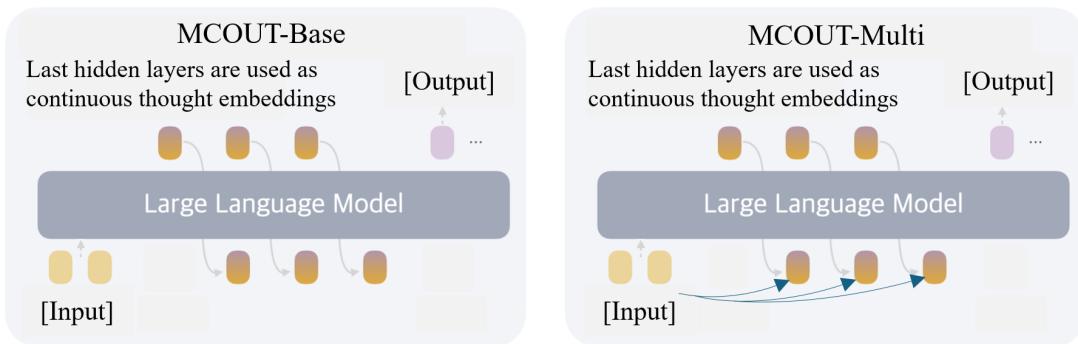


Figure 2: Comparison between two Chain of Continuous Thought approaches: MCOUT-Base (left) vs. MCOUT-Multi (right).

The MCOUT framework performs reasoning by iteratively generating continuous thought representations in a latent space, inspired by human cognition, where intermediate thoughts are validated against input data for coherence, as shown in Figure 2. Given preprocessed interleaved input embeddings  $\mathbf{e}_{\text{inter}} \in \mathbb{R}^{B \times S_{\text{max}} \times D}$  and an attention mask  $\mathbf{m} \in \{0, 1\}^{B \times S_{\text{max}}}$  for a batch of  $B$  samples with maximum sequence length  $S_{\text{max}}$ , the language model  $\mathcal{L}$  computes hidden states:

$$\mathbf{h} = \mathcal{L}(\mathbf{e}_{\text{inter}}, \mathbf{m}) \in \mathbb{R}^{B \times S_{\text{max}} \times D}. \quad (3)$$

The last hidden state for each sample is extracted by selecting the hidden state corresponding to the last non-padded token:

$$\mathbf{h}_l = \mathbf{h}[:, \text{argmax}(\mathbf{m}, \text{dim} = 1) - 1, : ] \in \mathbb{R}^{B \times D}. \quad (4)$$

For  $N_t$  latent reasoning steps, MCOUT iteratively produces thought embeddings  $\mathbf{h}_t^{(k)}$  for  $k = 1, \dots, N_t$ . As mentioned, we explore two approaches: MCOUT-Base directly feeds the last hidden state to the language model  $N_t$  times, while MCOUT-Multi combines the last hidden state with input embeddings before feeding the resulting thought embedding to the language model:

- In MCOUT-Base:

$$\mathbf{h}_t^{(k)} = \mathbf{h}_l^{(k-1)} \in \mathbb{R}^{B \times 1 \times D}, \quad (5)$$

- In MCOUT-Multi:

$$\mathbf{h}_t^{(k)} = \text{MultimodalLatentAttention}(\mathbf{h}_l^{(k-1)}, \mathbf{e}_m) \in \mathbb{R}^{B \times 1 \times D}. \quad (6)$$

Each thought embedding is appended to the input sequence:

$$\mathbf{e}_{\text{inter}}^{(k)} = [\mathbf{e}_{\text{inter}}^{(k-1)}, \mathbf{h}_t^{(k)}] \in \mathbb{R}^{B \times (S_{\text{max}}+k) \times D}, \quad (7)$$

$$\mathbf{m}^{(k)} = [\mathbf{m}^{(k-1)}, \mathbf{1}_{B \times 1}] \in \{0, 1\}^{B \times (S_{\text{max}}+k)}. \quad (8)$$

The updated sequence is fed back into the language model to compute the next hidden state, repeating for  $N_t$  iterations. In the final step ( $k = N_t + 1$ ), the language model generates the output sequence ( $\mathbf{x}_a$ ) using a standard generation process. The loss function for training combines an auxiliary loss for intermediate thoughts (weighted by  $\mu$ ) and the final output loss:

$$\mathcal{L}_{\text{total}} = \sum_{k=1}^{N_t} \mu \cdot \mathcal{L}_{\text{aux}}^{(k)} + \mathcal{L}_{\text{final}}, \quad (9)$$

where  $\mathcal{L}_{\text{aux}}^{(k)}$  is the language modeling loss for the  $k$ -th thought, and  $\mathcal{L}_{\text{final}}$  is the loss for the final output, computed using cross-entropy over the target tokens.

## 4 EXPERIMENT AND RESULT

### 4.1 DATASETS AND TRAINING

To evaluate the effectiveness of our MCOUT framework, we conducted experiments using four diverse vision-language datasets: VQAv2 (Goyal et al., 2017), MMMU (Yue et al., 2024), ScienceQA (Lu et al., 2022), and MMStar (Chen et al., 2024). These datasets assess the model’s reasoning capabilities across multimodal tasks, including VQA, scientific reasoning, and general knowledge understanding, with a focus on image-text integration. The VQAv2 dataset, used for pretraining, contains 443,757 question-answer pairs associated with images from the COCO dataset, emphasizing tasks like object recognition, attribute identification, and spatial reasoning.

The MMMU dataset, employed for fine-tuning, includes approximately 150 training samples and 900 validation samples. We also utilize the ScienceQA dataset, which focuses on scientific reasoning across natural science, social science, and language science. For this dataset, we use a subset of 6,218 training samples that contain both text and image contexts. The subset was chosen to preserve modality and format distributions while enabling fair ablations (MCOUT-Base/MCOUT-Multi,  $N_t$ , and  $\mu$ ) within a single-GPU training. The MMStar dataset, used exclusively for testing, consists of 1,500 test samples with curated image-question-answer triplets, designed for challenging visual reasoning tasks like object counting and scene understanding. All datasets are preprocessed to ensure compatibility with MCOUT’s image-based pipeline, with images resized to  $224 \times 224$  pixels and text tokenized to a maximum context length of 1024 tokens, interleaved with visual embeddings for unified input processing.

For training, we develop a multimodal model as described in Section 3.1, consisting of a pre-trained CLIP vision encoder and a Llama 3.2 1B language model. We pretrained the model on the VQAv2 training dataset for 1 epoch, followed by fine-tuning on ScienceQA and MMMU for 10 epochs. The model employs 8-bit precision, freezes the vision model, and uses LoRA (rank 64, alpha 16) for efficient adaptation. Training is conducted on a single CUDA device with 2 compute workers, using a batch size of 4 and a linear warmup cosine learning rate schedule (initial LR:  $1 \times 10^{-5}$ , minimum LR:  $1 \times 10^{-6}$ , warmup LR:  $1 \times 10^{-6}$ , weight decay: 0.05). The number of latent thoughts is experimented with values of 5 and 10 for both MCOUT-Base and MCOUT-Multi approaches, enabling iterative reasoning in a continuous latent space. During inference, we set the temperature to 0.1 for all experiments.

## 4.2 RESULTS AND BENCHMARKING

Table 1: Performance on the ScienceQA test set.

| Models                               | Parameters (B) | accuracy (%)                       | BLEU                               |
|--------------------------------------|----------------|------------------------------------|------------------------------------|
| <i>Our experiments</i>               |                |                                    |                                    |
| Baseline                             | 1              | 56.17                              | 51.48                              |
| MCOUT-Base ( $N_t = 5$ )             | 1              | 58.60 ( $\uparrow 4.33\%$ )        | 52.44 ( $\uparrow 1.87\%$ )        |
| MCOUT-Multi ( $N_t = 5$ )            | 1              | 58.45 ( $\uparrow 4.05\%$ )        | <b>52.60</b> ( $\uparrow 2.18\%$ ) |
| MCOUT-Base ( $N_t = 10$ )            | 1              | <b>58.86</b> ( $\uparrow 4.79\%$ ) | 52.31 ( $\uparrow 1.61\%$ )        |
| MCOUT-Multi ( $N_t = 10$ )           | 1              | 58.20 ( $\uparrow 3.61\%$ )        | 52.27 ( $\uparrow 1.53\%$ )        |
| <i>Literature reports</i>            |                |                                    |                                    |
| Kosmos2 (Peng et al., 2023)          | 1.7            | 32.70                              | –                                  |
| SilVar (Pham et al., 2025a)          | 7              | 63.21                              | –                                  |
| LLaVA-7B (Liu et al., 2023)          | 7              | 41.10                              | –                                  |
| InstructBLIP-7B (Dai et al., 2023)   | 8              | 54.10                              | –                                  |
| OpenFlamingo (Awadalla et al., 2023) | 9              | 44.80                              | –                                  |
| Qwen-VL (Bai et al., 2023)           | 9.6            | 61.10                              | –                                  |
| MiniGPT-4 (Zhu et al., 2023)         | 13             | 47.71                              | –                                  |
| LLaMA2-13B (Yang et al., 2023)       | 13             | 55.78                              | –                                  |
| LLaVA-13B (Yang et al., 2023)        | 13             | 47.74                              | –                                  |
| PandaGPT-13B (Su et al., 2023)       | 13             | 63.20                              | –                                  |

To evaluate the MCOUT framework, we compare MCOUT-Base and MCOUT-Multi against our baseline VLM without latent reasoning. Evaluations are conducted on the ScienceQA and MMMU validation sets and the MMStar test set, using accuracy and BLEU. We also compare our small VLM with other models. Tables 1, 2, and 3 summarize the results of our models on the ScienceQA, MMMU validation and MMStart benchmark, respectively.

For ScienceQA, as shown in Table 1, MCOUT-Base ( $N_t = 10$ ) achieves the highest accuracy at 58.86% (up 4.79%), while MCOUT-Multi ( $N_t = 5$ ) leads in BLEU at 52.60 (up 2.18%), excelling in image-heavy scientific reasoning due to its multimodal attention mechanism. With 1B parameters, both variants outperform larger models like Kosmos-2 (1.7B, 32.70%), LLaVA-7B/13B (41.10%–47.74%), and MiniGPT-4-13B (47.71%), and closely match InstructBLIP-7B (8B, 54.10%) and LLaMA-2-13B (55.78%), showcasing MCOUT’s efficiency in leveraging iterative reasoning for robust performance.

For MMMU, as illustrated in Table 2, MCOUT-Base ( $N_t = 5$ ) achieves the highest gains, with accuracy at 27.53% (up 8.21%) and BLEU at 27.54 (up 8.31%). MCOUT-Multi ( $N_t = 10$ ) follows closely with 7.54% and 7.58% gains in accuracy and BLEU, respectively, leveraging multimodal attention for cross-modal

| Models                                  | Parameters (B) | accuracy (%)                       | BLEU                               |
|-----------------------------------------|----------------|------------------------------------|------------------------------------|
| <i>Our experiments</i>                  |                |                                    |                                    |
| Baseline                                | 1              | 25.44                              | 25.44                              |
| MCOUT-Base ( $N_t = 5$ )                | 1              | <b>27.53</b> ( $\uparrow 8.21\%$ ) | <b>27.54</b> ( $\uparrow 8.31\%$ ) |
| MCOUT-Multi ( $N_t = 5$ )               | 1              | 27.18 ( $\uparrow 6.79\%$ )        | 27.19 ( $\uparrow 6.82\%$ )        |
| MCOUT-Base ( $N_t = 10$ )               | 1              | 27.52 ( $\uparrow 8.18\%$ )        | <b>27.54</b> ( $\uparrow 8.31\%$ ) |
| MCOUT-Multi ( $N_t = 10$ )              | 1              | 27.36 ( $\uparrow 7.54\%$ )        | 27.37 ( $\uparrow 7.58\%$ )        |
| <i>Literature reports</i>               |                |                                    |                                    |
| Kosmos 2 (Peng et al., 2023)            | 1.7            | 23.7                               | –                                  |
| MiniGPT-4-v1-7B (Zhu et al., 2023)      | 7              | 23.6                               | –                                  |
| LLaVA-v1.5-7B (Liu et al., 2023)        | 7              | 33.7                               | –                                  |
| MiniGPT-4-v2 (Chen et al., 2023)        | 7              | 25.0                               | –                                  |
| OpenFlamingo v2 (Awadalla et al., 2023) | 9              | 28.8                               | –                                  |
| Qwen-VL (Bai et al., 2023)              | 9.6            | 29.6                               | –                                  |
| LLaVA-v1.5-13B (Liu et al., 2023)       | 13             | 37.0                               | –                                  |
| PandaGPT-13B (Su et al., 2023)          | 13             | 32.9                               | –                                  |

tasks. With 1B parameters, MCOUT outperforms Kosmos-2 and MiniGPT-4 variants, and nearly matches OpenFlamingo-9B and Qwen-VL, demonstrating strong efficiency in college-level reasoning.

| Models                                  | Parameters (B) | accuracy (%)                       | BLEU                               |
|-----------------------------------------|----------------|------------------------------------|------------------------------------|
| <i>Our experiments</i>                  |                |                                    |                                    |
| Baseline                                | 1              | 25.13                              | 25.14                              |
| MCOUT-Base ( $N_t = 10$ )               | 1              | <b>26.13</b> ( $\uparrow 3.98\%$ ) | <b>26.14</b> ( $\uparrow 3.98\%$ ) |
| MCOUT-Multi ( $N_t = 10$ )              | 1              | 26.07 ( $\uparrow 3.74\%$ )        | 26.08 ( $\uparrow 3.74\%$ )        |
| <i>Literature reports</i>               |                |                                    |                                    |
| Kosmos2 (Peng et al., 2023)             | 1.7            | 24.9                               | –                                  |
| MiniGPT-4-v1-7B (Zhu et al., 2023)      | 7              | 16.3                               | –                                  |
| MiniGPT-4-v2 (Chen et al., 2023)        | 7              | 21.3                               | –                                  |
| LLaVA-7B (Liu et al., 2023)             | 7              | 27.1                               | –                                  |
| OpenFlamingo v2 (Awadalla et al., 2023) | 9              | 26.9                               | –                                  |
| Qwen-VL-Chat (Bai et al., 2023)         | 9.6            | 34.5                               | –                                  |
| PandaGPT-13B (Su et al., 2023)          | 13             | 25.6                               | –                                  |

For MMStar, as illustrated in Table 3, MCOUT-Base ( $N_t = 10$ ) improves accuracy and BLEU by 3.98%, while MCOUT-Multi ( $N_t = 10$ ) gains 3.74% in both metrics, enhancing fine-grained visual reasoning through iterative thought generation. Despite its 1B parameters, MCOUT outperforms Kosmos-2, MiniGPT-4-v1-7B, MiniGPT-4-v2, and PandaGPT-13B, and closely rivals OpenFlamingo-9B and LLaVA-7B, highlighting its efficiency in challenging visual tasks.

#### 4.3 MULTIMODAL LATENT REASONING ANALYSIS

To understand the performance differences and similarities between MCOUT-Base and MCOUT-Multi, we analyzed their latent distributions, as illustrated in Figure 3. Prior to training, we identified a significant norm imbalance: the last hidden state norm was **103.90**, while the initial thought embedding norm (from multimodal attention) was **26.48** on ScienceQA, posing a risk of unstable fusion in MCOUT-Multi. To

mitigate this, we introduced normalization layers with a final normalization step into the attention module (Equation 1), aligning the scales and stabilizing the thought embeddings. For MCOUT-Base, which uses the last hidden state directly ( $\mathbf{h}_t = \mathbf{h}_l$ ), the mean of the last hidden layer starts at -0.02197 and fluctuates slightly with a consistent standard deviation of approximately 2.23, as shown in the top figures, reflecting a stable reasoning process that underpins its performance gains (4.79% accuracy improvement on ScienceQA and 8.21% on MMMU).



Figure 3: Latent distribution analysis of MCOUT-Base and MCOUT-Multi, showing mean and standard deviation of last hidden states and mixed embeddings across 100 samples and 5 thought iterations.

MCOUT-Multi, which integrates the last hidden state with multimodal input embeddings, shows last hidden layer means ranging from -0.02212 to -0.00112 across iterations, with standard deviations around 2.24, closely tracking MCOUT-Base's patterns and indicating minimal disruption from multimodal fusion. However, the mixed embeddings reveal a critical limitation: their mean remains constant at 0.002418 with a negligible standard deviation of 0.001866, and the mixed standard deviation is uniformly 0.198925 across all iterations, suggesting a static, low-variance contribution from the multimodal input. This persistent uniformity, despite normalization, points to a modality collapse, where the attention mechanism fails to extract diverse visual context, aligning MCOUT-Multi's performance (58.45% accuracy at  $N_t = 5$ ) closely with MCOUT-Base (58.60%). This observation resonates with the sinking of visual attention in recent studies (Kang et al., 2025; 374; 375).

376 Cancedda, 2024; Sim et al., 2025), which attributes such collapse to activation imbalances favoring a specific  
 377 type (e.g. text). Our study shows that low-variance embeddings (mixed\_embeds std  $\approx 0.2$  vs. last\_hidded  
 378 std  $\approx 2.2$ ) limit multimodal benefits. The pre-training norm adjustment likely prevented catastrophic fusion  
 379 failure, but the static mixed embeddings suggest entropy collapse (Zhai et al., 2023), where uniform attention  
 380 weights diminish multimodal impact.

## 382 5 ABLATION STUDY

384 To investigate the impact of the auxiliary weight  $\mu$  in the MCOUT loss function (Equation 9), we conduct an  
 385 ablation study with the impact of the auxiliary weight  $\mu$  in the MCOUT loss function with  $N_t = 5$ , as shown  
 386 in Table 4.  $\mu = 0.3$  yields the highest performance, improving ScienceQA accuracy by 4.33%, and MMMU  
 387 accuracy by 8.23%, highlighting the importance of balancing auxiliary thought supervision for effective  
 388 multimodal reasoning. Higher  $\mu$  values (0.5, 0.8) reduce gains, suggesting overemphasis on intermediate  
 389 thoughts may disrupt final output optimization, while  $\mu = 0$  yields moderate improvements. Although using  
 390 an auxiliary loss boosts model performance, it increases training time based on our experiments.

391 We also evaluate fully finetuning both the vision encoder and language model with LoRA. For MCOUT, we  
 392 use  $N_t = 5$  and  $\mu = 0$ . As shown in Table 4, finetuning boosts performance further, with improvements  
 393 ranging from 3.06% to 5.88% across benchmarks. The performance gap between MCOUT-Base and MCOUT-  
 394 Multi remains small, indicating that both strategies benefit consistently from full finetuning. These results  
 395 reinforce the effectiveness of our method and demonstrate that MCOUT’s iterative reasoning remains robust  
 396 under different optimization settings, confirming the stability and adaptability of our framework.

398 Table 4: Ablation study for ScienceQA test and MMMU val using  $N_t = 5$ .

| 400 <b>Models</b>                       | 401 <b>Auxiliary</b> | 402 <b>ScienceQA test</b>                       |                                                 | 403 <b>MMMU val</b>                             |                                                 |
|-----------------------------------------|----------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|                                         |                      | 404 <b>weight (<math>\mu</math>)</b>            | 405 <b>accuracy</b>                             | 406 <b>BLEU</b>                                 | 407 <b>BLEU</b>                                 |
| 408 Baseline                            |                      | 409 0.0                                         | 410 56.17                                       | 411 51.48                                       | 412 25.44                                       |
| 413 MCOUT-Base                          | 414 0                | 415 58.12 ( $\uparrow 3.47\%$ )                 | 416 52.05 ( $\uparrow 1.11\%$ )                 | 417 27.41 ( $\uparrow 7.75\%$ )                 | 418 27.43 ( $\uparrow 7.82\%$ )                 |
| 419 MCOUT-Base                          | 420 0.3              | 421 <b>58.60 (<math>\uparrow 4.33\%</math>)</b> | 422 <b>52.44 (<math>\uparrow 1.87\%</math>)</b> | 423 <b>27.53 (<math>\uparrow 8.23\%</math>)</b> | 424 <b>27.54 (<math>\uparrow 8.27\%</math>)</b> |
| 425 MCOUT-Base                          | 426 0.5              | 427 57.56 ( $\uparrow 2.48\%$ )                 | 428 52.10 ( $\uparrow 1.20\%$ )                 | 429 26.44 ( $\uparrow 3.93\%$ )                 | 430 26.44 ( $\uparrow 3.93\%$ )                 |
| 431 MCOUT-Base                          | 432 0.8              | 433 57.52 ( $\uparrow 2.40\%$ )                 | 434 52.00 ( $\uparrow 1.01\%$ )                 | 435 25.90 ( $\uparrow 1.81\%$ )                 | 436 25.91 ( $\uparrow 1.85\%$ )                 |
| <i>Fully finetuning model with LoRA</i> |                      |                                                 |                                                 |                                                 |                                                 |
| 438 Baseline                            |                      | 439 0.0                                         | 440 62.61                                       | 441 54.96                                       | 442 26.55                                       |
| 443 MCOUT-Base                          | 444 0                | 445 64.60 ( $\uparrow 3.18\%$ )                 | 446 <b>56.73 (<math>\uparrow 3.22\%</math>)</b> | 447 27.98 ( $\uparrow 5.39\%$ )                 | 448 27.99 ( $\uparrow 5.39\%$ )                 |
| 449 MCOUT-Multi                         | 450 0                | 451 <b>64.75 (<math>\uparrow 3.42\%</math>)</b> | 452 56.64 ( $\uparrow 3.06\%$ )                 | 453 <b>28.11 (<math>\uparrow 5.88\%</math>)</b> | 454 <b>28.11 (<math>\uparrow 5.83\%</math>)</b> |

## 411 6 CONCLUSION

414 In this work, we investigated multimodal reasoning for a small VLM through two key contributions: (1)  
 415 building a 1B-parameter vision-language model, and (2) proposing the Multimodal Chain of Continuous  
 416 Thought (MCOUT) framework, which employs a step-by-step reasoning process inspired by human reflection.  
 417 MCOUT improves performance, achieving gains of up to 8.23% in accuracy on MMMU and 4.79% on  
 418 ScienceQA. As a pioneering effort to explore multimodal continuous latent reasoning, our study provides a  
 419 promising foundation for efficient multimodal reasoning. Despite these advances, aligning input embeddings  
 420 with the final hidden layers remains a challenge, as it complicates multimodal alignment in MCOUT and  
 421 increases training time. Going forward, we will investigate multimodal attention and alternative methods for  
 422 multimodal alignment within continuous latent reasoning.

## 423 REFERENCES

425 Anas Awadalla, Irena Gao, Joshua Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,  
 426 Yonatan Bitton, Samir Gadre, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell  
 427 Wortsman, and Ludwig Schmidt. Openflamingo, March 2023.

428 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and  
 429 Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint*  
 430 *arXiv:2308.12966*, 2023.

431 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giaminazzi, Joanna  
 432 Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate  
 433 problems with large language models. In *Proceedings of the AAAI conference on artificial intelligence*,  
 434 volume 38, pp. 17682–17690, 2024.

435 Nicola Cancedda. Spectral filters, dark signals, and attention sinks. *arXiv preprint arXiv:2402.09221*, 2024.

436 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechu Liu, Pengchuan Zhang, Raghu Ram Krishnamoorthi,  
 437 Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large language model as a unified  
 438 interface for vision-language multi-task learning. *arXiv preprint arXiv:2310.09478*, 2023.

439 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,  
 440 Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *Advances*  
 441 in *Neural Information Processing Systems*, 37:27056–27087, 2024.

442 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale N  
 443 Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction  
 444 tuning. *Advances in neural information processing systems*, 36:49250–49267, 2023.

445 Haoqi Fan and Jiatong Zhou. Stacked latent attention for multimodal reasoning. In *Proceedings of the IEEE*  
 446 *conference on computer vision and pattern recognition*, pp. 1072–1080, 2018.

447 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter:  
 448 Elevating the role of image understanding in Visual Question Answering. In *Conference on Computer*  
 449 *Vision and Pattern Recognition (CVPR)*, 2017.

450 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training  
 451 large language models to reason in a continuous latent space. *arXiv preprint arXiv:2412.06769*, 2024.

452 Jingjing Jiang, Chao Ma, Xurui Song, Hanwang Zhang, and Jun Luo. Corvid: Improving multimodal large  
 453 language models towards chain-of-thought reasoning. *arXiv preprint arXiv:2507.07424*, 2025.

454 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual attention sink  
 455 in large multimodal models. In *The Thirteenth International Conference on Learning Representations*,  
 456 2025.

457 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*, 2023.

458 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter  
 459 Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question  
 460 answering. In *The 36th Conference on Neural Information Processing Systems (NeurIPS)*, 2022.

461 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,  
 462 Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with  
 463 human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.

470 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2:  
 471 Grounding multimodal large language models to the world. *arXiv preprint arXiv:2306.14824*, 2023.  
 472

473 Tan-Hanh Pham and Chris Ngo. Rarl: Improving medical vlm reasoning and generalization with reinforcement  
 474 learning and lora under data and hardware constraints. *arXiv preprint arXiv:2506.06600*, 2025.  
 475

476 Tan-Hanh Pham, Trong-Duong Bui, Minh Luu Quang, Tan Huong Pham, Chris Ngo, and Truong Son Hy.  
 477 Silvar-med: A speech-driven visual language model for explainable abnormality detection in medical  
 478 imaging. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2984–2994,  
 2025a.

479

480 Tan-Hanh Pham, Phu-Vinh Nguyen, Dang The Hung, Bui Trong Duong, Vu Nguyen Thanh, Chris Ngo,  
 481 Tri Quang Truong, and Truong-Son Hy. Iqbench: How" smart"are vision-language models? a study with  
 482 human iq tests. *arXiv preprint arXiv:2505.12000*, 2025b.

483 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,  
 484 Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural  
 485 language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.

486 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan  
 487 Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open  
 488 language models. *arXiv preprint arXiv:2402.03300*, 2024.

489

490 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang,  
 491 Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and generalizable  
 492 r1-style large vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

493

494 Mong Yuan Sim, Wei Emma Zhang, Xiang Dai, and Biaoyan Fang. Can vlms actually see and read? a  
 495 survey on modality collapse in vision-language models. In *Findings of the Association for Computational  
 496 Linguistics: ACL 2025*, pp. 24452–24470, 2025.

497

498 Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to instruction-  
 499 follow them all. *arXiv preprint arXiv:2305.16355*, 2023.

500

501 Yutao Sun, Hangbo Bao, Wenhui Wang, Zhiliang Peng, Li Dong, Shaohan Huang, Jianyong Wang, and Furu  
 502 Wei. Multimodal latent language modeling with next-token diffusion. *arXiv preprint arXiv:2412.08635*,  
 2024.

503

504 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,  
 505 and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30,  
 2017.

506

507 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and Yasin Abbasi  
 508 Yadkori. Hierarchical reasoning model. *arXiv preprint arXiv:2506.21734*, 2025.

509

510 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and  
 511 Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint  
 512 arXiv:2203.11171*, 2022.

513

514 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.  
 515 Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information  
 516 processing systems*, 35:24824–24837, 2022.

517

518 Qiong Wu, Xiangcong Yang, Yiyi Zhou, Chenxin Fang, Baiyang Song, Xiaoshuai Sun, and Rongrong Ji.  
 519 Grounded chain-of-thought for multimodal large language models. *arXiv preprint arXiv:2503.12799*, 2025.

517 Zifan Xu, Haozhu Wang, Dmitriy Bespalov, Xuan Wang, Peter Stone, and Yanjun Qi. Latent skill discovery  
 518 for chain-of-thought reasoning. *arXiv preprint arXiv:2312.04684*, 2023.

519

520 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:  
 521 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025a.

522 Xiaocui Yang, Wenfang Wu, Shi Feng, Ming Wang, Daling Wang, Yang Li, Qi Sun, Yifei Zhang, Xiaoming Fu,  
 523 and Soujanya Poria. Mm-bigbench: Evaluating multimodal models on multimodal content comprehension  
 524 tasks. *arXiv preprint arXiv:2310.09036*, 2023.

525

526 Zeyuan Yang, Xueyang Yu, Delin Chen, Maohao Shen, and Chuang Gan. Machine mental imagery: Empower  
 527 multimodal reasoning with latent visual tokens. *arXiv preprint arXiv:2506.17218*, 2025b.

528

529 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree  
 530 of thoughts: Deliberate problem solving with large language models. *Advances in neural information  
 531 processing systems*, 36:11809–11822, 2023.

532

533 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,  
 534 Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng,  
 535 Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen. Mmmu: A massive  
 536 multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of  
 537 CVPR*, 2024.

538

539 Shuangfei Zhai, Tatiana Likhomanenko, Eta Littwin, Dan Busbridge, Jason Ramapuram, Yizhe Zhang, Jiatao  
 540 Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention entropy collapse. In  
 541 *International Conference on Machine Learning*, pp. 40770–40803. PMLR, 2023.

542

543 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal chain-of-  
 544 thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563