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ABSTRACT

Many reasoning techniques for large multimodal models adapt language model approaches,
such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences.
While effective for text, these methods are suboptimal for multimodal contexts, struggling
to align audio, visual, and textual information dynamically. To explore an alternative
paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which
enables reasoning directly in a joint latent space rather than in natural language. In MCOUT,
the reasoning state is represented as a continuous hidden vector, iteratively refined and
aligned with visual and textual embeddings, inspired by human reflective cognition. We
develop two variants: MCOUT-Base, which reuses the language model’s last hidden state
as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates
multimodal latent attention to strengthen cross-modal alignment between visual and textual
features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show
that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy
gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice
and open-ended tasks. These findings highlight latent continuous reasoning as a promising
direction for advancing LMMs beyond language-bound CoT, offering a scalable framework
for human-like reflective multimodal inference.

1 INTRODUCTION

Vision-language models (VLMs) have transformed multimodal tasks, such as visual question answering
(VQA), image captioning, and reasoning on benchmarks like ScienceQA (Lu et al., 2022), MMMU (Yue
et al., 2024), and IQBench (Pham et al., 2025b), by seamlessly integrating visual and textual data. These
models leverage visual models and large language models (LLMs) to process heterogeneous inputs, enabling
applications from autonomous systems to interactive assistants. However, achieving robust reasoning in
VLMs remains a challenge due to limitations in existing techniques, such as attention mechanism within
the transformer decoder (Vaswani et al., 2017), prompting strategies like CoTs (Wei et al., 2022; Yao et al.,
2023; Besta et al., 2024), or training methods like reinforcement learning (RL) (Ouyang et al., 2022; Pham
& Ngo, 2025). CoT, originally developed for LLMs, prompts models to generate intermediate reasoning
steps in natural language, while other approaches, such as fine-tuning with visual-text alignment, aim to
enhance multimodal reasoning. These methods often rely on discrete token sequences or static vision features,
leading to computational inefficiencies and difficulties in dynamically aligning visual and textual modalities
for coherent reasoning, particularly in tasks requiring fine-grained multimodal understanding.

Inspired by human cognition, where reasoning involves generating intermediate thoughts and iteratively
validating them against input data, such as revisiting images or documents to ensure coherence, we propose
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the Multimodal Chain of Continuous Thought (MCOUT), a novel framework for efficient reasoning in VLMs.
MCOUT operates in a unified latent space, dynamically aligning visual and textual representations to mimic
reflective human thinking. We introduce two variants: MCOUT-Base, which uses the language model’s last
hidden state as a continuous thought for iterative refinement inspired from COCONUT (Hao et al., 2024), and
MCOUT-Multi, which enhances cross-modal alignment by combining the hidden state with input embeddings
via a multimodal latent attention mechanism. By overcoming the limitations of token-based CoT and static
vision features, MCOUT reduces computational overhead by directly feeding hidden layers, with/without
input embeddings, into the model as continuous thoughts. Tested on diverse benchmarks, MCOUT achieves
significant performance gains, positioning it as a pioneering advancement in vision-language reasoning and
offering a scalable approach for robust multimodal inference.

2 LITERATURE REVIEW

The development of reasoning capabilities in VLMs is critical for tasks like VQA and multimodal reasoning.
Over the past few years, various techniques have been explored to enhance reasoning in both LLMs and
VLMs, including attention mechanism, prompting techniques, training methods, and recent latent reasoning
paradigms. CoT prompting, introduced by Wei et al. (2022), has significantly improved LLM performance
on arithmetic tasks (e.g., GSM8K) and logical reasoning tasks (e.g., AQUA-RAT) by generating explicit
intermediate steps. Building on CoT, its variants have emerged to address reasoning limitations. Self-
consistency (Wang et al., 2022) samples multiple CoT outputs and selects the most consistent answer via
majority voting, enhancing robustness but increasing computational cost. Tree of Thoughts (ToT) (Yao et al.,
2023) structures reasoning as a tree search, exploring multiple paths for complex problem-solving, though its
token-based nature remains computationally intensive. Graph of Thoughts (GoT) (Besta et al., 2024) extends
ToT by modeling reasoning as a graph, enabling dynamic recombination of thoughts for greater efficiency. In
the VLM domain, Multimodal CoT (Zhang et al., 2023) generates interleaved text and image reasoning steps,
improving performance on ScienceQA but struggling with cross-modal alignment due to reliance on static
vision features and verbose token sequences. These CoT methods, while effective for LLMs, face challenges
in VLMs, where aligning heterogeneous modalities and minimizing token overhead are critical.

Beyond prompting, training techniques have been pivotal in enhancing reasoning for both LLMs and VLMs.
RL methods, such as those explored by Ouyang et al. (2022), optimize LLMs using human feedback to
improve reasoning and alignment, as seen in models like InstructGPT. Group relative policy Optimization
(GRPO) (Shao et al., 2024) refines model outputs by incorporating reward signals, enhancing performance
on complex tasks. Reasoning functions, such as RARL (Pham & Ngo, 2025), enable models to learn
structured reasoning patterns through optimization, improving logical consistency. RL-based fine-tuning
(Shen et al., 2025) has been applied to align visual and textual features, though these methods often rely on
static embeddings, limiting dynamic reasoning capabilities. These training techniques complement prompting
but still face challenges in efficiently integrating multimodal data for coherent reasoning.

To overcome these limitations, latent reasoning paradigms have shifted reasoning from discrete token
sequences to continuous latent spaces. COCONUT (Hao et al., 2024) leverages the last hidden state of an
LLM as a "continuous thought," enabling parallel exploration of reasoning paths via breadth-first search. This
approach reduces token overhead and outperforms CoT on tasks requiring backtracking. Other latent reasoning
methods for LLMs include Latent Reasoning Skills (LaRS) (Xu et al., 2023), which uses unsupervised learning
to create latent representations of rationales, selecting in-context learning examples based on reasoning skills
and achieving fourfold faster processing than CoT. Similarly, Wang et al. (2025) proposed a recurrent depth
approach that iteratively refines latent representations, scaling test-time computation to enhance performance
on complex tasks. These methods demonstrate the efficiency of latent reasoning in LLMs but are primarily
designed for text-only contexts, leaving their application to VLMs largely unexplored.
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In the VLM domain, latent reasoning is an emerging area with promising developments. Zhang et al. (2023)
introduced a multimodal CoT framework that uses diffusion processes to learn a text-image aligned latent
space, generating dynamic image features that improve reasoning on ScienceQA and multimodal machine
translation. Yang et al. (2025a) developed MMaDA, a diffusion-based VLM that operates in latent spaces
for coherent generation and reasoning across text and images, achieving strong performance in tasks like
VQA and image captioning. Yang et al. (2025b) proposed the Mirage framework, which augments VLMs
with latent visual tokens during decoding, enhancing reasoning efficiency in complex multimodal tasks.
Fan & Zhou (2018) introduced stacked latent attention, preserving spatial information in latent spaces to
improve reasoning in VQA tasks. Recent efforts, such as multimodal latent language modeling (Sun et al.,
2024), employ next-token diffusion for continuous reasoning, while Corvid (Jiang et al., 2025) and Grounded
Chain-of-Thought (GCoT) (Wu et al., 2025) address visual hallucination and decision-making accuracy.
Despite these advances, most approaches rely on discrete token-based reasoning or static vision features,
limiting efficient cross-modal alignment.

Inspired by human cognition and previous work (Hao et al., 2024), where reasoning involves generating
intermediate thoughts and iteratively validating them against input data, our MCOUT addresses these gaps
by introducing a novel latent reasoning framework for VLMs, specifically for image-based tasks. MCOUT
employs two variants: MCOUT-Base, which uses the language model’s last hidden state as a continuous
thought for iterative refinement, and MCOUT-Multi, which integrates the hidden state with image embeddings
via a multimodal latent attention mechanism, enabling dynamic alignment of visual and textual representations.
MCOUT mimics human reflective reasoning by iteratively refining thoughts in a continuous latent space, as
demonstrated in our implementation, which supports multimodal inputs and has been tested successfully
for vision-language reasoning. MCOUT offers a significant advancement, bridging the efficiency of latent
reasoning with the complexity of vision-language reasoning, paving the way for robust and scalable VLMs.

3 METHODOLOGY

3.1 MODEL ARCHITECTURE

Figure 1: Model architecture.

The MCOUT framework is built upon a vision-language model, SilVar (Pham et al., 2025a), comprising a
pre-trained visual encoder V and a language model L, as illustrated in Figure 1. We use CLIP (Radford et al.,
2021) as the visual encoder V , which processes input images xv ∈ RH×W×C to produce visual embeddings
ev ∈ RSv×D, where Sv is the sequence length of visual tokens and D is the embedding dimension. For the
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language model L, we employ Llama 3.2 1B, which processes tokenized text inputs xt to generate contextual
embeddings et ∈ RSt×D, where St is the sequence length of text tokens. In this study, we use CLIP and
Llama 3.2 1B for all experiments because we want to focus on latent reasoning for small VLMs, although our
pipeline is compatible with other LLMs.

For MCOUT-Multi, the core component is the multimodal latent attention module, which integrates the
language model’s last hidden state hl ∈ RB×D for a batch of B samples with multimodal input embeddings
em ∈ RB×Sm×D (for images, em = ev). The module projects hl into a query space, applies multi-head
attention with Nh = 8 heads to attend to em, and normalizes the output to produce a thought embedding:

ht = Norm(Projback(MultiHeadAttn(Proj(hl), e
⊤
m))) ∈ RB×1×D, (1)

where Proj : RD → RD and Projback : RD → RD are linear projections, and Norm denotes layer normal-
ization. This process enriches ht with visual context for cross-modal alignment. In contrast, MCOUT-Base
bypasses this module, directly using the last hidden state as the thought embedding:

ht = hl ∈ RB×1×D. (2)

MCOUT-Base relies on the language model’s internal state for reasoning, while MCOUT-Multi enhances
it through multimodal fusion, mimicking human reflective reasoning by validating thoughts against input
embeddings.

3.2 MULTIMODAL LATENT REASONING

Figure 2: Comparison between two Chain of Continuous Thought approaches: MCOUT-Base (left) vs.
MCOUT-Multi (right).

The MCOUT framework performs reasoning by iteratively generating continuous thought representations in a
latent space, inspired by human cognition, where intermediate thoughts are validated against input data for
coherence, as shown in Figure 2. Given preprocessed interleaved input embeddings einter ∈ RB×Smax×D and
an attention mask m ∈ {0, 1}B×Smax for a batch of B samples with maximum sequence length Smax, the
language model L computes hidden states:

h = L(einter,m) ∈ RB×Smax×D. (3)

The last hidden state for each sample is extracted by selecting the hidden state corresponding to the last
non-padded token:

hl = h[·, argmax(m, dim = 1)− 1, ·] ∈ RB×D. (4)
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For Nt latent reasoning steps, MCOUT iteratively produces thought embeddings h(k)
t for k = 1, . . . , Nt. As

mentioned, we explore two approaches: MCOUT-Base directly feeds the last hidden state to the language
model Nt times, while MCOUT-Multi combines the last hidden state with input embeddings before feeding
the resulting thought embedding to the language model:

• In MCOUT-Base:
h
(k)
t = h

(k−1)
l ∈ RB×1×D, (5)

• In MCOUT-Multi:

h
(k)
t = MultimodalLatentAttention(h(k−1)

l , em) ∈ RB×1×D. (6)

Each thought embedding is appended to the input sequence:

e
(k)
inter = [e

(k−1)
inter ,h

(k)
t ] ∈ RB×(Smax+k)×D, (7)

m(k) = [m(k−1),1B×1] ∈ {0, 1}B×(Smax+k). (8)

The updated sequence is fed back into the language model to compute the next hidden state, repeating for
Nt iterations. In the final step (k = Nt + 1), the language model generates the output sequence (xa) using
a standard generation process. The loss function for training combines an auxiliary loss for intermediate
thoughts (weighted by µ) and the final output loss:

Ltotal =

Nt∑
k=1

µ · L(k)
aux + Lfinal, (9)

where L(k)
aux is the language modeling loss for the k-th thought, and Lfinal is the loss for the final output,

computed using cross-entropy over the target tokens.

4 EXPERIMENT AND RESULT

4.1 DATASETS AND TRAINING

To evaluate the effectiveness of our MCOUT framework, we conducted experiments using four diverse
vision-language datasets: VQAv2 (Goyal et al., 2017), MMMU (Yue et al., 2024), ScienceQA (Lu et al.,
2022), and MMStar (Chen et al., 2024). These datasets assess the model’s reasoning capabilities across
multimodal tasks, including VQA, scientific reasoning, and general knowledge understanding, with a focus
on image-text integration. The VQAv2 dataset, used for pretraining, contains 443,757 question-answer
pairs associated with images from the COCO dataset, emphasizing tasks like object recognition, attribute
identification, and spatial reasoning.

The MMMU dataset, employed for fine-tuning, includes approximately 150 training samples and 900
validation samples. We also utilize the ScienceQA dataset, which focuses on scientific reasoning across
natural science, social science, and language science. For this dataset, we use a subset of 6,218 training
samples that contain both text and image contexts. The subset was chosen to preserve modality and format
distributions while enabling fair ablations (MCOUT-Base/MCOUT-Multi, Nt, and µ) within a single-GPU
training. The MMStar dataset, used exclusively for testing, consists of 1,500 test samples with curated
image-question-answer triplets, designed for challenging visual reasoning tasks like object counting and
scene understanding. All datasets are preprocessed to ensure compatibility with MCOUT’s image-based
pipeline, with images resized to 224× 224 pixels and text tokenized to a maximum context length of 1024
tokens, interleaved with visual embeddings for unified input processing.
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For training, we develop a multimodal model as described in Section 3.1, consisting of a pre-trained CLIP
vision encoder and a Llama 3.2 1B language model. We pretrained the model on the VQAv2 training dataset
for 1 epoch, followed by fine-tuning on ScienceQA and MMMU for 10 epochs. The model employs 8-bit
precision, freezes the vision model, and uses LoRA (rank 64, alpha 16) for efficient adaptation. Training is
conducted on a single CUDA device with 2 compute workers, using a batch size of 4 and a linear warmup
cosine learning rate schedule (initial LR: 1× 10−5, minimum LR: 1× 10−6, warmup LR: 1× 10−6, weight
decay: 0.05). The number of latent thoughts is experimented with values of 5 and 10 for both MCOUT-Base
and MCOUT-Multi approaches, enabling iterative reasoning in a continuous latent space. During inference,
we set the temperature to 0.1 for all experiments.

4.2 RESULTS AND BENCHMARKING

Table 1: Performance on the ScienceQA test set.
Models Parameters (B) accuracy (%) BLEU
Our experiments
Baseline 1 56.17 51.48
MCOUT-Base (Nt = 5) 1 58.60 (↑ 4.33%) 52.44 (↑ 1.87%)
MCOUT-Multi (Nt = 5) 1 58.45 (↑ 4.05%) 52.60 (↑ 2.18%)
MCOUT-Base (Nt = 10) 1 58.86 (↑ 4.79%) 52.31 (↑ 1.61%)
MCOUT-Multi (Nt = 10) 1 58.20 (↑ 3.61%) 52.27 (↑ 1.53%)

Literature reports
Kosmos2 (Peng et al., 2023) 1.7 32.70 –
SilVar (Pham et al., 2025a) 7 63.21 –
LLaVA-7B (Liu et al., 2023) 7 41.10 –
InstructBLIP-7B (Dai et al., 2023) 8 54.10 –
OpenFlamingo (Awadalla et al., 2023) 9 44.80 –
Qwen-VL (Bai et al., 2023) 9.6 61.10 –
MiniGPT-4 (Zhu et al., 2023) 13 47.71 –
LLaMA2-13B (Yang et al., 2023) 13 55.78 –
LLaVA-13B (Yang et al., 2023) 13 47.74 –
PandaGPT-13B (Su et al., 2023) 13 63.20 –

To evaluate the MCOUT framework, we compare MCOUT-Base and MCOUT-Multi against our baseline
VLM without latent reasoning. Evaluations are conducted on the ScienceQA and MMMU validation sets
and the MMStar test set, using accuracy and BLEU. We also compare our small VLM with other models.
Tables 1, 2, and 3 summarize the results of our models on the ScienceQA, MMMU validation and MMStart
benchmark, respectively.

For ScienceQA, as shown in Table 1, MCOUT-Base (Nt = 10) achieves the highest accuracy at 58.86%
(up 4.79%), while MCOUT-Multi (Nt = 5) leads in BLEU at 52.60 (up 2.18%), excelling in image-heavy
scientific reasoning due to its multimodal attention mechanism. With 1B parameters, both variants outperform
larger models like Kosmos-2 (1.7B, 32.70%), LLaVA-7B/13B (41.10%–47.74%), and MiniGPT-4-13B
(47.71%), and closely match InstructBLIP-7B (8B, 54.10%) and LLaMA-2-13B (55.78%), showcasing
MCOUT’s efficiency in leveraging iterative reasoning for robust performance.

For MMMU, as illustrated in Table 2, MCOUT-Base (Nt = 5) achieves the highest gains, with accuracy
at 27.53% (up 8.21%) and BLEU at 27.54 (up 8.31%). MCOUT-Multi (Nt = 10) follows closely with
7.54% and 7.58% gains in accuracy and BLEU, respectively, leveraging multimodal attention for cross-modal
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Table 2: Performance on the MMMU validation set.
Models Parameters (B) accuracy (%) BLEU
Our experiments
Baseline 1 25.44 25.44
MCOUT-Base (Nt = 5) 1 27.53 (↑ 8.21%) 27.54 (↑ 8.31%)
MCOUT-Multi (Nt = 5) 1 27.18 (↑ 6.79%) 27.19 (↑ 6.82%)
MCOUT-Base (Nt = 10) 1 27.52 (↑ 8.18%) 27.54 (↑ 8.31%)
MCOUT-Multi (Nt = 10) 1 27.36 (↑ 7.54%) 27.37 (↑ 7.58%)

Literature reports
Kosmos 2 (Peng et al., 2023) 1.7 23.7 –
MiniGPT-4-v1-7B (Zhu et al., 2023) 7 23.6 –
LLaVA-v1.5-7B (Liu et al., 2023) 7 33.7 –
MiniGPT-4-v2 (Chen et al., 2023) 7 25.0 –
OpenFlamingo v2 (Awadalla et al., 2023) 9 28.8 –
Qwen-VL (Bai et al., 2023) 9.6 29.6 –
LLaVA-v1.5-13B (Liu et al., 2023) 13 37.0 –
PandaGPT-13B (Su et al., 2023) 13 32.9 –

tasks. With 1B parameters, MCOUT outperforms Kosmos-2 and MiniGPT-4 variants, and nearly matches
OpenFlamingo-9B and Qwen-VL, demonstrating strong efficiency in college-level reasoning.

Table 3: Performance on the MMStar test set.
Models Parameters (B) accuracy (%) BLEU
Our experiments
Baseline 1 25.13 25.14
MCOUT-Base (Nt = 10) 1 26.13 (↑ 3.98%) 26.14 (↑ 3.98%)
MCOUT-Multi (Nt = 10) 1 26.07 (↑ 3.74%) 26.08 (↑ 3.74%)

Literature reports
Kosmos2 (Peng et al., 2023) 1.7 24.9 –
MiniGPT-4-v1-7B (Zhu et al., 2023) 7 16.3 –
MiniGPT-4-v2 (Chen et al., 2023) 7 21.3 –
LLaVA-7B (Liu et al., 2023) 7 27.1 –
OpenFlamingo v2 (Awadalla et al., 2023) 9 26.9 –
Qwen-VL-Chat (Bai et al., 2023) 9.6 34.5 –
PandaGPT-13B (Su et al., 2023) 13 25.6 –

For MMStar, as illustrated in Table 3, MCOUT-Base (Nt = 10) improves accuracy and BLEU by 3.98%,
while MCOUT-Multi (Nt = 10) gains 3.74% in both metrics, enhancing fine-grained visual reasoning through
iterative thought generation. Despite its 1B parameters, MCOUT outperforms Kosmos-2, MiniGPT-4-v1-7B,
MiniGPT-4-v2, and PandaGPT-13B, and closely rivals OpenFlamingo-9B and LLaVA-7B, highlighting its
efficiency in challenging visual tasks.

4.3 MULTIMODAL LATENT REASONING ANALYSIS

To understand the performance differences and similarities between MCOUT-Base and MCOUT-Multi, we
analyzed their latent distributions, as illustrated in Figure 3. Prior to training, we identified a significant
norm imbalance: the last hidden state norm was 103.90, while the initial thought embedding norm (from
multimodal attention) was 26.48 on ScienceQA, posing a risk of unstable fusion in MCOUT-Multi. To
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mitigate this, we introduced normalization layers with a final normalization step-into the attention module
(Equation 1), aligning the scales and stabilizing the thought embeddings. For MCOUT-Base, which uses the
last hidden state directly (ht = hl), the mean of the last hidden layer starts at -0.02197 and fluctuates slightly
with a consistent standard deviation of approximately 2.23, as shown in the top figures, reflecting a stable
reasoning process that underpins its performance gains (4.79% accuracy improvement on ScienceQA and
8.21% on MMMU).

Figure 3: Latent distribution analysis of MCOUT-Base and MCOUT-Multi, showing mean and standard
deviation of last hidden states and mixed embeddings across 100 samples and 5 thought iterations.

MCOUT-Multi, which integrates the last hidden state with multimodal input embeddings, shows last hidden
layer means ranging from -0.02212 to -0.00112 across iterations, with standard deviations around 2.24, closely
tracking MCOUT-Base’s patterns and indicating minimal disruption from multimodal fusion. However, the
mixed embeddings reveal a critical limitation: their mean remains constant at 0.002418 with a negligible
standard deviation of 0.001866, and the mixed standard deviation is uniformly 0.198925 across all iterations,
suggesting a static, low-variance contribution from the multimodal input. This persistent uniformity, despite
normalization, points to a modality collapse, where the attention mechanism fails to extract diverse visual
context, aligning MCOUT-Multi’s performance (58.45% accuracy at Nt = 5) closely with MCOUT-Base
(58.60%). This observation resonates with the sinking of visual attention in recent studies (Kang et al., 2025;
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Cancedda, 2024; Sim et al., 2025), which attributes such collapse to activation imbalances favoring a specific
type (e.g. text). Our study shows that low-variance embeddings (mixed_embeds std ≈ 0.2 vs. last_hidded
std ≈ 2.2) limit multimodal benefits. The pre-training norm adjustment likely prevented catastrophic fusion
failure, but the static mixed embeddings suggest entropy collapse (Zhai et al., 2023), where uniform attention
weights diminish multimodal impact.

5 ABLATION STUDY

To investigate the impact of the auxiliary weight µ in the MCOUT loss function (Equation 9), we conduct an
ablation study with the impact of the auxiliary weight µ in the MCOUT loss function with Nt = 5, as shown
in Table 4. µ = 0.3 yields the highest performance, improving ScienceQA accuracy by 4.33%, and MMMU
accuracy by 8.23%, highlighting the importance of balancing auxiliary thought supervision for effective
multimodal reasoning. Higher µ values (0.5, 0.8) reduce gains, suggesting overemphasis on intermediate
thoughts may disrupt final output optimization, while µ = 0 yields moderate improvements. Although using
an auxiliary loss boosts model performance, it increases training time based on our experiments.

We also evaluate fully finetuning both the vision encoder and language model with LoRA. For MCOUT, we
use Nt = 5 and µ = 0. As shown in Table 4, finetuning boosts performance further, with improvements
ranging from 3.06% to 5.88% across benchmarks. The performance gap between MCOUT-Base and MCOUT-
Multi remains small, indicating that both strategies benefit consistently from full finetuning. These results
reinforce the effectiveness of our method and demonstrate that MCOUT’s iterative reasoning remains robust
under different optimization settings, confirming the stability and adaptability of our framework.

Table 4: Ablation study for ScienceQA test and MMMU val using Nt = 5.
Models Auxiliary ScienceQA test MMMU val

weight (µ) accuracy BLEU accuracy BLEU
Baseline 56.17 51.48 25.44 25.44
MCOUT-Base 0 58.12 (↑ 3.47%) 52.05 (↑ 1.11%) 27.41 (↑ 7.75%) 27.43 (↑ 7.82%)
MCOUT-Base 0.3 58.60 (↑ 4.33%) 52.44 (↑ 1.87%) 27.53 (↑ 8.23%) 27.54 (↑ 8.27%)
MCOUT-Base 0.5 57.56 (↑ 2.48%) 52.10 (↑ 1.20%) 26.44 (↑ 3.93%) 26.44 (↑ 3.93%)
MCOUT-Base 0.8 57.52 (↑ 2.40%) 52.00 (↑ 1.01%) 25.90 (↑ 1.81%) 25.91 (↑ 1.85%)

Fully finetuning model with LoRA
Baseline 62.61 54.96 26.55 26.56
MCOUT-Base 0 64.60 (↑ 3.18%) 56.73 (↑ 3.22%) 27.98 (↑ 5.39%) 27.99 (↑ 5.39%)
MCOUT-Multi 0 64.75 (↑ 3.42%) 56.64 (↑ 3.06%) 28.11 (↑ 5.88%) 28.11 (↑ 5.83%)

6 CONCLUSION

In this work, we investigated multimodal reasoning for a small VLM through two key contributions: (1)
building a 1B-parameter vision-language model, and (2) proposing the Multimodal Chain of Continuous
Thought (MCOUT) framework, which employs a step-by-step reasoning process inspired by human reflection.
MCOUT improves performance, achieving gains of up to 8.23% in accuracy on MMMU and 4.79% on
ScienceQA. As a pioneering effort to explore multimodal continuous latent reasoning, our study provides a
promising foundation for efficient multimodal reasoning. Despite these advances, aligning input embeddings
with the final hidden layers remains a challenge, as it complicates multimodal alignment in MCOUT and
increases training time. Going forward, we will investigate multimodal attention and alternative methods for
multimodal alignment within continuous latent reasoning.
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