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Abstract

Approaches to improving multilingual lan-
guage understanding often require multiple
languages during the training phase, rely
on complicated training techniques, and—
importantly—struggle with significant perfor-
mance gaps between high-resource and low-
resource languages. We hypothesize that the
performance gaps between languages are af-
fected by linguistic gaps between those lan-
guages and provide a novel solution for robust
multilingual language modeling by employing
phonemic representations (specifically, using
phonemes as input tokens to LMs rather than
subwords). We present quantitative evidence
from three cross-lingual tasks that demonstrate
the effectiveness of phonemic representation,
which is further justified by a theoretical analy-
sis of the cross-lingual performance gap'.

1 Introduction

In an era of large language models, natural lan-
guage processing has promised to bring us together.
However, there are gaps between how human lan-
guage technologies perform in some languages
(like English) and others (most of the languages of
the world). Language technologies exhibit perfor-
mance gaps between languages. To some degree,
this is due to differences in resourcedness, but we
hypothesize that linguistic gaps—the chasms that
separate languages from one another structurally
and lexically—also play a role. We further hypothe-
size that techniques that reduce linguistic gaps will
also reduce performance gaps. In this paper, we fo-
cus on one such technique: representing languages
phonetically using the International Phonetic Al-
phabet (IPA).

Figure 1 illustrates our motivation for using IPA
as a universal language representation. The key
contributions of this paper are as follows:

'Our code is available here: https://anonymous. 4open.
science/r/ipa-for-multilingual-nlu/README.md
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Figure 1: Example of word, character, and phoneme
units for a sentence (English and Korean).

* We demonstrate the advantage of using phone-
mic representation (i.e., IPA) for language
modeling, particularly as a robust multilingual
representation.

* We empirically validate the effectiveness of
phonemic representations by comparing the
performance gap and linguistic gap across lan-
guages with subword or character representa-
tions.

* We further explain the empirical observations
with theoretical analysis from domain gener-
alization literature, by treating the linguistic
gap as the domain gap caused by lexical and
syntactic disparities.

2 Related Work

Cross-lingual Transfer Learning approaches
aim to transfer knowledge from one language to
enhance NLP performance in another. While ad-
versarial training methods (Lample et al., 2018;
Chen et al., 2018, 2021; Yu et al., 2023) attempt
to learn a language-agnostic representation, their
training can be unstable (Balcan et al., 2023). Non-
adversarial joint learning approaches (Cotterell and
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Heigold, 2017; Gu et al., 2018; Wei et al., 2021;
Zheng et al., 2021) also present promising results,
but necessitate significant multilingual data. Re-
cently, Yang et al. (2022) revealed the empirical cor-
relation between cross-lingual transferability and
representation discrepancy, yet they do not provide
any theoretical statement to justify such numerical
analysis.

Multilingual Large Language Models (MLLMs)
and the pre-train/fine-tune paradigm have become
exceptionally popular, including for multilingual
LMs (Devlin et al., 2018; Conneau and Lample,
2019; Conneau et al., 2020; Chi et al., 2021; Work-
shop et al., 2022; Wei et al., 2023). Although
MLLMs have demonstrated remarkable potential
in diverse multilingual tasks, there is a significant
performance gap between different languages, es-
pecially in the case of high-resource language ver-
sus low-resource language (Wu and Dredze, 2020;
Zhao et al., 2023). In this work, we propose a novel
paradigm for robust multilingual language model-
ing: IPA as a universal language representation.

Phonemic Language Representation has been
applied in previous studies (Bharadwaj et al., 2016;
Chaudhary et al., 2018; Dalmia et al., 2019; Hu
et al., 2019; Nguyen et al., 2023), but primarily for
speech recognition tasks or where they were not fo-
cused on the linguistic gap between languages. Our
work revisits phonemic representation for MLLMs
to mitigate the linguistic gap for the first time.

3 Experimental Setup

In this section, we briefly describe the experiment
setup in terms of models, datasets, and tasks. Refer
to Appendix A for further details.

3.1 Models and Data Preprocessing

We compare LMs with three different types of
language representation: subword, character, and
phoneme. All models? are pre-trained on multilin-
gual data that covers around 100 languages from
Wikipedia dump files. We employ an off-the-shelf
MLLMs, multilingual BERT (mBERT; Devlin et al.
(2018)). For a subword-based model which is
trained with byte-pair encoding. For a character-
based model, we utilize CANINE (Clark et al.,
2022), which is a tokenization-free LM that directly
maps each character to its codepoint by hashing. It

2pre-trained weights obtained from
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is pre-trained on the same data and training objec-
tives as mBERT. For a phoneme-based model, we
adopt XPhoneBERT (Nguyen et al., 2023), which
has the same model architecture as mBERT.
While character-level models are known to bet-
ter generalize to low-resource languages (Clark
et al., 2022), their general performance falls behind
subword-based models. For a fair comparison be-
tween the representations, we primarily compare
phoneme-based model to character-based one in-
stead of directly comparing it to the subword-based
model (i.e., mBERT), and leave further improve-
ments of overall performance as future work.

Preprocessing. In order to prepare inputs for
a phoneme-based model, we employed G2P
(Grapheme-to-Phoneme) conversion to obtain an
IPA version of the input. This conversion was done
with Epitran3 (Mortensen et al., 2018) , an external
tool for G2P conversion. After converting to IPA,
we inserted white space between every character to
make it compatible with XPhoneBERT’s tokenizer.

3.2 Downstream Tasks

We adopted the cross-lingual generalization bench-
mark tasks suggested in XTREME (Hu et al., 2020).
Among them, we selected two types of tasks; clas-
sification and structured prediction. For evalu-
ation languages, we choose eight languages of
three groups—high-resource (eng, deu, fra), low-
resource (urd, hin, swa), and typologically distinct
(kor, ukr)—to analyze the impact of phonemic rep-
resentation with respect to each category.

Sentence-level Classification. We employ XNLI
(Conneau et al., 2018) dataset, which is a represen-
tative benchmark for the natural language inference
task on the cross-lingual generalization setting.

Token-level Classification. We choose POS tag-
ging and NER as our testbed for structured pre-
diction tasks, both requiring predicting labels for
each word in sentences. We utilize the corpora
from Universal Dependencies* for POS tagging,
and WikiAnn (Pan et al., 2017) with train, dev, test
splits following (Rahimi et al., 2019) for NER.

4 Results

Phoneme-based Model on Low-Resource
Languages. The phoneme-based model shows

3https://github.com/dmort27/epitran
*https://universaldependencies.org/ , v2.13, 148 languages,
released Nov 15, 2023.



Method Language
ENG SWA URD
(A from ENG) (A from ENG)
Subword  80.80  62.93 (17.87) 61.57 (19.23)
Character 75.02  59.72 (15.30) 56.55 (18.46)
Phoneme 71.89  60.88 (11.00) 56.10 (15.78)

Table 1: Accuracy (%) on XNLI task. ENG, SWA, URD
refer to English, Swahili, and Urdu, respectively. Phone-
mic representation shows relatively small performance
gaps compared to other representations.

promising results compared to other models,
especially for low-resource languages. As shown
in Table 1, the phoneme-based model has the
smallest performance gap between English and
other low-resource languages — swa, urd. Further-
more, while subword-based mBERT achieves the
highest scores, the performance disparity across
models narrows when it comes to low-resource
languages. Table 2 also suggests that the phoneme-
based model exhibits superiority in addressing
low-resource languages. For NER, on languages
like urd, hin, and swa, the phoneme-based model
significantly outperforms character-based model,
highlighting the capability of the phoneme-based
model’s generalization over the low-resource
languages.

Performance Gap Across Languages. We ob-
serve that the phoneme-based model performs the
most consistently across languages. The leftmost
panel in Figure 3, shows how each language rep-
resentation results in performance gaps across dif-
ferent languages. Here, the phoneme-based model
comes with the lowest performance gap. Table

(a) POS tagging

g deu fra kor urd

(b) NER

g deu fra kor ur

0.53 0.51 0.71 0.62

urd kor fra deu eng
Phoneme-based
urd kor fra deu eng
Phoneme-based

Character-based Character-based

Figure 2: Linguistic gaps across languages. Upper and
lower triangular elements indicate pairwise linguistic
gaps derived with phoneme-based model and character-
based model, respectively. Lighter color indicates larger
CKA score, which means smaller discrepancy. Upper
triangular elements show relatively lighter colors, im-
plying smaller discrepancies across languages.

2 also shows the phoneme-based model’s robust-
ness in terms of performance gap across languages.
From the table, standard devision and mean differ-
ence both indicate how the results for all languages
differ from each other. The phoneme-based model
ends up with a smaller standard deviation in both
NER and POS tasks.

Linguistic Gap of Different Representations.
To analyze the potential of phonemes as a robust
representation for multilingual language modeling,
we check the gap between different languages over
different representations. As in (Yang et al., 2022),
we use centered kernel alignment (CKA) to com-
pute the representation similarity. Figure 3 shows
that phonemic representation shows higher CKA
and lower Sinkhorn distance compared to other
representations, meaning that the phonemic repre-
sentations from different languages are relatively
closer to each other than those of subword or char-
acter representations.

Figure 2 also illustrates the linguistic gap be-
tween languages with their pairwise similarity. Af-
ter fine-tuning each model on downstream tasks,
we compute the discrepancy between different lan-
guages using held-out parallel data. It can be
clearly stated that the upper triangle part (which
corresponds to the phonemic representation model)
of the map has large values that indicate a smaller
linguistic gap.

Theoretical Analysis. We aim to diminish the
performance gap between different languages by
adopting IPA as a universal language representa-
tion. Motivated by domain adaptation literature
(Kifer et al., 2004; Ben-David et al., 2010), we
present a theoretical justification of IPA for ro-
bust multilingual modeling by deriving a bound
for cross-lingual performance gap.

Let D denote a domain as a distribution over text
feature input &, such as the sequence of word em-
beddings or one-hot vectors, and a labeling func-
tion f : X — {0,1}. Assuming a binary clas-
sification task, our goal is to learn a hypothesis
h : X — {0,1} that is expected to minimize a
riskep(h, f) := E,pll(f(x) # h(x))] and has a
small risk-deviation over two domains D4 and Dp.
Then, to formalize the cross-lingual performance
gap, we first need a discrepancy measure between
two languages. By following (Ben-David et al.,
2010), we adopt H-divergence (See Appendix B
for its definition) to quantify the distance between
two language distributions.



Method | Language |  Performance gap | Linguistic Gap

‘ EN DE FR KO UK UR HI SwW ‘ Std. (4) ‘ Mean diff. () ‘ Mean CKA (1)
Named Entity Recognition
Character | 88.80 77.99 90.87 80.17 85.61 75.88 73.33 74.84| 6.68 0.10 0.34
Phoneme |91.36 81.36 91.93 79.33 83.67 76.41 82.19 78.06 | 5.79 0.08 0.43
Part-of-Speech Tagging
Character | 73.54 81.20 80.55 70.1 84.28 93.15 - - 8.14 0.12 0.30
Phoneme | 70.50 78.68 78.10 77.35 83.75 93.96 - - 7.88 0.12 0.52

Table 2: Performance of POS tagging and NER across different languages. Std. refers to the standard deviation of
the scores across the languages, and Mean diff. indicates average pairwise difference of F1 scores. Mean CKA

represents the average linguistic gap between languages.
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Figure 3: Qualitative analysis of performance gap (difference of accruacy) on XNLI task. (Left) the absolute

difference between performance across two languages, (¢

enter) centered kernel alignment (CKA) scores to measure

cross-lingual embedding similarity, and (right) Sinkhorn distance on the output probability space. Phonemic
representation shows relatively small performance gaps w.r.t. EN <> SW and EN < UR, and these gaps are
correlated with similarity and discrepancy on the embedding space (CKA) and logit space (Sinkhorn distance).

Now, based on Lemma 1 and 3 of Ben-David
et al. (2010), we make reasoning on performance
gap over different language domains.

Theorem 4.1. Let h : X — [0, 1] be a real-valued
function in a hypothesis class H with a pseudo
dimension Pdim(H) = d. If Da and Dp are the
empirical distribution constructed by n-size i.i.d.
samples, drawn from D 5 and Dp respectively, then
forany § € (0,1), and for all h, the bound below
hold with probability at least 1 — 6.

lep,(h, f) —epy(h, f)] < %dHAH(ﬁA7ﬁB)
+2\/(1log(2n) + log(2/9)

n
where HAH := {h(z) ® h'(z)|h,h’ € H} given
@ as a xor operation (proof is in Appendix B). We
see that performance gap between two lanauges is
bounded from above with a distribution divergence
plus an irreducible term defined by problem setup.
That is, if we reduce the divergence between lan-
guage distributions, the expected performance gap
can also be reduced accordingly.

To investigate whether this is indeed a case or
not, we provided embedding space similarity and
logit-space Sinkhorn distance between different
languages in Figure 3. We argue that phonemic
representation’s relatively mild performance gap is
achieved by reducing linguistic gaps in the embed-
ding space (high CKA) and final output space (low
Sinkhorn distance).

5 Conclusion

Towards robust multilingual language modeling,
we argue that mitigating the linguistic gap between
different languages is crucial. Moreover, we advo-
cate the use of IPA phonetic symbols as a univer-
sal language representation that partially bridges
such linguistic gaps without any complicated cross-
lingual training phase. Empirical validation on
three representative NLP tasks demonstrates the su-
periority of phonemic representation compared to
subword and character-based language representa-
tion in terms of the cross-lingual performance gap
and linguistic gap. Theoretical analysis of the cross-
lingual performance gap explains such promising
results of phonemic representation.



6 Limitations

While we have shown that phonemic representa-
tion induces a small cross-lingual linguistic gap,
therefore a small performance gap, the absolute per-
formance of this phonemic representation is still
lacking compared to subword-level models. We
spur the necessity of putting research attention to
developing phoneme-based LMs. Moreover, there
is no such large phonemic language model beyond
the BERT-base-size architecture, so we confine the
scope of our empirical validation to BERT-base-
size LMs. Thus, we can not ensure the effective-
ness of IPA representation when adopted within
modern large language models, such as LLaMa 2
(Touvron et al., 2023). Additionally, we performed
evaluation with a limited languages (up to 8), so
it is unclear whether IPA language representations
are effective for other numerous languages (espe-
cially low-resource ones) or not.

7 Ethics Statement

We believe there are no potential of any critical is-
sues that harm the code of ethics provided by ACL.
The social impacts of the technology—reducing
performance gaps for low resource languages—
will be, on the balance, positive. The data was,
to the extent we can determine, collected in accor-
dance with legal and institutional protocals.
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A Details on Experiment Setup

A.1 Models

We compare LMs with three different types of
language representation: subword, character, and
phoneme. All models® are pre-trained on mul-
tilingual data that covers around 100 languages
from Wikipedia dump files. We employ an off-
the-shelf MLLMs, mBERT (Devlin et al., 2018).
for a subword-based model which is trained on
104 languages with byte-pair encoding (vocabulary
size of 110k). The model is pre-trained with the
objective of masked language modeling and next
sentence prediction tasks. For a character-based
model, we utilize CANINE (Clark et al., 2022),
which is a tokenization-free LM that directly maps
each character to its codepoint by hashing. It is
pre-trained on the same data and training objec-
tives as mBERT. This prevents unknown tokens,
enabling the model to handle a large amount of
distinct characters. CANINE is pre-trained on the
same data and training objectives as mBERT. For
a phoneme-based model, we adopt XPhoneBERT
(Nguyen et al., 2023), which has the same model
architecture as mBERT and it is trained on 94 lan-
guages with learning objective of dynamic masked
language modeling.

While character-level models are known to bet-
ter generalize to low-resource languages (Clark
et al., 2022), their general performance falls be-
hind subword-based models. For a fair comparison
between the representations, we compare phoneme-
based model to character-based model instead of di-
rectly comparing it to widely used subword-based
model (i.e., mBERT), and leave further improve-
ments of overall performance as future work.

A.2 Data

G2P Conversion. In order to pass the input
to phoneme-based model, we employed G2P
(Grapheme-to-Phoneme) conversion on the data
to obtain an IPA version of the input. This con-
version was done with Epitran® (Mortensen et al.,

Spre-trained weights were obtained from

https://huggingface.co/models
®https://github.com/dmort27/epitran

2018) , an external tool for G2P conversion. Af-
ter converting to IPA, we insert white space be-
tween every character to make it compatible with
the XPhoneBERT tokenizer.

Languages. We categorize languages into three
groups—high-resource (eng, deu, fra), low-
resource (urd, hin, swa), and typologically distinct
(kor, ukr)—to analyze the impact of phonemic
representation with respect to each category. For
high/low-resource language, we refer to Wu and
Dredze (2020) and treat the languages with a wiki-
size under 8§ as low-resource languages, and those
with wikisize above 11 high-resource languages.
On the other hand, typologically distinct languages
are chosen with reference to English (they are or-
thographically and typologically different)’.

A.3 Downstream Tasks

We adopt the cross-lingual generalization bench-
mark tasks suggested in XTREME (Hu et al., 2020).
Among them, we selected two types of tasks; clas-
sification and structured prediction.

Sentence-level Classification. XTREME sup-
ports some sentence-level classification tasks, re-
quiring semantic understanding of given sentences
to make a prediction. We employ the XNLI (Con-
neau et al., 2018) corpus, which is well-known for
cross-lingual evaluation, to train and evaluate the
model on different languages.

Token-level Classification. Structured predic-
tion tasks from Hu et al. (2020) include POS tag-
ging and NER. Both tasks require labeling each
token from the model. These types of tasks were
previously analyzed as being relatively indepen-
dent from the data size of each language used for
pre-training (Hu et al., 2020). We find this partic-
ularly suitable in our scenario where two models
with different pre-training strategy are compared.
We utilize the corpora from Universal Dependen-
cies® for POS tagging, and WikiAnn (Pan et al.,
2017) with train, dev, test splits following (Rahimi
et al., 2019) for NER. While all 8 languages are
employed for NER, we do not consider swa for
POS tagging since Universal Dependencies does
not provide a Swahili treebank.

"Note that this categorization is not mutually exclusive and
that Urdu and Hindi can also be considered as typologically
distant from English.

8https://universaldependencies.org/ , v2.13, 148 languages,
released Nov 15, 2023.
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Evaluation. For evaluation, we follow the com-
mon practice of each task, evaluating XNLI task
with top 1 accuracy and NER, POS tagging with F1
score. All metrics used are computed via functions
from scikit-learn ° python library.

A.4 Implementation details.

We fine-tuned all models with AdamW (Loshchilov
and Hutter, 2018) optimization setting batch size
as 128 over 20 epochs for XNLI and 40 epochs for
NER and POS Tagging tasks. Here, we adopt a
cosine learning rate scheduler with a warm-up on
the XNLI task. For all models, we adopt mixed pre-
cision training (Micikevicius et al., 2018) provided
by PyTorch, i.e., with autocast() loop for saving
computational cost and energy consumption. For
XNLI task, we used the embedding of [CLS] token
for mBERT, and used the mean of all tokens except
[CLS] token for CANINE and XPhoneBERT. All
experiments were done with the random seed fixed
to 42.

A.5 Number of parameters of the models.

Model | Num. of params
mBERT-base 177,853,440
CANINE-c 132,082,944
XPhoneBERT 87,554,304

Table 3: The number of parameters of each model. For
experiments, we use

A.6 Computational resources.

All experiments on POS tagging were done on a
single NVIDIA GeForce RTX 3090, and those on
XNLI and NER were done on a single NVIDIA
A6000. Total GPU hours for all experiments are 29
days.

A.7 Hyperparameter sweep.

We sweep hyperparameters over grid below (in
Table 4), and select the final parameters for each
model based on the best validation performance
(Accuracy for XNLI and F1-score for NER and
POS Tagging).

A.8 Datasets, Statistics, and License.

In Table 5, we provide the datasets, their statistics,
and license.

*https://scikit-learn.org/stable/index.html

B Details on Theoreoretical Analysis

We aim to diminish the performance gap between
different languages by adopting IPA as a univer-
sal language representation. Motivated by domain
adaptation literature (Kifer et al., 2004; Ben-David
etal., 2010), we present a theoretical justification of
IPA for robust multilingual modeling by providing
a bound for cross-lingual performance gap.

Let D denote a domain as a distribution over text
feature input &, such as the sequence of word em-
beddings or one-hot vectors, and a labeling func-
tion f : X — {0,1}. Assuming a binary clas-
sification task, our goal is to learn a hypothesis
h : X — {0,1} that is expected to minimize a
risk ep(h, f) := Epp[l(f(x) # h(z))] and has
a small risk-deviation over two domains D4 and
Dp. Then, to formalize the cross-lingual perfor-
mance gap, we first need a discrepancy measure
between two languages. By following (Ben-David
et al., 2010), we adopt H-divergence to quantify
the distance between two language distributions.

Definition B.1 (#-divergence; Ben-David et al.
(2006)). Let H be a hypothesis class for input
space X and a collection of subsets from X is de-
noted by Sy := {h~Y(1)|h € H} which is the
support of hypothesis h € H. The H-divergence
between two distributions D and D' is defined as
du(D,D') =2 sup [Pp(S) —Pp/(S)]
SeSy
‘H-divergence is a relaxation of total variation be-
tween two distributions, and it can be estimated by
finite samples from both distributions if #{ governs
a finite VC dimension. Now, based on Lemma 1
and 3 of Ben-David et al. (2010), we make reason-
ing on performance gap over different language
domains.
Theorem B.2. Let h : X — [0, 1] be a real-valued
function in a hypothesis class H with a pseudo
dimension Pdim(H) = d. Iff?A and Dy are the
empirical distribution constructed by n-size i.i.d.
samples, drawn from D 4 and Dp respectively, then
forany 6 € (0,1), and for all h, the bound below
hold with probability at least 1 — 6.

1 N .
lep,(hy f) —epg(h, )| < §dHAH(DA,DB)

+2\/dlog(2n) :L— log(2/0)

where HAH := {h(z) ® h'(z)|h,h € H} given
@ as a xor operation.



Task |

Selected parameter value

Hyperparam | Search space |
\ \ | mBERT | CANINE \ XPhoneBERT
learning rate [5e-6, 7e-6, le-5, 3e-5, 5e-5] 5e-6 5e-6 (EN), le-5 (SW, UR) 7e-6 (EN), 3e-6 (SW, UR)
XNLI weight decay [0.0, Te-1, le-2, 1e-3] 0.01 0.1 (EN), 0.0 (SW), 0.01 (UR) | 0.1 (EN), 0.0 (SW), 0.01 (UR)
learning rate scheduling [True, False] True True False
NER learning rate [1e-5, 5e-5, 1e-4] le-4 5e-5 Se-5
weight decay [1e-4, 1e-3, 1e-2] le-3 le-4 le-2
POS learning rate [le-5, Se-5, le-4, 3e-4, 1e-2] le-4 3e-4 le-4
weight decay [1e-4, 1e-3, le-2] le-4 le-2 le-2

Table 4: List of hyperparameter, search spaces and selected parameter values for different models applied to XNLI,
NER, and POS tasks, detailing learning rate, weight decay, and learning rate scheduling for mBERT, CANINE, and
XPhonemBERT, with specific configurations for optimal model performance per task.

Dataset | Lang. | Train | Dev | Test | License
eng
XNLI swa | 393k | 2.49k | 5.0k | CCBY-NC-4.0
urd
eng 20k 10k 10k
deu 20k 10k 10k
fra 20k 10k 10k
o kor 20k 10k 10k
WikiAnn ukr 20k 10k 10k ODC-BY
urd 20k 1k 1k
swa 1k 1k 1k
hin S5k 1k 1k
eng | 125k | 2k 2k CCBY-SA 4.0
deu | 13.8k | 0.8k 1k CCBY-SA 4.0
UD fra | 14.5k | 1.5k | 0.4k CCBY-SA 4.0
kor 23k 2k 2.3k CCBY-SA 4.0
ukr | 5.5k | 0.7k | 0.9k | CC BY-NC-SA 4.0
urd 4k 0.6k | 0.5k | CC BY-NC-SA 4.0

Table 5: Statistics and license types for datasets. The
table lists the number of examples in the training, de-
velopment, and testing sets for languages in the XNLI,
WikiAnn, and UD datasets. It specifies the licensing con-
ditions: CC-BY permits sharing and adaptation, CC BY-
NC is for non-commercial usage, CC BY-SA mandates
share-alike distributions, and CC BY-NC-SA combines
non-commercial with share-alike terms. All datasets are
strictly used within the bounds of these licenses.

proof of Theorem B.2. we start to prove Theorem
B.2. by restating Lemma 1 of (Ben-David et al.,
2010) adapted to our notation.

Lemma B.3. Let Dy and Dp be distributions of
domain A and B over X, respectively. Let H be
a hypothesis class of functions from X to [0,1]
with VC dimension d. If D 4 and D B are the n-size
empirical distributions generated by D o and Dp
respectively, then, for 0 < § < 1, with probability
at least 1 — 9,

dy(Da,Dp) < dy(Da, Dp)
+4\/allog(Zn) + log(2/9)

Then, for any hypothesis function h, h’ € H, by
the definition of dy a3 -divergence, we have:

n

d1ua1(Da, D)

=2 sup [Pen, [1(x) # B (2)] ~ Popy [1(2) # B (2]

=2 sup |5DA (h> h/) —€Dp (h'7 hl)'
h,h'€H

> 2lep (h, 1) —epy (R, B))|

Now the below bound holds for any hypothesis
functions h, b’ € H (See Lemma 3 of (Ben-David
et al., 2010)).

1
lep, (R, 1) —ep, (R, )| < §d7{A%(DA,DB)

Finally, by plugging the Lemma B.3 into the above
bound, we have Theorem B.2.
O

From Theorem B.2, we see that the difference
between true risks across language domains is
bounded by an empirical estimation of the diver-
gence (dy ) between those two domains plus an
irreducible term defined by problem setup. Thus, if
we reduce the divergence between language distri-
butions, the expected performance gap can also be
reduced accordingly. To investigate whether this is
indeed a case or not, we provided the embedding-
space similarity and logit-space Sinkhorn distance
between different languages in Figure 3. We ar-
gue that phonemic representation’s relatively mild
performance gap is achieved by reducing linguistic
gaps in the embedding space (high CKA) and final
output space (low Sinkhorn distance) those are the
proxy of H-divergence.
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