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Abstract

Approaches to improving multilingual lan-001
guage understanding often require multiple002
languages during the training phase, rely003
on complicated training techniques, and—004
importantly—struggle with significant perfor-005
mance gaps between high-resource and low-006
resource languages. We hypothesize that the007
performance gaps between languages are af-008
fected by linguistic gaps between those lan-009
guages and provide a novel solution for robust010
multilingual language modeling by employing011
phonemic representations (specifically, using012
phonemes as input tokens to LMs rather than013
subwords). We present quantitative evidence014
from three cross-lingual tasks that demonstrate015
the effectiveness of phonemic representation,016
which is further justified by a theoretical analy-017
sis of the cross-lingual performance gap1.018

1 Introduction019

In an era of large language models, natural lan-020

guage processing has promised to bring us together.021

However, there are gaps between how human lan-022

guage technologies perform in some languages023

(like English) and others (most of the languages of024

the world). Language technologies exhibit perfor-025

mance gaps between languages. To some degree,026

this is due to differences in resourcedness, but we027

hypothesize that linguistic gaps—the chasms that028

separate languages from one another structurally029

and lexically—also play a role. We further hypothe-030

size that techniques that reduce linguistic gaps will031

also reduce performance gaps. In this paper, we fo-032

cus on one such technique: representing languages033

phonetically using the International Phonetic Al-034

phabet (IPA).035

Figure 1 illustrates our motivation for using IPA036

as a universal language representation. The key037

contributions of this paper are as follows:038

1Our code is available here: https://anonymous.4open.
science/r/ipa-for-multilingual-nlu/README.md

Figure 1: Example of word, character, and phoneme
units for a sentence (English and Korean).

• We demonstrate the advantage of using phone- 039

mic representation (i.e., IPA) for language 040

modeling, particularly as a robust multilingual 041

representation. 042

• We empirically validate the effectiveness of 043

phonemic representations by comparing the 044

performance gap and linguistic gap across lan- 045

guages with subword or character representa- 046

tions. 047

• We further explain the empirical observations 048

with theoretical analysis from domain gener- 049

alization literature, by treating the linguistic 050

gap as the domain gap caused by lexical and 051

syntactic disparities. 052

2 Related Work 053

Cross-lingual Transfer Learning approaches 054

aim to transfer knowledge from one language to 055

enhance NLP performance in another. While ad- 056

versarial training methods (Lample et al., 2018; 057

Chen et al., 2018, 2021; Yu et al., 2023) attempt 058

to learn a language-agnostic representation, their 059

training can be unstable (Balcan et al., 2023). Non- 060

adversarial joint learning approaches (Cotterell and 061
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Heigold, 2017; Gu et al., 2018; Wei et al., 2021;062

Zheng et al., 2021) also present promising results,063

but necessitate significant multilingual data. Re-064

cently, Yang et al. (2022) revealed the empirical cor-065

relation between cross-lingual transferability and066

representation discrepancy, yet they do not provide067

any theoretical statement to justify such numerical068

analysis.069

Multilingual Large Language Models (MLLMs)070

and the pre-train/fine-tune paradigm have become071

exceptionally popular, including for multilingual072

LMs (Devlin et al., 2018; Conneau and Lample,073

2019; Conneau et al., 2020; Chi et al., 2021; Work-074

shop et al., 2022; Wei et al., 2023). Although075

MLLMs have demonstrated remarkable potential076

in diverse multilingual tasks, there is a significant077

performance gap between different languages, es-078

pecially in the case of high-resource language ver-079

sus low-resource language (Wu and Dredze, 2020;080

Zhao et al., 2023). In this work, we propose a novel081

paradigm for robust multilingual language model-082

ing: IPA as a universal language representation.083

Phonemic Language Representation has been084

applied in previous studies (Bharadwaj et al., 2016;085

Chaudhary et al., 2018; Dalmia et al., 2019; Hu086

et al., 2019; Nguyen et al., 2023), but primarily for087

speech recognition tasks or where they were not fo-088

cused on the linguistic gap between languages. Our089

work revisits phonemic representation for MLLMs090

to mitigate the linguistic gap for the first time.091

3 Experimental Setup092

In this section, we briefly describe the experiment093

setup in terms of models, datasets, and tasks. Refer094

to Appendix A for further details.095

3.1 Models and Data Preprocessing096

We compare LMs with three different types of097

language representation: subword, character, and098

phoneme. All models2 are pre-trained on multilin-099

gual data that covers around 100 languages from100

Wikipedia dump files. We employ an off-the-shelf101

MLLMs, multilingual BERT (mBERT; Devlin et al.102

(2018)). For a subword-based model which is103

trained with byte-pair encoding. For a character-104

based model, we utilize CANINE (Clark et al.,105

2022), which is a tokenization-free LM that directly106

maps each character to its codepoint by hashing. It107

2pre-trained weights were obtained from
https://huggingface.co/models

is pre-trained on the same data and training objec- 108

tives as mBERT. For a phoneme-based model, we 109

adopt XPhoneBERT (Nguyen et al., 2023), which 110

has the same model architecture as mBERT. 111

While character-level models are known to bet- 112

ter generalize to low-resource languages (Clark 113

et al., 2022), their general performance falls behind 114

subword-based models. For a fair comparison be- 115

tween the representations, we primarily compare 116

phoneme-based model to character-based one in- 117

stead of directly comparing it to the subword-based 118

model (i.e., mBERT), and leave further improve- 119

ments of overall performance as future work. 120

Preprocessing. In order to prepare inputs for 121

a phoneme-based model, we employed G2P 122

(Grapheme-to-Phoneme) conversion to obtain an 123

IPA version of the input. This conversion was done 124

with Epitran3 (Mortensen et al., 2018) , an external 125

tool for G2P conversion. After converting to IPA, 126

we inserted white space between every character to 127

make it compatible with XPhoneBERT’s tokenizer. 128

3.2 Downstream Tasks 129

We adopted the cross-lingual generalization bench- 130

mark tasks suggested in XTREME (Hu et al., 2020). 131

Among them, we selected two types of tasks; clas- 132

sification and structured prediction. For evalu- 133

ation languages, we choose eight languages of 134

three groups—high-resource (eng, deu, fra), low- 135

resource (urd, hin, swa), and typologically distinct 136

(kor, ukr)—to analyze the impact of phonemic rep- 137

resentation with respect to each category. 138

Sentence-level Classification. We employ XNLI 139

(Conneau et al., 2018) dataset, which is a represen- 140

tative benchmark for the natural language inference 141

task on the cross-lingual generalization setting. 142

Token-level Classification. We choose POS tag- 143

ging and NER as our testbed for structured pre- 144

diction tasks, both requiring predicting labels for 145

each word in sentences. We utilize the corpora 146

from Universal Dependencies4 for POS tagging, 147

and WikiAnn (Pan et al., 2017) with train, dev, test 148

splits following (Rahimi et al., 2019) for NER. 149

4 Results 150

Phoneme-based Model on Low-Resource 151

Languages. The phoneme-based model shows 152

3https://github.com/dmort27/epitran
4https://universaldependencies.org/ , v2.13, 148 languages,

released Nov 15, 2023.
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Method Language
ENG SWA URD

(∆ from ENG) (∆ from ENG)

Subword 80.80 62.93 (17.87) 61.57 (19.23)
Character 75.02 59.72 (15.30) 56.55 (18.46)
Phoneme 71.89 60.88 (11.00) 56.10 (15.78)

Table 1: Accuracy (%) on XNLI task. ENG, SWA, URD
refer to English, Swahili, and Urdu, respectively. Phone-
mic representation shows relatively small performance
gaps compared to other representations.

promising results compared to other models,153

especially for low-resource languages. As shown154

in Table 1, the phoneme-based model has the155

smallest performance gap between English and156

other low-resource languages – swa, urd. Further-157

more, while subword-based mBERT achieves the158

highest scores, the performance disparity across159

models narrows when it comes to low-resource160

languages. Table 2 also suggests that the phoneme-161

based model exhibits superiority in addressing162

low-resource languages. For NER, on languages163

like urd, hin, and swa, the phoneme-based model164

significantly outperforms character-based model,165

highlighting the capability of the phoneme-based166

model’s generalization over the low-resource167

languages.168

Performance Gap Across Languages. We ob-169

serve that the phoneme-based model performs the170

most consistently across languages. The leftmost171

panel in Figure 3, shows how each language rep-172

resentation results in performance gaps across dif-173

ferent languages. Here, the phoneme-based model174

comes with the lowest performance gap. Table175

Ph
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d

Character-based

(a) POS tagging (b) NER

Ph
on

em
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Character-based

Figure 2: Linguistic gaps across languages. Upper and
lower triangular elements indicate pairwise linguistic
gaps derived with phoneme-based model and character-
based model, respectively. Lighter color indicates larger
CKA score, which means smaller discrepancy. Upper
triangular elements show relatively lighter colors, im-
plying smaller discrepancies across languages.

2 also shows the phoneme-based model’s robust- 176

ness in terms of performance gap across languages. 177

From the table, standard devision and mean differ- 178

ence both indicate how the results for all languages 179

differ from each other. The phoneme-based model 180

ends up with a smaller standard deviation in both 181

NER and POS tasks. 182

Linguistic Gap of Different Representations. 183

To analyze the potential of phonemes as a robust 184

representation for multilingual language modeling, 185

we check the gap between different languages over 186

different representations. As in (Yang et al., 2022), 187

we use centered kernel alignment (CKA) to com- 188

pute the representation similarity. Figure 3 shows 189

that phonemic representation shows higher CKA 190

and lower Sinkhorn distance compared to other 191

representations, meaning that the phonemic repre- 192

sentations from different languages are relatively 193

closer to each other than those of subword or char- 194

acter representations. 195

Figure 2 also illustrates the linguistic gap be- 196

tween languages with their pairwise similarity. Af- 197

ter fine-tuning each model on downstream tasks, 198

we compute the discrepancy between different lan- 199

guages using held-out parallel data. It can be 200

clearly stated that the upper triangle part (which 201

corresponds to the phonemic representation model) 202

of the map has large values that indicate a smaller 203

linguistic gap. 204

Theoretical Analysis. We aim to diminish the 205

performance gap between different languages by 206

adopting IPA as a universal language representa- 207

tion. Motivated by domain adaptation literature 208

(Kifer et al., 2004; Ben-David et al., 2010), we 209

present a theoretical justification of IPA for ro- 210

bust multilingual modeling by deriving a bound 211

for cross-lingual performance gap. 212

Let D denote a domain as a distribution over text 213

feature input X , such as the sequence of word em- 214

beddings or one-hot vectors, and a labeling func- 215

tion f : X → {0, 1}. Assuming a binary clas- 216

sification task, our goal is to learn a hypothesis 217

h : X → {0, 1} that is expected to minimize a 218

risk εD(h, f) := Ex∼D[I(f(x) ̸= h(x))] and has a 219

small risk-deviation over two domains DA and DB . 220

Then, to formalize the cross-lingual performance 221

gap, we first need a discrepancy measure between 222

two languages. By following (Ben-David et al., 223

2010), we adopt H-divergence (See Appendix B 224

for its definition) to quantify the distance between 225

two language distributions. 226
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Method Language Performance gap Linguistic Gap

EN DE FR KO UK UR HI SW Std. (↓) Mean diff. (↓) Mean CKA (↑)

Named Entity Recognition

Character 88.80 77.99 90.87 80.17 85.61 75.88 73.33 74.84 6.68 0.10 0.34
Phoneme 91.36 81.36 91.93 79.33 83.67 76.41 82.19 78.06 5.79 0.08 0.43

Part-of-Speech Tagging

Character 73.54 81.20 80.55 70.1 84.28 93.15 - - 8.14 0.12 0.30
Phoneme 70.50 78.68 78.10 77.35 83.75 93.96 - - 7.88 0.12 0.52

Table 2: Performance of POS tagging and NER across different languages. Std. refers to the standard deviation of
the scores across the languages, and Mean diff. indicates average pairwise difference of F1 scores. Mean CKA
represents the average linguistic gap between languages.

Figure 3: Qualitative analysis of performance gap (difference of accruacy) on XNLI task. (Left) the absolute
difference between performance across two languages, (center) centered kernel alignment (CKA) scores to measure
cross-lingual embedding similarity, and (right) Sinkhorn distance on the output probability space. Phonemic
representation shows relatively small performance gaps w.r.t. EN ↔ SW and EN ↔ UR, and these gaps are
correlated with similarity and discrepancy on the embedding space (CKA) and logit space (Sinkhorn distance).

Now, based on Lemma 1 and 3 of Ben-David227

et al. (2010), we make reasoning on performance228

gap over different language domains.229

Theorem 4.1. Let h : X → [0, 1] be a real-valued230

function in a hypothesis class H with a pseudo231

dimension Pdim(H) = d. If D̂A and D̂B are the232

empirical distribution constructed by n-size i.i.d.233

samples, drawn from DA and DB respectively, then234

for any δ ∈ (0, 1), and for all h, the bound below235

hold with probability at least 1− δ.236

|εDA
(h, f)− εDB

(h, f)| ≤ 1

2
dH∆H(D̂A, D̂B)237

+2

√
d log(2n) + log(2/δ)

n
238

where H∆H := {h(x)⊕ h′(x)|h, h′ ∈ H} given239

⊕ as a xor operation (proof is in Appendix B). We240

see that performance gap between two lanauges is241

bounded from above with a distribution divergence242

plus an irreducible term defined by problem setup.243

That is, if we reduce the divergence between lan-244

guage distributions, the expected performance gap245

can also be reduced accordingly.246

To investigate whether this is indeed a case or 247

not, we provided embedding space similarity and 248

logit-space Sinkhorn distance between different 249

languages in Figure 3. We argue that phonemic 250

representation’s relatively mild performance gap is 251

achieved by reducing linguistic gaps in the embed- 252

ding space (high CKA) and final output space (low 253

Sinkhorn distance). 254

5 Conclusion 255

Towards robust multilingual language modeling, 256

we argue that mitigating the linguistic gap between 257

different languages is crucial. Moreover, we advo- 258

cate the use of IPA phonetic symbols as a univer- 259

sal language representation that partially bridges 260

such linguistic gaps without any complicated cross- 261

lingual training phase. Empirical validation on 262

three representative NLP tasks demonstrates the su- 263

periority of phonemic representation compared to 264

subword and character-based language representa- 265

tion in terms of the cross-lingual performance gap 266

and linguistic gap. Theoretical analysis of the cross- 267

lingual performance gap explains such promising 268

results of phonemic representation. 269

4



6 Limitations270

While we have shown that phonemic representa-271

tion induces a small cross-lingual linguistic gap,272

therefore a small performance gap, the absolute per-273

formance of this phonemic representation is still274

lacking compared to subword-level models. We275

spur the necessity of putting research attention to276

developing phoneme-based LMs. Moreover, there277

is no such large phonemic language model beyond278

the BERT-base-size architecture, so we confine the279

scope of our empirical validation to BERT-base-280

size LMs. Thus, we can not ensure the effective-281

ness of IPA representation when adopted within282

modern large language models, such as LLaMa 2283

(Touvron et al., 2023). Additionally, we performed284

evaluation with a limited languages (up to 8), so285

it is unclear whether IPA language representations286

are effective for other numerous languages (espe-287

cially low-resource ones) or not.288

7 Ethics Statement289

We believe there are no potential of any critical is-290

sues that harm the code of ethics provided by ACL.291

The social impacts of the technology—reducing292

performance gaps for low resource languages—293

will be, on the balance, positive. The data was,294

to the extent we can determine, collected in accor-295

dance with legal and institutional protocals.296
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A Details on Experiment Setup495

A.1 Models496

We compare LMs with three different types of497

language representation: subword, character, and498

phoneme. All models5 are pre-trained on mul-499

tilingual data that covers around 100 languages500

from Wikipedia dump files. We employ an off-501

the-shelf MLLMs, mBERT (Devlin et al., 2018).502

for a subword-based model which is trained on503

104 languages with byte-pair encoding (vocabulary504

size of 110k). The model is pre-trained with the505

objective of masked language modeling and next506

sentence prediction tasks. For a character-based507

model, we utilize CANINE (Clark et al., 2022),508

which is a tokenization-free LM that directly maps509

each character to its codepoint by hashing. It is510

pre-trained on the same data and training objec-511

tives as mBERT. This prevents unknown tokens,512

enabling the model to handle a large amount of513

distinct characters. CANINE is pre-trained on the514

same data and training objectives as mBERT. For515

a phoneme-based model, we adopt XPhoneBERT516

(Nguyen et al., 2023), which has the same model517

architecture as mBERT and it is trained on 94 lan-518

guages with learning objective of dynamic masked519

language modeling.520

While character-level models are known to bet-521

ter generalize to low-resource languages (Clark522

et al., 2022), their general performance falls be-523

hind subword-based models. For a fair comparison524

between the representations, we compare phoneme-525

based model to character-based model instead of di-526

rectly comparing it to widely used subword-based527

model (i.e., mBERT), and leave further improve-528

ments of overall performance as future work.529

A.2 Data530

G2P Conversion. In order to pass the input531

to phoneme-based model, we employed G2P532

(Grapheme-to-Phoneme) conversion on the data533

to obtain an IPA version of the input. This con-534

version was done with Epitran6 (Mortensen et al.,535

5pre-trained weights were obtained from
https://huggingface.co/models

6https://github.com/dmort27/epitran

2018) , an external tool for G2P conversion. Af- 536

ter converting to IPA, we insert white space be- 537

tween every character to make it compatible with 538

the XPhoneBERT tokenizer. 539

Languages. We categorize languages into three 540

groups—high-resource (eng, deu, fra), low- 541

resource (urd, hin, swa), and typologically distinct 542

(kor, ukr)—to analyze the impact of phonemic 543

representation with respect to each category. For 544

high/low-resource language, we refer to Wu and 545

Dredze (2020) and treat the languages with a wiki- 546

size under 8 as low-resource languages, and those 547

with wikisize above 11 high-resource languages. 548

On the other hand, typologically distinct languages 549

are chosen with reference to English (they are or- 550

thographically and typologically different)7. 551

A.3 Downstream Tasks 552

We adopt the cross-lingual generalization bench- 553

mark tasks suggested in XTREME (Hu et al., 2020). 554

Among them, we selected two types of tasks; clas- 555

sification and structured prediction. 556

Sentence-level Classification. XTREME sup- 557

ports some sentence-level classification tasks, re- 558

quiring semantic understanding of given sentences 559

to make a prediction. We employ the XNLI (Con- 560

neau et al., 2018) corpus, which is well-known for 561

cross-lingual evaluation, to train and evaluate the 562

model on different languages. 563

Token-level Classification. Structured predic- 564

tion tasks from Hu et al. (2020) include POS tag- 565

ging and NER. Both tasks require labeling each 566

token from the model. These types of tasks were 567

previously analyzed as being relatively indepen- 568

dent from the data size of each language used for 569

pre-training (Hu et al., 2020). We find this partic- 570

ularly suitable in our scenario where two models 571

with different pre-training strategy are compared. 572

We utilize the corpora from Universal Dependen- 573

cies8 for POS tagging, and WikiAnn (Pan et al., 574

2017) with train, dev, test splits following (Rahimi 575

et al., 2019) for NER. While all 8 languages are 576

employed for NER, we do not consider swa for 577

POS tagging since Universal Dependencies does 578

not provide a Swahili treebank. 579

7Note that this categorization is not mutually exclusive and
that Urdu and Hindi can also be considered as typologically
distant from English.

8https://universaldependencies.org/ , v2.13, 148 languages,
released Nov 15, 2023.
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Evaluation. For evaluation, we follow the com-580

mon practice of each task, evaluating XNLI task581

with top 1 accuracy and NER, POS tagging with F1582

score. All metrics used are computed via functions583

from scikit-learn 9 python library.584

A.4 Implementation details.585

We fine-tuned all models with AdamW (Loshchilov586

and Hutter, 2018) optimization setting batch size587

as 128 over 20 epochs for XNLI and 40 epochs for588

NER and POS Tagging tasks. Here, we adopt a589

cosine learning rate scheduler with a warm-up on590

the XNLI task. For all models, we adopt mixed pre-591

cision training (Micikevicius et al., 2018) provided592

by PyTorch, i.e., with autocast() loop for saving593

computational cost and energy consumption. For594

XNLI task, we used the embedding of [CLS] token595

for mBERT, and used the mean of all tokens except596

[CLS] token for CANINE and XPhoneBERT. All597

experiments were done with the random seed fixed598

to 42.599

A.5 Number of parameters of the models.600

Model Num. of params

mBERT-base 177,853,440
CANINE-c 132,082,944

XPhoneBERT 87,554,304

Table 3: The number of parameters of each model. For
experiments, we use

A.6 Computational resources.601

All experiments on POS tagging were done on a602

single NVIDIA GeForce RTX 3090, and those on603

XNLI and NER were done on a single NVIDIA604

A6000. Total GPU hours for all experiments are 29605

days.606

A.7 Hyperparameter sweep.607

We sweep hyperparameters over grid below (in608

Table 4), and select the final parameters for each609

model based on the best validation performance610

(Accuracy for XNLI and F1-score for NER and611

POS Tagging).612

A.8 Datasets, Statistics, and License.613

In Table 5, we provide the datasets, their statistics,614

and license.615

9https://scikit-learn.org/stable/index.html

B Details on Theoreoretical Analysis 616

We aim to diminish the performance gap between 617

different languages by adopting IPA as a univer- 618

sal language representation. Motivated by domain 619

adaptation literature (Kifer et al., 2004; Ben-David 620

et al., 2010), we present a theoretical justification of 621

IPA for robust multilingual modeling by providing 622

a bound for cross-lingual performance gap. 623

Let D denote a domain as a distribution over text 624

feature input X , such as the sequence of word em- 625

beddings or one-hot vectors, and a labeling func- 626

tion f : X → {0, 1}. Assuming a binary clas- 627

sification task, our goal is to learn a hypothesis 628

h : X → {0, 1} that is expected to minimize a 629

risk εD(h, f) := Ex∼D[I(f(x) ̸= h(x))] and has 630

a small risk-deviation over two domains DA and 631

DB . Then, to formalize the cross-lingual perfor- 632

mance gap, we first need a discrepancy measure 633

between two languages. By following (Ben-David 634

et al., 2010), we adopt H-divergence to quantify 635

the distance between two language distributions. 636

Definition B.1 (H-divergence; Ben-David et al. 637

(2006)). Let H be a hypothesis class for input 638

space X and a collection of subsets from X is de- 639

noted by SH := {h−1(1)|h ∈ H} which is the 640

support of hypothesis h ∈ H. The H-divergence 641

between two distributions D and D′ is defined as 642

dH(D,D′) = 2 sup
S∈SH

|PD(S)− PD′(S)| 643

H-divergence is a relaxation of total variation be- 644

tween two distributions, and it can be estimated by 645

finite samples from both distributions if H governs 646

a finite VC dimension. Now, based on Lemma 1 647

and 3 of Ben-David et al. (2010), we make reason- 648

ing on performance gap over different language 649

domains. 650

Theorem B.2. Let h : X → [0, 1] be a real-valued 651

function in a hypothesis class H with a pseudo 652

dimension Pdim(H) = d. If D̂A and D̂B are the 653

empirical distribution constructed by n-size i.i.d. 654

samples, drawn from DA and DB respectively, then 655

for any δ ∈ (0, 1), and for all h, the bound below 656

hold with probability at least 1− δ. 657

|εDA
(h, f)− εDB

(h, f)| ≤ 1

2
dH∆H(D̂A, D̂B) 658

+2

√
d log(2n) + log(2/δ)

n
659

where H∆H := {h(x)⊕ h′(x)|h, h′ ∈ H} given 660

⊕ as a xor operation. 661
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Task Hyperparam Search space Selected parameter value

mBERT CANINE XPhoneBERT

XNLI
learning rate [5e-6, 7e-6, 1e-5, 3e-5, 5e-5] 5e-6 5e-6 (EN), 1e-5 (SW, UR) 7e-6 (EN), 3e-6 (SW, UR)
weight decay [0.0, 1e-1, 1e-2, 1e-3] 0.01 0.1 (EN), 0.0 (SW), 0.01 (UR) 0.1 (EN), 0.0 (SW), 0.01 (UR)

learning rate scheduling [True, False] True True False

NER learning rate [1e-5, 5e-5, 1e-4] 1e-4 5e-5 5e-5
weight decay [1e-4, 1e-3, 1e-2] 1e-3 1e-4 1e-2

POS learning rate [1e-5, 5e-5, 1e-4, 3e-4, 1e-2] 1e-4 3e-4 1e-4
weight decay [1e-4, 1e-3, 1e-2] 1e-4 1e-2 1e-2

Table 4: List of hyperparameter, search spaces and selected parameter values for different models applied to XNLI,
NER, and POS tasks, detailing learning rate, weight decay, and learning rate scheduling for mBERT, CANINE, and
XPhonemBERT, with specific configurations for optimal model performance per task.

Dataset Lang. Train Dev Test License

XNLI
eng

393k 2.49k 5.01k CC BY-NC-4.0swa
urd

WikiAnn

eng 20k 10k 10k

ODC-BY

deu 20k 10k 10k
fra 20k 10k 10k
kor 20k 10k 10k
ukr 20k 10k 10k
urd 20k 1k 1k
swa 1k 1k 1k
hin 5k 1k 1k

UD

eng 12.5k 2k 2k CC BY-SA 4.0
deu 13.8k 0.8k 1k CC BY-SA 4.0
fra 14.5k 1.5k 0.4k CC BY-SA 4.0
kor 23k 2k 2.3k CC BY-SA 4.0
ukr 5.5k 0.7k 0.9k CC BY-NC-SA 4.0
urd 4k 0.6k 0.5k CC BY-NC-SA 4.0

Table 5: Statistics and license types for datasets. The
table lists the number of examples in the training, de-
velopment, and testing sets for languages in the XNLI,
WikiAnn, and UD datasets. It specifies the licensing con-
ditions: CC-BY permits sharing and adaptation, CC BY-
NC is for non-commercial usage, CC BY-SA mandates
share-alike distributions, and CC BY-NC-SA combines
non-commercial with share-alike terms. All datasets are
strictly used within the bounds of these licenses.

proof of Theorem B.2. we start to prove Theorem662

B.2. by restating Lemma 1 of (Ben-David et al.,663

2010) adapted to our notation.664

Lemma B.3. Let DA and DB be distributions of665

domain A and B over X , respectively. Let H be666

a hypothesis class of functions from X to [0, 1]667

with VC dimension d. If D̂A and D̂B are the n-size668

empirical distributions generated by DA and DB669

respectively, then, for 0 < δ < 1, with probability670

at least 1− δ,671

dH(DA,DB) ≤ dH(D̂A, D̂B)672

+ 4

√
d log(2n) + log(2/δ)

n
.673

674

Then, for any hypothesis function h, h′ ∈ H, by675

the definition of dH∆H-divergence, we have:676

dH∆H(DA,DB) 677

= 2 sup
h,h′∈H

|Px∼DA [h(x) ̸= h′(x)]− Px∼DB [h(x) ̸= h′(x)]| 678

= 2 sup
h,h′∈H

|εDA(h, h
′)− εDB (h, h′)| 679

≥ 2|εDA(h, h
′)− εDB (h, h′)| 680

Now the below bound holds for any hypothesis 681

functions h, h′ ∈ H (See Lemma 3 of (Ben-David 682

et al., 2010)). 683

|εDA
(h, h′)− εDB

(h, h′)| ≤ 1

2
dH∆H(DA,DB) 684

Finally, by plugging the Lemma B.3 into the above 685

bound, we have Theorem B.2. 686

687

From Theorem B.2, we see that the difference 688

between true risks across language domains is 689

bounded by an empirical estimation of the diver- 690

gence (dH∆H) between those two domains plus an 691

irreducible term defined by problem setup. Thus, if 692

we reduce the divergence between language distri- 693

butions, the expected performance gap can also be 694

reduced accordingly. To investigate whether this is 695

indeed a case or not, we provided the embedding- 696

space similarity and logit-space Sinkhorn distance 697

between different languages in Figure 3. We ar- 698

gue that phonemic representation’s relatively mild 699

performance gap is achieved by reducing linguistic 700

gaps in the embedding space (high CKA) and final 701

output space (low Sinkhorn distance) those are the 702

proxy of H-divergence. 703
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